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Abstract

Block cipher encryption algorithms generally process on word structures of fixed length such as 8 or 16-

bits. IDEA is one of the most widely used block ciphers and operates on 16-bit words. Square analysis is

a method that exploits the word structure of block ciphers. Some square distinguishers of IDEA are given

in previous studies. The best attacks against IDEA use square-like techniques. In this paper, we focus on

the square properties of the IDEA block cipher. We consider all fixed word combinations of the plaintext to

investigate the structural behavior of the algorithm. We observe that the cipher can be distinguished from a

random permutation by fixing one, two or three subblocks of the cipher for 2 and 3 rounds. We find out novel

3-round distinguishers that require 216 chosen plaintexts. Furthermore, this approach enables us to propose

the first four and five round square distinguishers of IDEA.
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1. Introduction

The International Data Encryption Algorithm (IDEA; originally known as IPES, Improved Encryption Stan-

dard), proposed in 1991 by Lai and Massey, is a 64-bit, 8.5-round block cipher with 128-bit key size. The main

design concept in the design is the “mixing [of] operations from different algebraic groups.” Lai and Massey
have developed the idea of Markov ciphers to evaluate the cipher against differential cryptanalysis. IDEA is one
of the most popular block ciphers, for it has been widely used in several commercial cryptographic environments
such as Pretty Good Privacy (PGP) and Secure Shell (SSH).

The cryptanalysis of IDEA has developed slowly. Several cryptanalytic studies were applied to break
IDEA but it resists all of them [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].

In [2], a 2.5-round differential attack on IDEA was introduced. In [3], the authors presented a truncated

differential attack on 3.5-round IDEA and a differential linear attack on 3-round IDEA. In [7] and [11], several

weak key classes for IDEA were considered. In [4], Biham et al. used impossible differential technique to

sieve the key space for 3.5, 4 and 4.5 rounds. In [5], Demirci observed the square properties of the first few
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rounds. Nakahara et al. used the Biryukov-Demirci relation to attack on up to four rounds of IDEA with a
trade off between time and data [12]. Demirci et al. introduced a chosen-plaintext attack on 5-round IDEA

that requires 224 chosen plaintexts and has time complexity of 2126 encryptions [6]. A related-key attack on

6.5-round IDEA that requires 257.8 chosen plaintexts encrypted under four related keys and has time complexity

of 288.1 encryptions was developed by Biham et al. [8]. In [9], Biham et al. proposed a linear attack on 5-round

IDEA that uses 219 known plaintexts with 2103 time complexity. Transforming the relation into a related key

one, they applied a 7.5-round attack on IDEA with 243.5 known plaintexts and 2115.1 time complexity. In
[13], Junod introduced some new chosen plaintext or chosen ciphertext attacks against reduced round versions
of IDEA.Biham et al. also introduced the first known plaintext attack on 6-round IDEA, which exploits the
weak-key schedule algorithm of IDEA, a combination of square-like techniques and linear cryptanalysis [10]. In

[14], Clavier et al. performed a group of fault attacks against the IDEA block cipher. One of their proposed
differential fault analysis of IDEA extracts 93 key bits out of 128 bits exploiting only 10 faults. Finally, Sun and
Lai presented a key dependent attack on 5.5 and 6-round IDEA that has the lowest time and data complexity
compared to the previous attacks [15].

Consider a block cipher with a word structure. By a “square property” we mean to statistically distinguish
the cipher from a random permutation when selected words are fixed as constants while other words vary over
a set. The block cipher SQUARE was first cryptanalyzed with the help of square properties [16]. Following this

study, such an attack is called a “square attack.” Saturation [17] and integral [18] cryptanalysis also exploit the
word structure of the algorithm with different notations. These techniques are applied to some block ciphers,
including IDEA and Advanced Encryption Standard (AES).

In this study, we propose new square properties of IDEA by considering different combinations that fix
the possible word positions of the algorithm. As an example, we have observed two novel 3-round distinguishers

that require 216 chosen plaintexts. We have also obtained a 4-round distinguisher by applying a similar idea

that requires 248 chosen plaintexts when 2 subkey blocks are known. It is also possible to carry this observation
to the 5-th round for some weak keys.

This paper proceeds as follows. In Section 2, we briefly describe the IDEA block cipher. We give some
existing square properties of IDEA in Section 3. Our new observations on IDEA are introduced in Section 4.
In Section 4.1, 4.2 and 4.3 we give 2, 3 and 4-round distinguishers of IDEA for different fixed word positions.
In Section 4.4, a 5-round distinguisher for some weak keys of IDEA is presented. In Section ??, we conclude
the paper.

1.1. Notation

Throughout this paper, we use the following notation. We use the symbol ⊕ for the bitwise exclusive-or
(XOR), � for the modular addition and � for IDEA multiplication of 16-bit words. The plaintext is denoted

by (P 1, P 2, P 3, P 4) and the ciphertext is denoted by (C1, C2, C3, C4). Each separated part shows one 16-bit

subblock. Subscripts denote the round numbers. For example, C1
2 denotes the first subblock of the ciphertext

after second round. The subkeys of the MA-box are denoted by K5 and K6 . The first input of the MA-box is
called as p , the second input is called as q , the first output of the MA-box is called as t and the second output

is called as u . The abbreviation lsb denotes the least significant bit of a variable. K1
2 [97...112] denotes that

the subkey K1
2 uses the bits from 97 to 112 of the main key, including the boundaries.

We use the
⊕

and
∑

for XOR and sum of the variables respectively. If these operations are made over
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a set P , we denote them by
⊕

P

and
∑

P

respectively. Therefore, the XOR of the variables P i
k, Ci

k, pk, qk, uk, tk is denoted over the plaintext set, P by

⊕

P

Pk
i,

⊕

P

Ck
i,

⊕

P

pk,
⊕

P

qk,
⊕

P

uk,
⊕

P

tk

and the sum of least significant bits of the variables P i
k, Ci

k over the plaintext set, P by

∑

P

lsb(P i
k),

∑

P

lsb(Ci
k)

in the kth round respectively.

2. The IDEA block cipher

The IDEA block cipher is a modified version of the PES block cipher [19], [20]. The main design concept is
the mixing operations from different algebraic groups. IDEA is a 8.5-round block cipher encrypting 64-bit data
blocks under a 128-bit key. It uses 3 different group operations on 16 bit subblocks: XOR, modular addition
and IDEA multiplication. The IDEA multiplication is defined as follows:

z = x � y

if x = 0, then x = 216

if y = 0, then y = 216

z = x.y mod (216 + 1)

if z = 216, then z = 0.

In [21], Lai suggested that the cipher satisfies “confusion” by using the fact that these operations are
incompatible: there are no general commutativity, associativity or distributivity properties when different
operations are used respectively. IDEA multiplication provides a strong non-linear component against linear
attacks.

The round function of IDEA, which is shown in Figure , consists of two parts. The first is a transformation
part where each plaintext subblock is operated with the subkey, i.e.,

T : (P 1, P 2, P 3, P 4) → (P 1 � K1, P 2 � K2, P 3 � K3, P 4 � K4).

The second part is a multiplication-addition layer which is called the MA-box. MA-box has two 16-bit inputs

p = (P 1 � K1) ⊕ (P 3 � K3) and q = (P 2 � K2) ⊕ (P 4 � K4). Using the inputs p, q and the subkeys K5, K6 ,
MA-box produces two output subblocks t and u. The outputs are calculated as follows:

t = ((p � K5) � q) � K6 and u = (p � K5) � t.

The outputs of the MA-box are XORed with the outputs of the transformation part and the two middle

subblocks are exchanged. After one round the ciphertext is of the form (C1, C2, C3, C4) where,
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Figure. One Round of IDEA

C1 = (P 1 � K1) ⊕ t,

C2 = (P 3 � K3) ⊕ t,

C3 = (P 2 � K2) ⊕ u,

C4 = (P 4 � K4) ⊕ u.

The encryption operation is composed of 8 full rounds and an extra transformation round. The 128 bit main
key is used in 16-bit round subkeys and it is cyclically shifted 25 bits left to fill an array. Then the bits for

subkeys are taken from this array. Building smaller versions of IDEA is also possible, since 22 + 1, 24 + 1 and

28 + 1 are also prime. IDEA with block sizes 8, 16 and 32 bits can be built with subblock sizes 2, 4 and 8
respectively. This fact enables us to evaluate analytical properties of the cipher easily. The square properties
mentioned in this study are verified using the smaller versions of IDEA.

3. Some distributions of the IDEA block cipher

In some previous studies, it is shown that the word structure of IDEA gives rise to some square properties. The
important square distinguishers mentioned in [5] are given below.

Corollary 1 Let P = {(P 1, P 2, P 3, P 4)} , where P 1 and P 3 are fixed and P 2 and P 4 take every possible
combination, and let E2 denote the set obtained when P is encrypted with 2-round IDEA. Let ri denote the
XOR of the i-th subblocks of the ciphertexts, r5 denote the XOR of the first outputs, and r6 denote the XOR
of the second outputs of the MA-box of all the elements of E2 . Then we have r1 = r2 = r5 and r3 = r4 = r6 .

Theorem 1 Let P = {(P 1, P 2, P 3, P 4)} and P ′ = {(P ′1, P 22, P ′3, P 4)} denote the sets of plaintexts where

P 1, P 3, P ′1, P ′3 are fixed, and P 2 and P 4 take every possible value. Encrypt these sets with 3 rounds of IDEA.
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Denote the resulting sets by E3 and E′
3 , respectively. Let n0 denote the number of 0’s of the variable lsb(C2

3 ⊕
C3

3 ⊕(K5
3 �(C1

3 ⊕C2
3))) for the set E3 . Then, the number of 0’s of the variable lsb(C2

3 ⊕C3
3 ⊕(K5

3 �(C1
3 ⊕C2

3 )))

for E′
3 is either n0 or 232 − n0.

Theorem 2 Fix one of the subblocks P 1 or P 3 in the plaintexts (P 1, P 2, P 3, P 4) and change the other
three subblocks over all possible values. Encrypt these plaintexts with 3-round IDEA. Then in the ciphertexts

(C1
3 , C2

3 , C
3
3 , C4

3) the variable lsb(C2
3 ⊕ C3

3 ⊕ (K5
3 � (C1

3 ⊕ C2
3))) takes the values 0 and 1 equal 247 times.

These results investigate square properties of IDEA for 2 and 3 rounds. At this point a natural question
arises: What are the square properties when different combinations are considered for the position of the fixed
words? We give the answer of this question in the following sections. We search for similar square properties
by going through all combinations produced by fixing the subblocks at different positions. We observe that the
previously mentioned properties are not complete. For instance, the variable n0 is an even number for some
combinations.

4. New distributions of the IDEA block cipher

4.1. Two round distinguishers

In this section, we present square distinguishers of 2-round IDEA that are found by fixing one, two and three
of the subblocks. Hence, we are able to see that previous square distinguishers are incomplete.

The following theorem investigates the effect of fixing three subblocks and changing the remaining
subblock over all possible values.

Theorem 3 Let P = {(P 1, P 2, P 3, P 4)} denote the set of plaintexts that satisfies the following cases:

a) P 1, P 2, P 3 are fixed and P 4 takes every possible value.

b) P 1, P 2, P 4 are fixed and P 3 takes every possible value.

c) P 1, P 3, P 4 are fixed and P 2 takes every possible value.

d) P 2, P 3, P 4 are fixed and P 1 takes every possible value.

Encrypt this set with 2 rounds of IDEA. Then, for these cases, respectively, we have:

a)
⊕

C1
2 =

⊕
C2

2 =
⊕

t2 and
⊕

C3
2 =

⊕
u2 and

⊕
p2 = 0 and

∑
lsb(C2

2 ⊕ C3
2 ⊕ (K5

2 � (C1
2 ⊕ C2

2))) is either 0 or 216.

b)
⊕

C1
2 =

⊕
t2 and

∑
lsb(C2

2 ⊕ C3
2 ⊕ (K5

2 � (C1
2 ⊕ C2

2))) is even.
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c)
⊕

C1
2 =

⊕
t2 ,

⊕
C3

2 =
⊕

C4
2 ,

⊕
q2 = 0 and

∑
lsb(C2

2 ⊕ C3
2 ⊕ (K5

2 � (C1
2 ⊕ C2

2))) = 215.

d)
⊕

C3
2 =

⊕
u2 and

∑
lsb(C2

2 ⊕ C3
2 ⊕ (K5

2 � (C1
2 ⊕ C2

2 ))) = 215.

Remark 1 Let n1 =
∑

lsb(C2
2 ⊕ C3

2 ⊕ (K5
2 � (C1

2 ⊕ C2
2))) . Then, n1 either remains the same or becomes

216 − n1 according to changes of the least significant bits of the fixed words.

Proof

a) Since P 1 and P 3 are fixed, p1 = (P 1 � K1
1 ) ⊕ (P 3 � K3

1 ) is also fixed and q1 = (P 2 � K2
1 ) ⊕ (P 4 � K4

1 )
takes every possible value once. Therefore, t1 and u1 take every possible value once. Then,

C1
1 = (P 1 � K1

1 ) ⊕ t1, C2
1 = (P 3 � K3

1 ) ⊕ t1 and C3
1 = (P 2 � K2

1) ⊕ u1

take every possible value once in the first round. For the second round, P 1
2 �K1

2 , P 2
2 � K2

2 and P 3
2 �K3

2

take every possible value once. Then,

⊕
(P 1

2 � K1
2 ) = 0 and C1

2 = (P 1
2 � K1

2 ) ⊕ t2 ⇒

⊕
C1

2 =
⊕

(P 1
2 � K1

2 ) ⊕
⊕

t2 =
⊕

t2.

⊕
(P 3

2 � K3
2 ) = 0 and C2

2 = (P 3
2 � K3

2 ) ⊕ t2 ⇒

⊕
C2

2 =
⊕

(P 3
2 � K3

2 ) ⊕
⊕

t2 =
⊕

t2.

⊕
(P 2

2 � K2
2 ) = 0 and C3

2 = (P 2
2 � K2

2 ) ⊕ u2 ⇒

⊕
C3

2 =
⊕

(P 2
2 � K2

2 ) ⊕
⊕

u2 =
⊕

u2.

As a result,

p2 = (P 1
2 � K1

2 ) ⊕ (P 3
2 � K3

2 ) ⇒
⊕

p2 =
⊕

(P 1
2 � K1

2) ⊕ (P 3
2 � K3

2 ) = 0.

Therefore, we have

lsb(C2
2 ⊕ C3

2 ⊕ (K5
2 � (C1

2 ⊕ C2
2))) = lsb(C2

2 ⊕ C3
2 ⊕ u2 ⊕ t2) = lsb((C2

1 � K2
2 ) ⊕ (C3

1 � K3
2 ))

= lsb(((P 3 � K3
1) ⊕ t1) � K2

2 ) ⊕ (((P 2 � K2
1 ) ⊕ u1) � K3

2 ). (1)
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Since p1 is fixed, u1 = t1 � c0 , where c0 is a constant, and

lsb(C2
2 ⊕ C3

2 ⊕ (K5
2 � (C1

2 ⊕ C2
2)))

= lsb(((P 3 � K3
1 ) ⊕ t1) � K2

2 ) ⊕ (((P 2 � K2
1 ) ⊕ (t1 � c0)) � K3

2 ). (2)

From the fact that lsb(a ⊕ b) = lsb(a � b), the lsb of the above expression is

lsb(C2
2 ⊕ C3

2 ⊕ (K5
2 � (C1

2 ⊕ C2
2)))

= lsb(P 3 ⊕ K3
1 ⊕ t1 ⊕ K2

2 ⊕ P 2 ⊕ K2
1 ⊕ t1 ⊕ c0 ⊕ K3

2 )

= lsb(P 3 ⊕ P 2 ⊕ c1), (3)

where c1 is the new constant that depends on c0 and the keys. Here P 3, P 2 and c1 are all constants;
then,

∑

P4

lsb(P 3 ⊕ P 2 ⊕ c1) is either 0 or 216.

b) Since P2, P4 are fixed, q1 is also fixed and t1 takes every possible value once. Therefore, (P 1�K1
1 )⊕ t1 =

C1
1 takes every possible value once. Then,

C1
2 = (C1

1 � K1
1 ) ⊕ t2 ⇒

⊕
C1

2 =
⊕

(C1
1 � K1

1) ⊕
⊕

t2 =
⊕

t2.

From Equation 1 and lsb((p1 � K5
1 ) � t1) = lsb(u1):

lsb(C2
2 ⊕ C3

2 ⊕ (K5
2 � (C1

2 ⊕ C2
2)))

= lsb(((P 3 � K3
1 ) ⊕ t1) � K2

2 ) ⊕ (((P 2 � K2
1 ) ⊕ ((p1 � K5

1 ) � t1)) � K3
2).

Since p1 takes every possible value once, p
′

1 = p1 �K5
1 takes every possible value once while P 3 changes.

Consider the sum ∑
lsb(P 3 ⊕ P 2 ⊕ c1 ⊕ p

′

1). (4)

Here, c1 and P 2 are fixed and every 16 bit number occurs once for P 3 and once for p′1 . Therefore, we
have ∑

lsb(P 3 ⊕ c2 ⊕ p
′

1) is even.

c) The first part can be proved as in Proof (a). For the second part, since P 1 and P 3 are constants and p1

is fixed, Equation 3 is also valid:

lsb(C2
2 ⊕ C3

2 ⊕ (K5
2 � (C1

2 ⊕ C2
2))) = lsb(P 3 ⊕ P 2 ⊕ c1).

Here, P 3 and c1 are constants and P 2 takes every possible value then

∑
lsb(P 3 ⊕ P 2 ⊕ c1) = 215.
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d) The first part can be proved as in Proof (b). For the second part, using Expression 4 we have:

lsb(C2
2 ⊕ C3

2 ⊕ (K5
2 � (C1

2 ⊕ C2
2))) = lsb(P 3 ⊕ c1 ⊕ P 2 ⊕ p

′

1).

Here P 2, P 3 and c1 are constants and p
′

1 takes every possible value once as P 1 changes. Therefore,

∑
lsb(P 3 ⊕ c1 ⊕ P 2 ⊕ p

′

1) = 215.

The following theorem is on all possible combinations that fix two subblocks.

Theorem 4 Let P = {(P 1, P 2, P 3, P 4)} denote the set of plaintexts that satisfies the following cases:

a) P 1 , P 2 are fixed and P 3, P 4 visit each of 232 possible combinations once.

b) P 1 , P 3 are fixed and P 2, P 4 visit each of 232 possible combinations once.

c) P 1 , P 4 are fixed and P 2, P 3 visit each of 232 possible combinations once.

d) P 2 , P 3 are fixed and P 1, P 4 visit each of 232 possible combinations once.

e) P 2 , P 4 are fixed and P 1, P 3 visit each of 232 possible combinations once.

f) P 3 , P 4 are fixed and P 1, P 2 visit each of 232 possible combinations once.

Encrypt this set with 2 rounds of IDEA. Then, we have the following conditions:

(i) The cases (a), (b), (c), (d), (e) and (f) satisfy

⊕
C1

2 =
⊕

C2
2 =

⊕
t2,

⊕
C3

2 =
⊕

C4
2 =

⊕
u2

and
⊕

p2 =
⊕

q2 = 0.

(ii) The cases c, d, e and f satisfy

∑
lsb(C2

2 ⊕ C3
2 ⊕ (K5

2 � (C1
2 ⊕ C2

2))) = 231.

500
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Proof
(i) Consider part (a). From Theorem 3a,

⊕

P4

C1
2 =

⊕

P4

C2
2 =

⊕

P4

t2 ⇒
⊕

P3

⊕

P4

C1
2 =

⊕

P3

⊕

P4

C2
2 =

⊕

P3

⊕

P4

t2

and ⊕

P4

C3
2 =

⊕

P4

u2 ⇒
⊕

P3

⊕

P4

C3
2 =

⊕

P3

⊕

P4

u2.

Since P 3 and P 4 take every possible value, (p1, q1) and (t1, u1) take every possible 232 combination once and
⊕

P3

⊕
P4 u1 = 0. Then,

⊕
P3

⊕
P4 (P 4

2 � K4
2 ) = 0 since P 4

2 = C4
1 = (P 4 � K4

1 ) ⊕ u1 and P 4 takes every

possible value once. Therefore,

⊕

P3

⊕

P4

C4
2 =

⊕

P3

⊕

P4

(P 4
2 � K4

2 ) ⊕
⊕

P3

⊕

P4

u2 =
⊕

P3

⊕

P4

u2.

The fact ⊕

P3

⊕

P4

p2 = 0

again follows from Theorem 3a. On the other hand, since

C2
1 = (P 3 � K3

1 ) ⊕ t1

visits every value 216 times as P 3 and P 4 changes, we get

⊕

P3

⊕

P4

(P 2
2 � K2

2 ) = 0.

This gives
⊕

P3

⊕

P4

q2 =
⊕

P3

⊕

P4

(P 2
2 � K2

2 ) ⊕
⊕

P3

⊕

P4

(P 4
2 � K4

2 ) = 0.

The parts (b), (c), (d), (e) and (f) can be shown similarly.

(ii) As an example, consider part (c). From the result of Theorem 3c,

∑

P2

lsb(P 3 ⊕ P 2 ⊕ c1) = 215 ⇒
∑

P3

∑

P2

lsb(P 3 ⊕ P 2 ⊕ c1) = 216.215 = 231.

The parts (d), (e) and (f) can be shown similarly.

Finally, the following theorem investigates the effect of fixing one subblock.

Theorem 5 Let P = {(P 1, P 2, P 3, P 4)} denote the set of plaintexts where one of the subblocks P i is fixed and

the remaining three subblocks visit each of 248 possible combinations once. Encrypt this set with 2 rounds of
IDEA. Then, we have
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(i)
⊕

C1
2 =

⊕
C2

2 =
⊕

t2,

⊕
C3

2 =
⊕

C4
2 =

⊕
u2

and ⊕
p2 =

⊕
q2 = 0.

(ii)
∑

lsb(C2
2 ⊕ C3

2 ⊕ (K5
2 � (C1

2 ⊕ C2
2))) = 247.

Proof
(i) The result follows from Theorem 4.
,

(ii) Consider the case where P 1 is fixed and P 2, P 3 and P 4 vary. From Theorem 4,

∑

P3

∑

P2

lsb(P 3 ⊕ P 2 ⊕ c1) = 231 ⇒
∑

P4

∑

P3

∑

P2

lsb(P 3 ⊕ P 2 ⊕ c1) = 216.231 = 247.

Other cases can be shown by using similar arguments.

4.2. Three round distinguishers

In this section, we investigate if there exists similar square properties for 3 rounds of IDEA. We observe that
we could not get a property by fixing three subblocks. The following theorem summarizes the results for fixing
two subblocks.

The following theorems summarize the results obtained by fixing two and one subblocks respectively.

Theorem 6 Let P = {(P 1, P 2, P 3, P 4)} denote the set of plaintexts that satisfies the following cases:

a) P 1, P 2 are fixed and P 3, P 4 visit each of 232 possible combinations once.

b) P 1, P 3 are fixed and P 2, P 4 visit each of 232 possible combinations once.

c) P 1, P 4 are fixed and P 2, P 3 visit each of 232 possible combinations once.

d) P 2, P 4 are fixed and P 1, P 3 visit each of 232 possible combinations once.

Encrypt this set with 3 rounds of IDEA. Then, for these cases we have:

∑
lsb(C2

3 ⊕ C3
3 ⊕ (K5

3 � (C1
3 ⊕ C2

3))) is an even number.

For the remaining two cases where P 2 − P 3 and P 3 − P 4 are fixed, there is no such relation.
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Theorem 7 Let P = {(P 1, P 2, P 3, P 4)} denote the set of plaintexts that satisfies the following cases:

a) P 1 is fixed and P 2, P 3, P 4 visit each of 248 possible combinations once.

b) P 2 is fixed and P 1, P 3, P 4 visit each of 248 possible combinations once.

c) P 3 is fixed and P 1, P 2, P 4 visit each of 248 possible combinations once.

Encrypt this set with 3 rounds of IDEA. Then, we have:

∑
lsb(C2

3 ⊕ C3
3 ⊕ (K5

3 � (C1
3 ⊕ C2

3))) = 247.

Proof
Parts (a) and (c) have been shown in [5] as mentioned in Theorem 2. Hence it is enough to show part (b).

b)

P 2
2 = (P 3 � K3

1 ) ⊕ t1,

P 1
2 = (P 1 � K1

1 ) ⊕ t1 = P 2
2 ⊕ (P 1 � K1

1 ) ⊕ (P 3 � K3
1 )

and
P 3

2 = (P 2 � K2
1 ) ⊕ u1

Assume that P 3 is fixed and P 1 and P 4 take every possible 232 value once. Then, u1 and t1 take every

possible 232 value. Therefore P 2
2 and P 3

2 also take 232 values once. In this situation, if the value of P 3 is

changed then, P 1
2 , P 2

2 and P 3
2 take every possible 248 value. From the 248 values, if we choose the values of

P ′1
2 and P ′3

2 as constants then, p2 will be fixed. For this situation, Equation 3 can be written for the second
round as: ∑

P2
2

lsb(P ′3
2 ⊕ P 2

2 ⊕ c1) = 215.

Since P 2
2 takes every possible value, for all P ′1

2 and P ′3
2 values, we have

∑

P ′1
2

∑

P ′3
2

∑

P2
2

lsb(P ′3
2 ⊕ P 2

2 ⊕ c1) = 232.215 = 247.

Other cases can be proved similarly.

We would like to remark that the case where P 4 is fixed has no such a deterministic property.

The following theorem provides two 3-round distinguishers which require 216 chosen plaintexts.

Theorem 8 Let P = {(P 1, P 2, P 3, P 4)} denote the set of plaintexts such that

a) P 1, P 3 are fixed and P 2 and P 4 take every possible value in such a way that q1 is fixed. Encrypt this
set with 3 rounds of IDEA. Then

∑

(P2�K2
1)⊕(P4�K4

1)=q1

lsb(C2
3 ⊕ C3

3 ⊕ (K5
3 � (C1

3 ⊕ C2
3 ))) (5)

is an even number.
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b) P 2, P 4 are fixed and P 1 and P 3 take every possible value in such a way that p1 is fixed. Encrypt this
set with 3 rounds of IDEA. Then

∑

(P1�K1
1)⊕(P3�K3

1)=p1

lsb(C2
3 ⊕ C3

3 ⊕ (K5
3 � (C1

3 ⊕ C2
3))) (6)

is an even number.

4.3. A four round distinguisher of IDEA

If we fix the first input of the MA-box in the first round, p1 , these square properties are valid for one more

round. Note that this condition can be satisfied with a guess of the subkey blocks K1
1 and K3

1 .

Theorem 9 Let P = {(P 1, P 2, P 3, P 4)} denote the set of 248 plaintexts such that P 2 and P 4 take every

possible value and P 1 and P 3 satisfy

((P 1 � K1
1 ) ⊕ (P 3 � K3

1 )) = p1 for a given p1.

Consider the ciphertext set obtained after 4 rounds of IDEA. Then
∑

((P1�K1
1)⊕(P3�K3

1))=p1

lsb((C2
4 ⊕ C3

4 ⊕ (K5
4 � (C1

4 ⊕ C2
4 ))) (7)

is an even number.

This theorem can be used to distinguish the correct values of K1
1 , K3

1 and K5
4 . If these values are correct, this

count is always even whereas wrong guesses of the subkey blocks will behave randomly. To the best of our
knowledge, this is the first four round distinguisher of IDEA which is based on square properties. On the other
hand, we need the whole plaintext set to use this distinguisher in an attack. Therefore, such an attack would
not be more advantageous than the existing attacks.

4.4. A five round distinguisher of IDEA

In this section, we carry the square based distinguishers to the fifth round under some assumptions. For some
weak keys, a 5-round distinguisher is observed.

Theorem 10 Let P = {(P 1, P 2, P 3, P 4)} denote the set of 248 plaintexts such that P 2 and P 4 take every

possible value and P 1 and P 3 satisfy

((P 1 � K1
1 ) ⊕ (P 3 � K3

1 )) = p1 for a given p1.

Assume also that the subkey values K5
2 and K5

3 take the values 0 or 1 . Consider the ciphertext set obtained
after 5 rounds of IDEA. Then

∑

((P1�K1
1)⊕(P3�K3

1))=p1

lsb(C2
5 ⊕ C3

5 ⊕ (K5
5 � (C1

5 ⊕ C2
5 )) (8)

is an even number.

Therefore, specific values of two subkey blocks K5
2 and K5

3 provide a five round square distinguisher of IDEA.
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AKGÜN, DEMİRCİ, SAĞIROĞLU, KAVAK: Improved square properties of IDEA,

5. Conclusion

Recent analysis of IDEA block cipher depend on square properties of the algorithm. Some distinguishers were
already observed as a result of the word structure. In this paper, we have analyzed the security of IDEA by
investigating different square scenarios that have a potential to yield distinguishing properties. Therefore, we
have considered all one, two and three fixed word combinations. We have showed that there are still square
properties which were not remarked before for 2 and 3 rounds. We have discovered two 3-round distinguishers

that require the information of two subkey blocks and 216 chosen plaintexts. The observations on 2 and 3-round

IDEA conduct us to find out the first 4-round distinguisher of IDEA. This distinguisher requires 248 chosen
plaintexts. Finally, we have revealed a 5-round distinguisher for a specific subset of the key space.

We have observed that careful analytical investigation of a block cipher is required during a square attack.
Different fixed position combinations may lead to different properties of the cipher some of which may be more
advantageous than the others. In the case of IDEA block cipher, we are able to present the first 4 and 5-
round distinguishers of the cipher. However, the attacks in which these properties are directly used have more
complexity than the best existing attacks. The main reason is that these properties require large amount of
data. It is a new research direction to carry out the square properties to more rounds and to develop better
attacks on IDEA with less complexity.
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