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Abstract

The extended Kalman filter is extensively used in nonlinear state estimation problems. As long as the

system characteristics are correctly known, the extended Kalman filter gives the best performance. However,

when the system information is partially known or incorrect, the extended Kalman filter may diverge or

give biased estimates. An extensive number of works has been published to improve the performance of the

extended Kalman filter. Many researchers have proposed the introduction of a forgetting factor, both into the

Kalman filter and the extended Kalman filter, to improve the performance. However, there are 2 fundamental

problems with this approach: the incorporation of the optimal forgetting factor into the (extended) Kalman

filter and the selection of the optimal forgetting factor. These problems have not yet been fully resolved

and are still open problems in the field. In this study, we propose a new adaptive fading extended Kalman

filter with a matrix forgetting factor, and 2 methods are analyzed for the selection of the optimal forgetting

factor. The stability properties of the proposed filter are also investigated. Results of the stability analysis

show that the proposed filter is an exponential observer for nonlinear deterministic systems. Additionally,

the convergence speed of the filter is simulated.

Key Words: Adaptive fading Kalman filter, extended Kalman filter, adaptive fading extended Kalman filter,

forgetting factor, stability analysis

1. Introduction

The Kalman filter (KF) and the extended Kalman filter (EKF) are the most popular estimation techniques

for solving state estimation problems of linear and nonlinear systems, respectively [1]. The EKF was derived
from the KF and is used for state estimation of both nonlinear stochastic and nonlinear deterministic systems
[2-4]. As long as the characteristics of a system are correctly known, the KF and the EKF will run with the
best estimation performance. That is, both dynamic and statistical model parameters should be exactly known
so that the KF and EKF give the best estimation performance [5]. However, in many practical cases, system
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characteristics are either unknown or partially known. This lack of information may also seriously reduce the
performance of the filter or even cause a divergence. To overcome this problem, in linear systems, several
adaptive filtering techniques have been proposed [6-10]. The adaptive fading Kalman filter (AFKF) is one of
these proposed filters; it is based on the weighting of the error covariance equation with a scalar forgetting factor
[8]. The degree of the lack of information in the model parameters may be different for each parameter; thus, it
is not appropriate for the error covariance of complex multiple systems that are weighted with a scalar forgetting
factor, but may be appropriate for univariate systems. To address this issue, an AFKF with a symmetrical

matrix forgetting factor was proposed by Özbek et al. [7], and a method for the adaptive estimation of multiple

forgetting factors in the KF was proposed by Geng and Wang [10]. In nonlinear systems, several adaptive EKFs

have been developed. One of these filters is the adaptive fading extended Kalman filter (AFEKF), first proposed

by Ozbek and Efe [11]. The AFEKF was designed as an adaptation of the AFKF into nonlinear filter form

[11]. In addition, a different AFEKF was proposed to improve the performance of the filter by Kim et al. [12]
for when the information of the dynamics or the measurement equation is incomplete. Another AFEKF, for
which the authors proposed an adaptive tracking technique with a diagonal matrix forgetting factor to identify
time-varying parameters of linear and nonlinear structures, was proposed by Yang et al. [13].

As reported in previous studies [14,15] and confirmed by simulation results, the EKF is more sensitive to
the initial values and the selection of appropriate values of the arbitrary matrices in the model. In this study,
we propose a new AFEKF with a diagonal matrix forgetting factor to reduce the sensitivity to the initial values
and to solve the problem of divergence that arises for a variety of reasons. We call it the matrix adaptive fading
extended Kalman filter (MAFEKF). Section 2 briefly introduces the MAFEKF, Section 3 analyzes the stability
of the MAFEKF, Section 4 gives some numerical results, and Section 5 summarizes and concludes the work.

2. Adaptive fading extended Kalman filter with the matrix forget-

ting factor

Consider the nonlinear discrete-time deterministic system given by:

xn+1 = f (xn, un) , (1)

yn = h(xn), (2)

where n is the discrete time index,xn is the q × 1 state vector, un is the p × 1 known input vector, and yn

is the m×1 measurement output vector. Assume that f (., .) and h (.) are continuously differentiable with

respect to xn , i.e.C1 functions.

x̂−
n+1 = f(x̂+

n , un), (3)

x̂+
n = f(x̂−

n , un) + Kn(yn − h(x̂−
n )). (4)

Eqs. (3) and (4) introduce observers for the given system in Eqs. (1) and (2), where Kn is the time-

varying q × m observer gain and x̂−
n and x̂+

n are a priori and a posteriori estimates, respectively [4]. Since

f (., .) and h (.) are C1 , they can be expanded by Taylor series expansion as:

f (xn, un) − f
(
x̂+

n , un

)
= An

(
xn − x̂+

n

)
+ φ

(
xn, x̂+

n , un

)
, (5)
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h (xn) − hn

(
x̂−

n

)
= Cn

(
xn − x̂−

n

)
+ χ

(
xn, x̂−

n

)
, (6)

where φ and χ are higher-order terms in functions f (., .) and h (.), where

An =
∂f

∂x
(x̂+

n , un), (7)

Cn =
∂h

∂x
(x̂−

n ). (8)

The general discrete-time extended Kalman filter for the system given by Eqs. (1) and (2) is introduced by the
following coupled difference equations:

x̂−
n+1 = f(x̂+

n , un), (9)

P−
n+1 = AnP +

n A′
n + Qn, (10)

Kn = P−
n C ′

n

(
CnP−

n Cn + Rn

)−1
, (11)

x̂+
n = f(x̂−

n , un) + Kn(yn − h(x̂−
n )), (12)

P +
n = (I − KnCn)P−

n , (13)

where x̂−
n+1 is the state prediction, x̂+

n is the state estimation, P−
n+1 is the error covariance of state prediction,

P +
n is the error covariance of state estimation, Kn is the Kalman gain, and Q and R are symmetric positive

definite matrices with dimensions q × q and m × m , respectively [4]. The AFKF is based on the weighting of
the error covariance with a forgetting factor. As mentioned above, the main problem is how to incorporate the
forgetting factor into the error covariance and how to find the optimal forgetting factor.

In this study, we propose a new AFEKF with the following diagonal matrix forgetting factor:

Λn =

⎡⎢⎢⎢⎢⎢⎣
λ1,n 0 · · · 0

0 λ2,n · · · 0
...

...
. . .

0 0 λq,n

⎤⎥⎥⎥⎥⎥⎦ , (14)

and weighting of the error covariance matrix by the following equation:

P−
n+1 = AnΛnP +

n Λ′
nA′

n + ΛnQnΛ′
n. (15)

In this case, the MAFEKF for the system given by Eqs. (1) and (2) is defined by Definition 1. The selection of
the optimal matrix forgetting factor is given in the Appendix.

Definition 1. A discrete-time MAFEKF is given by the following coupled difference equations:

x̂−
n+1 = f(x̂+

n , un), (16)

P−
n+1 = AnΛnP +

n Λ′
nA′

n + ΛnQnΛ′
n, (17)

Kn = P−
n C ′

n

(
CnP−

n Cn + Rn

)−1
, (18)
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x̂+
n = f(x̂−

n , un) + Kn(yn − h(x̂−
n )), (19)

P +
n = (I − KnCn)P−

n , (20)

where Λn is a time-varying q × q diagonal matrix forgetting factor.

3. Stability of the adaptive fading extended Kalman filter with the

matrix forgetting factor

Under the assumption that the nonlinear system information is perfectly known, Reif and Unbehauen [15]
analyzed the behavior of the EKF as a state estimator for nonlinear deterministic systems. This section shows
the analysis of the error behavior of the MAFEKF; results of this section are based on [4], [15], and [16].

When the nonlinear system information is partially known or incorrect, we prove, using the second method
of Lyapunov, that under certain conditions the proposed MAFEKF is an exponential observer; in other words,
the dynamics of the estimation error are exponentially stable. We define the estimation error as:

ςn = xn − x̂−
n , (21)

and the recursive expression for the estimation error [4] as:

ςn+1 = An (I − KnCn) ςn + rn (22)

and
rn = φ

(
xn, x̂+

n , un

)
− AnKnχ

(
xn, x̂−

n

)
. (23)

Two definitions are presented for the sake of completeness following [17].

Definition 2. The difference equation in Eq. (22) has an exponentially stable equilibrium point at 0 if there
are real numbers ε, η > 0 and θ > 1 such that:

||ςn|| ≤ η||ς0||θn (24)

holds for every n ≥ 0 and for every solution ςn of Eq. (17) with ς0 ∈ Bε , where Bε = {v ∈ Rq |‖v‖ < ε} .

Definition 3. The observer given by Eqs. (3) and (4) is an exponential observer if the difference equation in

Eq. (22) has an exponentially stable equilibrium at 0.

We employ the following lemmas from Reif and Unbehauen [15] in order to prove that the proposed
discrete-time MAFEKF is an exponential observer.

The first lemma bounds rn , which is given by Eq. (23).

Lemma 1. Consider that the following assumptions hold for the given real vectorsx, x̂−, x̂+ ∈ Rq and u ∈ Rp ,
Aq×q , Cm×q , and Kq×m matrices, and the functions φ (., ., .) and χ (., .) .

A1. There are real numbers a, c, k > 0 that satisfy the bounds given below:

||An|| ≤ a, (25a)

||Cn|| ≤ c, (25b)
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||Kn|| ≤ k. (25c)

A2. Positive real numbers εφ, εχ, κφ, κχ > 0 exist such that the inequalities:

∥∥φ
(
x, x̂+, u

)∥∥ ≤ κφ

∥∥x − x̂+
∥∥2

, (26a)

∥∥χ
(
x, x̂+

)∥∥ ≤ κχ

∥∥x − x̂−∥∥2
, (26b)

hold for ‖x − x̂+‖ ≤ εφ and ‖x − x̂−‖ ≤ εχ , respectively.

A3. x̂+ satisfies:
x̂+ = x̂− + KC

(
x− x̂−)

+ Kχ
(
x, x̂−)

. (27)

We drop the time index “n” for the ease of notation. Let r be given by Eq. (23); then positive real
numbersε, κ > 0 exist such that:

‖r‖ ≤ κ
∥∥x − x̂−∥∥2 (28)

holds for ‖x − x̂−‖ ≤ ε .

Proof. See [15] for proof.

The second lemma is a well known matrix inversion lemma.

Lemma 2. Consider 2 nonsingular matrices, Γq×q and Δq×q , and assume that Γ−1 + Δ is also nonsingular.

Then: (
Γ−1 + Δ

)−1
= Γ − Γ

(
Γ + Δ−1

)−1
Γ. (29)

Proof. See [2, p.139] for proof.

The last lemma is the matrix inequality lemma for the solution of the state and prediction covariances,

P +
n and P−

n+1 , respectively.

Lemma 3. Consider the symmetric positive definite solutions P +
n and P−

n+1 , n ≥ 0, of Eqs. (17) and (20),

respectively. Define:

Π−
n =

(
P−

n

)−1
, (30a)

Π+
n =

(
P +

n

)−1
, (30b)

and assume that for n ≥ 0, the inverse of An exists. Then:

Π−
n+1 ≤ A−T

n Λ−T
n (I − KnCn)−T

×
[
Π−

n − Π−
n

(
Π+

n + Λ′
nA′

nΛ−T
n Q−1Λ−1

n AnΛn

)−1 Π−
n

]
× (I − KnCn)−1 Λ−1

n A−1
n

(31)

Proof. Rewrite Eq. (20) as in [3, p.108]:

P +
n = (I − KnCn)P−

n (I − KnCn)′ + KnRnK′
n. (32)
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From Eq. (32), we have:

P +
n ≥ (I − KnCn)P−

n (I − KnCn)′ . (33)

Inverting Eq. (33), we obtain:

(
P +

n

)−1 ≤ (I − KnCn)−T (
P−

n

)−1 (I − KnCn)−1
. (34)

If we rearrange Eq. (17) and take the inverse, we have:

Π−
n+1 = A−T

n Λ−T
n

(
P +

n + Λ−1
n A−1

n ΛnQnΛ′
nA−T

n Λ−T
n

)−1
Λ−1

n A−1
n . (35)

Eq. (35) and Lemma 2 now imply:

Π−
n+1 = A−T

n Λ−T
n

[
Π+

n − Π+
n

(
Π+

n + Λ′
nA′

nΛ−T
n Q−1Λ−1

n AnΛn

)−1
Π+

n

]
Λ−1

n A−1
n . (36)

From Eq. (34) and sinceΠ+
n = Π−

n (I − KnCn)−1 = (I − KnCn)−1 Π−
n = (I − KnCn)−T Π−

n , then:

Π−
n+1 ≤ A−T

n Λ−T
n (I − KnCn)−T

×
[
Π−

n − Π−
n

(
Π+

n + Λ′
nA′

nΛ−T
n Q−1Λ−1

n AnΛn

)−1 Π−
n

]
× (I − KnCn)−1 Λ−1

n A−1
n .

(37)

Theorem 1. Consider the nonlinear deterministic system described by Eqs. (1) and (2) and a MAFEKF as
given by Definition 1. Let the following assumptions hold:

A4. There are positive real numbers a, c, p, p > 0 and λmin , λmax ≥ 1 such that the following bounds on various

matrices are satisfied for everyn ≥ 0.
‖An‖ ≤ a (38a)

‖Cn‖ ≤ c (38b)

pI ≤ P−
n ≤ pI (38c)

pI ≤ P +
n ≤ pI (38d)

λminI ≤ Λn ≤ λmaxI (38e)

Here, λmin is the minimum of the λi values and λmax is the maximum of the λi values (i = 1, 2, . . . , q).

A5. An is nonsingular for every n ≥ 0.

A6. There are positive real numbers ∈ϕ,∈χ, κϕ, κχ > 0 such that the nonlinear functions ϕ, χ in Eq. (23) are

bounded via:
||ϕ(x, x̂, u)|| ≤ κϕ||x − x̂||2, (39a)

||χ(x, x̂)|| ≤ κχ||x− x̂||2. (39b)

The MAFEKF is then an exponential observer.
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Proof. Proof of the theorem is similar to that of theorem 3.1 in [15]. The Lyapunov function given by Eq. (40)
will be used to prove the exponential stability ofςn . Consider the Lyapunov function:

Vn = ς ′nΠ−
n ςn, (40)

where Π−
n is the (P−

n )−1 . Eqs. (38c) and (40) imply:

1
p
‖ςn‖2 ≤ Vn (ςn) ≤ 1

p
‖ςn‖2

. (41)

Eqs. (38c) and (38d) ensure the nonsingularity of P−
n and P +

n and the existence of the inverse of (I − KnCn) ,

which is P−
n Π+

n . Note that along with A2, the requirements of Lemma 3 are satisfied. Estimating Vn+1 (ςn+1)

with Eqs. (22), (37), and (38e), we obtain:

Vn+1 (ςn+1) = ς ′n+1Π
−
n+1ςn+1

≤ λ−2
minς ′n

[
Π−

n − Π−
n

(
Π+

n + Λ′
nA′

nΛ−T
n Q−1Λ−1

n AnΛn

)−1 Π−
n

]
ςn

+2r′nΠ−
n+1An (I − KnCn) ςn + r′nΠ−

n+1rn.

(42)

Let r be the smallest eigenvalue of the Rand rewrite the Kalman gain as Kn = P +
n C ′

nR−1
n as in [3, p.112].

With the bound on Cn given by A1 andP +
n , we then have:

‖Kn‖ ≤
∥∥P +

n

∥∥ · ‖Cn‖ ·
∥∥R−1

∥∥ ≤ k, (43)

where k = pc/r . Eqs. (38a), (38b), (39a), (39b), and (43) make it possible to apply Lemma 1 to Eq. (42). Let

q > 0 be the smallest eigenvalue of Q ; with all the bounds stated in A1, for ‖ςn‖ ≤ ε , we then have:

Vn+1 (ςn+1) ≤ λ−2
minς ′nΠ−

n ςn − 1

λ2
minp2

�
1
p +

a2λ2
max

qλ2
min

� ‖ςn‖2 + 2κ ‖ςn‖2 a(1+kc)
p ‖ςn‖

+κ ‖ςn‖2 1
p
κε ‖ςn‖ .

(44)

Define κ′ as follows:

κ′ =
κ

p

(
2a

(
1 + kc

)
+ κε

)
. (45)

Using Eq. (40), rearranging the inequality in Eq. (44) yields the following inequality:

Vn+1 (ςn+1) ≤ λ−2
minVn (ςn) −

⎛⎝ 1

λ2
minp2

(
1
p

+ a2λ2
max

qλ2
min

) − κ′ ‖ςn‖

⎞⎠ ‖ςn‖2
. (46)

Define:

ε′ = min

⎛⎝ε,
1

2λ2
minκ′p2

(
1
p + a2λ2

max
qλ2

min

)
⎞⎠ . (47)

We will then obtain the following inequalities:

Vn+1 (ςn+1) ≤ λ−2
minVn (ςn) −

⎛⎝ 1

2λ2
minp2

(
1
p

+ a2λ2
max

qλ2
min

) ‖ςn‖2

⎞⎠ ,
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Vn+1 (ςn+1) − Vn (ςn) ≤ − 1

2λ2
minp2

(
1
p

+ a2λ2
max

qλ2
min

) ‖ςn‖2 +
(
λ−2

min − 1
)
Vn (ςn) , (48)

for ‖ςn‖ ≤ ε′ . The error dynamics of the discrete-time MAFEKF are locally negative definite. To see this, use

the fact that the right-hand side of the second inequality in Eq. (48) is negative semidefinite due to the bounds

of the Lyapunov function and λ ≥ 1. If the standard results of Lyapunov functions are applied as in [17, p.108],

then it is concluded that Eq. (22) has an asymptotically stable equilibrium point at 0; in other words, the error
is bounded and the MAFEKF is an exponential observer.

If the analysis is continued to quantify the degree of stability of the MAFEKF, utilizing Eqs. (41) and

(48), we have:

Vn+1 (ςn+1) ≤ Vn (ςn)

⎛⎝λ−2
min −

p

2λ2
minp2

(
1
p

+ a2λ2
max

qλ2
min

)
⎞⎠ ,

Vn (ςn) ≤ V0 (ς0)

⎛⎝λ−2
min −

p

2λ2
minp2

(
1
p

+ a2λ2
max

qλ2
min

)
⎞⎠n

. (49)

Without loss of generality, let p > 1. We then have:

1 −
p

2λ2
minp2

(
1
p + a2λ2

max
qλ2

min

) > 0.

Using the bounds on the Lyapunov function and Eq. (49), we obtain:

‖ςn‖ ≤
√

p
/
p ‖ς0‖

⎛⎜⎜⎝ λmin

1 − p

2λ2
minp2

�
1
p +

a2λ2
max

qλ2
min

�

⎞⎟⎟⎠
−n

.

Recall Eq. (26) and define:

η =
√

p/p > 0;

then:

θ =
λmin√

1 − p

2λ2
minp2

�
1
p +

a2λ2
max

qλ2
min

�
(50)

is obtained.

Remark. Recall that for Λ = I , the filter becomes the standard EKF, and choosing λi > 1, (i = 1, 2, . . .q)
provides exponential weighting to the estimates and defines how much emphasis is put on the latest estimate.
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4. Simulation study

In this section, we present some simulation results to demonstrate the behavior of the MAFEKF introduced in
the previous section. Let us consider the state-space model given below.

xn+1 =

[
x1,n+1

x2,n+1

]
=

[
1 − k1Δt 0

k1Δt 1 − k2Δt

][
x1,n

x2,n

]

yn = [01] xn

(51)

The model is a compartmental model that is used to characterize the ingestion, distribution, and metabolism of
a drug in an individual. In the model, Δt is the integration time interval subdivider; x1,n and x2,n denote the

drug mass in the first compartment, the gastrointestinal tract of the individual, and in the second compartment,
the bloodstream of the individual, respectively. At the same time, k1 , the positive constant characterizing the
gastrointestinal tract of the given individual, and k2 , the positive constant characterizing the metabolic and
excretory processes of the individual, are defined as unknown parameters that can be constant or time-varying,
to be estimated along with the states [11,19]. Assume that Φn(ψ) is a known vector that is a function of some

unknown vector given asψ = [k1 k2]
′ . Now ψ can be thought of as a random walk process; that is:

ψn+1 = ψn + δn, (52)

where δn is any zero-mean white noise sequence uncorrelated with the measurement noise variance, vn , and
with preassigned positive definite variance V ar(δn) = Sn . In applications, Sn may be chosen as Sn = S > 0

for all n . The system described by Eqs. (51) and (52) can be reformulated as a nonlinear model as follows:

[
xn+1

ψn+1

]
=

[
Φn(ψn)xn

ψn

]
+

[
wn

δn

]
,

yn = [Cn 0]

[
xn

ψn

]
+ vn,

(53)

where Cn is the known measurement matrix and wn is the process noise, which is uncorrelated with vn .
Considering its nonlinear nature, the EKF can be applied to the problem at hand in order to estimate the state
vector that contains ψn as one of its components. Note that k1 and k2 are parts of the state vector through

Eq. (53), i.e. the state vector is defined as x = [x1 x2 k1 k2]
′ , where x1 and x2 are the states at the output,

and k1 and k2 are constant or time-varying parameters. The values of parameters k1 and k2 in simulation are
set as follows:

k1 =

{
0.9, n ≤ 37

0.55, n > 37
,

k2 =

{
0.1, n ≤ 37

0.4, n > 37
.
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Table 1. Initials values and noise terms.

Small initial estimation error Large initial estimation error
Initial states [10 10 0.7 0.3]T [5 5 0.5 0.5]T

Process noise 1 × 10−6I4 1 × 10−2I4

Measurement noise 1 × 10−5 1 × 10−3

The simulation was run with the initial values and noise terms given in Table 1. The aim was to
compare the performance of the EKF and the performance of the MAFEKF. Results of the simulations with
250 replications are given in Figures 1-5. Figure 1 shows the estimation of the k1 and k2 parameters under
a small initial estimation error. Both the EKF and MAFEKF display similar performances until the change
in the values of the parameters. After the change of the value of the parameters, the filters detect the change
with some delay and try to adjust their estimations accordingly. However, the filter employing the MAFEKF
displays a faster adaptation to the change and a better convergence to the true value of the parameter. Figure
2 shows the elements of the matrix forgetting factor. Figure 3 shows the mean square errors (MSEs) of all state
and parameter estimations for the EKF and MAFEKF. The MAFEKF has a smaller MSE than the EKF under
the small initial estimation error. Figures 4 and 5 show the estimations of the k1 and k2 parameters and the
MSEs of the filters, respectively, for a large initial estimation error. Thus, we can claim that the MAFEKF has
better performance than the EKF for both small initial estimation errors and large initial estimation errors.
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Figure 1. Estimation of parameters k1 and k2 (small initial error and process noise).
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Figure 2. Forgetting factors computed by Algorithm 1. Figure 3. Mean square errors (small initial error and

process noise).
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Figure 4. Estimation of parameters k1 and k2 (large

initial error and process noise).

Figure 5. Mean square error (large initial error and

process noise).

In the second simulation study, to compare the performance of the proposed algorithms for the selection
of the optimal matrix forgetting factor, the Lotka-Volterra model was considered, which is a reproduction model
of 2 interactive species. The model is described by the following system of ordinary differential equations:

dx1(t)
dt = ax1 (t) − bx1 (t)x2 (t) ,

dx2(t)
dt

= −mx2 (t) + rx1 (t) x2 (t) .
(54)

The state-space notation of the model in Eq. (54) is given below.

xn+1 =

[
x1,n+1

x2,n+1

]
=

[
1 + a − bx2,n 0

0 1 − m + rx1,n

][
x1,n

x2,n

]
(55)

yn =

[
1 0

0 1

]
xn (56)

Here, x1 is the number of prey in time n , x2 is the number of predators in time n ,yn is the measurements,
a is the reproduction rate of the prey, m is the death rate of the predators, and b and rare the interaction
rates between prey and predators [20]. For the simulation study, the true values of parameters a , b , m , and
r were set as in Table 2. Simulation for the initial values given in Table 3 was also conducted, the results of
which are displayed in Figures 6-8. Figure 6 displays the MSE of the filters and Figure 7 displays the forgetting

Table 2. Values of the parameters used in simulation.

Parameter True value Initial estimation used in simulation
a 0.20 0.20
b 0.16 0.16
m 0.30 0.10
r 0.01 0.03
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factors computed by Algorithm 1. Figure 8 displays the forgetting factors computed by Algorithm 2. The
results of the simulation study reveal that the forgetting factors computed by Algorithm 1 and Algorithm 2 are
different. However, the moment of change for the forgetting factors is similar. According to the results of the
simulation study, we can claim that the performance of the MAFEKF, as established by using either Algorithm
1 or Algorithm 2, is better than that of the EKF.

Table 3. Initial values.

Initial estimation
Initial states [2 0.2]T

Arbitrary matrix Q

[
0.4 0

0 0.1

]

Arbitrary matrix R

[
0.1 0

0 0.1

]
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Figure 6. Mean square error of filters.
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Figure 7. Forgetting factors computed by Algorithm 1. Figure 8. Forgetting factors computed by Algorithm 2.
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5. Conclusion

When the system information is partially known or incorrect, the EKF may diverge or give biased estimates. To
solve this problem and to improve the estimation performance of the EKF, we have presented MAFEKF and how
to make a selection of the optimal matrix forgetting factor. Moreover, the stability properties of the proposed
MAFEKF were investigated in a way similar way to that described in [15] for the EKF. It has been proven that,
like the EKF, under certain conditions the proposed MAFEKF is an exponential observer for deterministic
systems. Finally, the performance of the MAFEKF was demonstrated with simulation studies, including
parameter estimation and state estimation. Results of the simulation studies showed that the MAFEKF provides
performance gain.

Appendix

Consider the nonlinear discrete time deterministic system given by Eqs. (1) and (2) and the MAFEKF defined

by Eqs. (16)-(20). Innovation is defined by:

zn = yn − h
(
x̂−

n

)
, (A1)

the covariance of the innovation is:

V0,n = E[znz′n] = CnP−
n C ′

n + Rn, (A2)

and the autocovariance of the innovation is:

Vj,n = E[zn+jz
′
n] = Cn+jAn+j−1 (I − Kn+j−1Cn+j−1) . . .An+1

(I − Kn+1Cn+1)An (P−
n C ′

n − KnV0,n)
. (A3)

When the information of the nonlinear system is complete, the innovation sequence is a white noise
sequence. In order to obtain the optimal forgetting factor, Xia et al. [6] used the fact that the autocovariance

of the innovation is zero when the conventional Kalman filter is optimal. Özbek [7] used the same property
to obtain the optimal matrix forgetting factor for the AFKF. We also employ the same property to obtain the
optimal matrix forgetting factor.

Define:

Sn = P−
n C ′

n − KnV0,n. (A4)

The necessary condition for the optimality of the EKF is Sn = 0. Using this property, we propose 2 algorithms
to obtain the optimal matrix forgetting factor.

Algorithm 1. The optimal diagonal matrix forgetting factor can be obtained in a manner similar to the second
method in [7]. We assume that Cn is full rank. In this situation, the optimal matrix forgetting factor can be
obtained as a solution of the following nonlinear equation:

An−1Λn−1P
+
n−1Λ

′
n−1An−1 + Λn−1Qn−1Λ′

n−1 = (C ′
nCn)−1

C ′
n (V0,n − Rn)Cn (C ′

nCn)−1
. (A5)
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Proof. Substituting Eq. (18) into Eq. (Ap4), we obtain the results below.

P−
n C ′

n −
(
P−

n C ′
n (CnP−

n C ′
n + Rn)−1

)
V0,n = 0

P−
n C ′

n

(
I − (CnP−

n C ′
n + Rn)−1

V0,n

)
= 0(

I − (CnP−
n C ′

n + Rn)−1
V0,n

)
= 0

(CnP−
n C ′

n + Rn)−1
V0,n = I

(CnP−
n C ′

n + Rn)−1 = (V0,n)−1

CnP−
n C ′

n + Rn = V0,n

CnP−
n C ′

n = V0,n − Rn

Hence:

P−
n = (C ′

nCn)−1
C ′

n (V0,n − Rn)Cn (C ′
nCn)−1

. (A6)

Using Eqs. (17) and (Ap6), we have:

An−1Λn−1P
+
n−1Λ

′
n−1A

′
n−1 + Λn−1Qn−1Λ′

n−1 = (C ′
nCn)−1

C ′
n (V0,n − Rn)Cn (C ′

nCn)−1
. (A7)

In [7], V0,n was estimated from observed data using recursive equations.

V0,n = D1,nD−1
2,n (A8)

D1,n = D1,n−1Λ−1
n−1 + znz′n (A9)

D2,n = D2,n−1Λ−1
n−1 + I (A10)

The initial values were:
D1,0 = 0, D2,0 = 0.

Hence, Eq. (Ap7) is a nonlinear equation of Λ and it can be solved using a numerical method (for example,

the Newton-Raphson method).

Algorithm 2. The performance of the EKF depends on a function defined by:

f (λ1, λ2, . . . , λq, n) =
∑
i=1

∑
j=1

S2
ij,n, (A11)

where Sij,n is the (i, j)th element of Sn . The smaller the value of f (λ1, λ2, . . . , λq, n) is, the higher the

performance of the filter is. Moreover, the absolute minimum of f (λ1, λ2, . . . , λq, n) gives the optimal estimate.

Thus, the matrix forgetting factor should be chosen to minimize f (λ1, λ2, . . . , λq, n). This minimization problem

can be numerically solved using nonlinear minimization algorithms (for example, the gradient descent method).
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