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Abstract

In a daily power market, price and load forecasting are the most important signals for the market

participants. In this paper, an accurate feed-forward neural network model with a genetic optimization

Levenberg-Marquardt back propagation training algorithm is employed for short-term nodal congestion price

forecasting in different zones of a large-scale power market. The use of genetic algorithms for neural network

training optimization has a remarkable effect on the accuracy of price forecasting in a large-scale power

market. The necessary data for neural network training are obtained by solving optimal power flow equations

that take into account all effective constraints at any hour of the day in a single month. The structure of the

neural network has 2 input signals of active and reactive powers for every load busbar in every hour of the

programming model. These 2 signals are always available. In this study, an IEEE 118-bus power system is

used to test the proposed method authenticity. This system is divided into 3 zones, and a neural network with

genetic algorithm training optimization is employed for every zone. Performance of the proposed method is

compared with ARIMA and GARCH time series for the same data. The simulation results show that the

proposed algorithm is robust, efficient, and accurate. Therefore, the algorithm produces better results than

the ARIMA and GARCH time series for short-term nodal congestion price forecasting.
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1. Introduction

In many countries, power systems have changed from vertical and centralized systems into open power markets.
As a result of this reconstruction, the price of electricity has attracted the attention of the present market
activities. The nonstorability of electrical energy, generation and demand balance at any moment, power
transfer control due to transmission congestion, and unawareness and impartiality of consumers to the power
price in the short term all lead to price instability, creating unwelcome price spikes [1]. Load and price forecasting
are important tools for market participants. Economic growth, weather conditions, fuel prices, previous load
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data, and the historical record of electricity prices in the power system, as well as power reduction, are the
parameters affecting the price of electricity. Furthermore, electricity prices vary according to the hour of the
day, the day of the week, the season, and holidays. Therefore, a good price forecasting system must be able to
forecast the price of electricity with acceptable errors, regarding all available uncertainties in the power system.
Furthermore, the load value is the most important price-driven variable for short-term forecasting.

Price forecasting models are typically divided into conventional and modern methods. The conventional
price forecasting models include time series models and regression analysis [2]. The use of artificial intelligence
methods for price forecasting has become very common in recent years. Out of these methods, the use of neural
networks is a simple and strong tool for price forecasting. Neural networks are able to determine the relationship
between the input and output of every intricate problem using data and the historical record. Furthermore, time
series can represent the relationship between electricity price and the nonlinear parameters of power demand,
weather conditions, and generation amount. Autoregressive integrated moving average (ARIMA) [3,4], seasonal

ARIMA (SARIMA) [5], and generalized autoregressive conditional heteroskedasticity (GARCH) [6] are the most

general time series for price forecasting. In [5], a price forecasting mechanism using the combined SARIMA
model and a discrete non-time-homogeneous Markov process was proposed. It was shown that out of the
statistical models, the dynamic regression and the transfer function models had better results than the ARIMA
model for the Californian and Spanish power markets [7]. With an improvement in price forecasting methods

through the use of a time series, the GARCH model has been used in these markets [7]. A hybrid of the artificial

neural network (ANN) and ARIMA models for price forecasting in the Australian power market was introduced

in [8]. The results obtained from that study show that using the hybrid model by itself is more accurate than
either ANNs or ARIMA alone.

In [9], the k-weighted nearest neighbors with dynamic regression were used for price forecasting. In [10],

a stochastic game theory model and a reinforcement learning (RL)-based solution framework were developed for
price forecasting in a day-ahead power market. The RL-based approach was utilized to obtain an approximate
solution for the game theoretic model. These solutions provide effective bidding strategies for the day-ahead
market participants.

ANNs have been employed for price forecasting for practical power systems in different countries. In
[11-13], a neural network was utilized for market clearing price (MCP) estimation and effective uncertainty

analysis of price forecasting. ANNs were successful price forecasting tools in California [7], the UK power

pool [14], the PJM [15], and Australian power markets [16]. In [17], it was shown that using a feed-forward
neural network is more accurate and efficient compared to time series methods such as ARMA, GARCH, the
adaptive neuro-fuzzy inference system (ANFIS), and recurrent neural networks. In [18], 2 ANNs were proposed
for forecasting an hourly weighted average price and an hourly minimum accepted price in Iran’s electricity
market as a pay-as-bid market. In addition, fuzzy methods and their combinations with neural networks [1],

the ANFIS method [19], support vector machines [20], combinations of neural networks and extended Kalman

filters [15], ANNs and rough set theory [21], and ANNs and committee machines [11] are other tools proposed
for price forecasting. The forecasting accuracy and computational complexity of most of these techniques were
simulated and compared in [22].

This paper provides a feed-forward neural network with genetic algorithm (GA) training optimization

for a short-term nodal congestion price (NCP), forecasting in different zones of an electricity market. The data

required for the neural network database were obtained by solving optimal power flow (OPF) equations for
the system load variations for each hour of the day in 1 month. This model is nonlinear, smooth, large-scale
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programming. The data provided by the proposed method regarding the formation of various congestion zones
and the severity of congestion within a zone would alert the independent system operator (ISO) to balance the
system by applying an uplift to the MCPs within that zone. In this structure, the neural system has 2 signals of
active and reactive powers of busbar loads in each hour of the programming model. These 2 signals are always
available in the power system. The IEEE 118-bus test system is used for the proposed method’s authenticity
testing. The test system is divided into 3 zones and a neural network with GA training optimization is employed
for every zone. The ARIMA and GARCH time series are used for comparing the results of the proposed method
for the same data. The results show the ability of the proposed method for NCP forecasting in a large-scale
power market with a lower and more acceptable error than the other 2 time series models.

2. Optimal power flow problem formulation

Contrary to the load curve, the price curve is a nonhomogeneous curve and its variations show little cyclic
property. Although the price of electricity is very volatile, it is not regarded as random. Hence, it is possible
to identify certain patterns and rules pertaining to market volatility. Using historical price data is a suitable
way to forecast price spikes and the probability of their occurrence. Load and generation balance at any
moment for a power system is the main reason for price volatility. Other reasons for price volatility include
fuel cost volatility, time factors, weather conditions, different consumer classes, load uncertainty, fluctuations in
hydroelectricity production, generation uncertainty, transmission congestion, behavior of market participants
based on anticipated price, market manipulation, and special events such as the Olympic Games or various
national ceremonies that increase power system demand [23].

In simulation processes regarding operation constraints of a power system, the OPF problem will be
solved. Using a large amount of input data, a simulation can yield an appropriate estimation of the price curve.
A simulation must contain an elaborate power system model and a procedure for a pricing system. Based on
this mathematical model and the process mentioned above, price forecasting is accomplished.

For electricity price forecasting, some information, such as transmission system model, unit commitment
programming, and distribution of safe and secure load transmissions, and the simulation ability of a large-scale
power system are important. The optimization problem is described by Eq. (1).

min
∑
i

(fi (Pgi))

s.t.
Pk =

∑
i∈Ik

(Pgi◦ + Pgi) −
∑

j∈Jk

(PL◦j + PDj)

Qk =
∑

i∈Ik

(Qgi) −
∑

j∈Jk

(QL◦j + QDj)

Rr AGC (gi) = K, ∀i ∈ I
RrQ (gi) = T, ∀i ∈ I
Pg min i ≤ Pgi ≤ Pg max i, ∀i ∈ I
Qg min i ≤ Qgi ≤ Qg max i, ∀i ∈ I
PD min j ≤ PDj ≤ PD max j, ∀j ∈ J
Vmin k ≤ Vk ≤ Vmax k, ∀k ∈ B
|Pmk (θ, V )| ≤ Pmk max, ∀ (mk) ∈ N
|Pkm (θ, V )| ≤ Pkmmax, ∀ (km) ∈ N
Imk (θ, V ) ≤ Imk max, ∀ (mk) ∈ N
Ikm (θ, V ) ≤ Ikm max, ∀ (km) ∈ N
Rg min i ≤ Rgi ≤ Rg max i, ∀i ∈ I

(1)
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Here, fi is the active power generation cost of unit i and is simulated using the following quadratic equation:

fi = C◦ + C1Pgi + C2P
2
gi. (2)

As has been pointed out, this optimization problem is large-scale, smooth, nonlinear programming. By solving
this problem and using the Karush-Kuhn-Tucker theory, the lagrangian multipliers of the problem are obtained.
The obtained equality lagrangian multipliers and the corresponding lagrangian function determine the shadow
price of electricity required to satisfy system inequality constraints and maintain system security, or the NCP. In
this formulation, transmission line current flow and real power transmission capacity are taken as system security
parameters. By estimating the amounts of NCP in a reconstructed power market, congestion management of
the power system can be achieved. The amount of NCP in a system not only shows the presence of congestion
but also implies the severity of congestion in that system [13]. MATLAB software is employed for solving OPF
equations.

3. The proposed algorithm for NCP estimation

The price of electricity in different points of the market depends on the physical characteristic of the power
system and the operation conditions. A large volume of information and the presence of price spikes require
a powerful tool for the identification of dominant rules for these data. Due to the unique ability of ANNs
to recognize patterns, they can be efficient tools in price forecasting and were employed in this study. ANN
input selection has a salient effect on the training accuracy and the ANN response. The process of database
information calculation, ANN input selection, and the proposed algorithm employed in this study are described
in the following paragraph.

3.1. Reasons for the selection of ANNs for price forecasting

Today, one of the most popular intelligence methods for load and price forecasting is the ANN. ANNs have more
advantages than other price forecasting methods. The training ability and input-output relation learning, as
well as the discovery of load and price from historical data without a need for an appropriate model, are the most
important features of ANNs. Their easy implementation, suitable operation, obvious modeling, considerably
high speed, desirable operation in different seasons of the year, and proper operation under different loading
conditions are benefits of ANNs. The high speeds associated with ANNs allow for price forecasting with all
effective constraints possible in a spot market. Basically, the impact of the transmission line capacity and
the outage of the lines and generation units are homogeneous for the price of electricity. In other words,
if we had enough historical data, we could determine the relationships between these parameters and the
electricity price using an ANN. The impacts of load and price-suggested patterns on the actual electricity price
are nonhomogeneous and the determination of these relationships requires OPF equations. The formulation
method used in this study for the calculation of the NCP amount in the spot market was based on the pool
market pattern. Under this condition, the NCP amounts are based on power price constraints. These amounts
are paid by consumers and cashed by companies. OPF problem formulation uses one slack bus.

3.2. Input selection

The NCP amounts are very variable compared to the conditions of power system operation. Basically, the NCP
amounts depend on the power system loading scenario. With this in mind, active and reactive powers of busbar
loads are considered as the ANN input for NCP estimation.
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3.3. Forecasting algorithm for nodal prices

The NCP algorithm estimation by an ANN is summarized as follows:

1- Creating an hourly loading scenario for the system under study.

2- Performing the OPF problem for the calculation of NCPs in all of the nodes for each loading scenario.

3- Creating a separate ANN for every congestion zone and training respective ANNs for each zone.

4- Testing ANNs for different load patterns not considered in the ANN database.

A flowchart depicting these stages is shown in Figure 1. Creation of power system loading scenarios
in some works is random [13]. These scenarios may be different from the actual amounts of power system
operation. It is important to emphasize that the amounts of NCPs are basically dependent on the power system
loading scenario.

Figure 1. Proposed method flowchart for NCP estimation.

4. ANN structure with GA training optimization

The Levenberg-Marquardt training algorithm is faster faster than other ANN training methods. For the large
amounts of data in this study, the Levenberg-Marquardt backpropagation (LMBP) algorithm was used to train
the ANN ternary zones of the power system. In order to obtain the least amount of training error, the GA was
used for the optimization of the input selections, steps sizes, momentum values, and the number of required
processing elements in the hidden layers. Mean square error (MSE), root mean square error (RMSE), mean

absolute error (MAE), and minimum and maximum of absolute error criteria were used for the performance
analysis of the trained ANN.
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4.1. ANN training algorithm using LMBP

In the LMBP algorithm, the data spread from the input layer to the hidden layers and then reach the final
output layer. The error signals in the output layer spread to the hidden layers and the input layers. The
sum-of-squares signals are then minimized by adjusting the synapse weight coefficients and are biased in all
layers during the training process.

For a multilayer neural network, the input vk+1(i) and the outputyk+1(i) from the ith neuron and in

the (k + 1)th layer are described by Eqs. (3) and (4), respectively.

vk+1(i) =
sk∑

j=1

wk+1(i, j)yk(j) + bk+1(i) (3)

yk+1(i) = φk+1(vk+1)(i)) (4)

Here, sk is the number of outputs in the k th layer, and wk+1(i, j), bk+1(i), and φk+1 are the synapse weight

coefficients, bias function, and neuron excitation function of the ith neuron in the (k + 1)th layer, respectively.
For a k -layer neural network, the system matrix equations are as follows:

ȳ◦ = p̄, (5)

ȳk+1(i) = φ̄k+1(wk+1ȳk + b̄k+1)k = (0, 1, . . .k−1). (6)

The input signals p̄ with z variables are described as [p(1), p(2), ..., p(Z)]T . Input-output {(p̄1, q̄1), (p̄2, q̄2), ...,

(p̄R, q̄R)} vector couples are employed for training the ANN, and these pairs are assigned by parameter R . By
depicting the sum-of-squares error as the performance index, the ANN error is obtained from the following error
function:

E =
1
2

R∑
r=1

(q̄r − ȳk
r )T (q̄r − ȳk

r ) =
1
2

R∑
r=1

(ēr)T ēr , (7)

where ēr = q̄r − ȳk
r is the output error and ȳk

r is the ultimate output of the r th input.

The squares error function,E (x̄), is employed as the objective function, as follows:

E (x̄) =

N∑
i=1

e2
i (x)

N
. (8)

To minimize this objective function, Newton’s method, based on the following equation, is employed:

Δx̄ = −
[
∇2E(x̄)

]−1 ∇E(x̄). (9)

Here, ∇E(x̄) = JT (x̄) · ē(x̄) and∇2E(x̄) = JT (x̄) · J(x̄) + S(x̄), where J (x̄) is a Jacobian matrix and

S(x̄) =
N∑

i=1

ēi (x̄)∇2ēi(x̄) [24].

In this method, Eq. (9) is used to update Eq. (8). It is assumed thatS(x̄) = 0. Therefore,

Δ(x̄) = −
[
JT (x̄) · J(x̄)

]−1
JT (x̄) · ē(x̄). (10)
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The Levenberg-Marquardt algorithm modifies Newton’s method by the following equation:

Δ(x̄) = −
[
JT (x̄) · J(x̄) + μ · I

]−1
JT (x̄) · ē(x̄), (11)

where the μ parameter is updated according to the performance index change in each iteration of the training
process. In this equation, I is the identity matrix. It can be demonstrated that the performance index in Eq.
(7) is equal to Eq. (8). For the LMBP algorithm, the R input-output vector couples are fed into the network.

Outputs and errors are then calculated with Eqs. (5), (6), and (8). In the next stage, the Jacobian matrix and

increasing changes of Δx̄ are obtained from Eq. (11). Ultimately, the performance index is calculated again

by replacing x̄ with x̄ + Δx to solve for E(x̄). When the performance index is less than a specific error value,
the ANN training process will be finished; in other words, the correction of the μ parameter is done for this
iteration of the ANN training process.

4.2. Genetic training procedure

In this study, the neural network training was performed based on a GA. This structure was used for the genetic
optimization of the neural network and selection of the inputs, the size of the steps, momentum values, and
the number of required processing elements in the hidden layers. The goal of optimization is to find the best
adjustment for the parameters so that the training error is minimized. If cross-validation is used during the
training process, the goal will be to minimize its error. Otherwise, the goal will be to minimize the training
error. The best weights and parameter settings are selected for the ANN during training. To perform genetic
training, an initial population of networks is first randomly created, each having a different set of parameters.
Each of these networks is then trained and evaluated to determine its fitness based on the minimum error
that it achieved. The characteristics of the best networks are then combined and mutated to create a new
population of networks. The existing neural networks in this population are again evaluated and the best
networks are selected, resulting in the next generation. This process is repeated until the maximum population
or the maximum evaluation time is attained. Finally, the best ANN specifications are specified and used.
This process leads to better ANN training, especially in the study at hand, with a large information database.
Neuro-Solutions software was employed for the ANN training.

4.3. Evaluation and testing criteria of the ANN

For the investigation of the ANN operation for price forecasting, the MSE, RMSE, and MAE were calculated
for the tested items [21]. The equations representing the errors are expressed below.

MSE =

Ji∑
j=1

(PAj − PFj)
2

Ji
(12)

RMSE =

√√√√√
Ji∑

j=1
(PAj − PFj)

2

Ji
(13)

MAE =

Ji∑
j=1

(PAj − PFj)

Ji
(14)
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5. Simulation results

5.1. The power system under study

In this study, the IEEE 118-bus standard power system was selected as the testing system. This system has 54
generators, 186 transmission lines, 14 capacitors, and 9 tap changer transformers. Full data for this system are
available in [25]. The single-line diagram and its ternary zones are shown in Figure 2. With regard to seasonal

variations, the peak load occurs at 2100 hours and its value reaches 7309 MW [26].

Figure 2. Single line of IEEE 118-bus test system and zone configuration.

Necessary database information for neural network training is obtained by solving optimal power flow
equations for each hour of the day. For example, the base hourly loading scenario for day 1 is shown in Table 1.
This process was performed for 1 month’s worth of daily loading, considering daily load curve variation. This
network was divided into 3 zones, with 22,611 data-sets in the first, 24,969 in the second, and 16,172 in the
third, obtained for use in the ANN database. These values do not include data for days 10, 19, and 25, which
were selected for ANN testing.
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Table 1. Base hourly loading scenario for an IEEE 118-bus test system.

Hour
Real load Reactive load

Hour
Real load Reactive load

(MW) (MVAR) (MW) (MVAR)
0100 4200 1623.47 1300 4800 1855.39
0200 3960 1530.70 1400 4560 1762.62
0300 3480 1345.16 1500 5280 2040.93
0400 2400 927.70 1600 5400 2087.31
0500 3000 1159.62 1700 5100 1971.35
0600 3600 1391.54 1800 5340 2064.12
0700 4200 1623.47 1900 5640 2180.08
0800 4680 1809.01 2000 5880 2272.85
0900 4920 1901.78 2100 6000 2319.24
1000 5280 2040.93 2200 5400 2087.31
1100 5340 2064.12 2300 5220 2017.74
1200 5040 1948.16 2400 4920 1901.78

5.2. ANN specification with GA training optimization

To obtain suitable ANN training, an ANN was considered for each zone. For the purpose of achieving appropriate
behavior in price forecasting, many neural networks were trained. The best specifications and the resulting
neural network parameters for the 3 zones are presented in Table 2. The conditions used for GA training of the
ANNs are presented in Table 3.

Table 2. Specifications and neural network parameters for each zone.

ANN parameter Zone 1 Zone 2 Zone 3
No. of input neurons 2 2 2
No. of output neurons 1 1 1
No. of hidden layers 2 2 1

No. of hidden layer neurons 1-(5), 2-(4) 1-(7), 2-(6) 20
Using neural network model Feed-forward Feed-forward Feed-forward
Training network algorithm LMBP LMBP LMBP

Transfer function midlayer neurons Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent
Transfer function output layer neurons Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent

Maximum of epoch 5000 500 1000
Error threshold 0.001 0.001 0.001

Weight update method Batch Batch Batch

Table 3. GA training parameters of ANN used in each zone.

Genetic training parameters Zone 1 Zone 2 Zone 3
Number of epochs 5000 500 1000
Population size 20 20 20

Maximum generation 25 25 25
Operator selection Roulette Roulette Roulette

Crossover Heuristic Heuristic Heuristic
Crossover probability 0.7 0.6 0.6

Mutation Uniform Gaussian Gaussian
Mutation probability 0.03 0.03 0.03
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The variation of 1 MWh of energy in terms of US$/MWh found in the nodes of zone 1 of the power
system in the database used in the neural network training is shown in Figure 3a. In Figure 3b, the manners
of the active and reactive power variations of zone 1 loads are shown. Figure 3c shows variations of the active
power price in terms of $/MWh for zone 1 loads on the basis of nodal active power variations. The mentioned
variations for zone 1 are similarly shown for zones 2 and 3 in Figures 4a-4c and 5a-5c, respectively.

Table 4. Minimum and final values of ANN genetic training.

Zone No. Optimization summary Best fitness Average fitness

Zone 1
Epochs 17 23

Min. MSE 0.014038224 0.014750256
Final MSE 0.014038224 0.019557543

Zone 2
Epochs 19 24

Min. MSE 0.012840169 0.013637662
Final MSE 0.012840169 0.016617935

Zone 3
Epochs 2 22

Min. MSE 0.009023999 0.009023999
Final MSE 0.009023999 0.009192817
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Figure 3. Zone 1 ANN database information: a) variation of 1 MWh of energy in terms of $/MWh, b) active and

reactive power variations of loads, c) active power price variations in terms of $/MWh on the basis of active power

variations.

In Table 4, the minimum and the final values of ANN genetic training errors in each of the 3 zones are
provided. The neural network standard function curves, which show the best and average MSE fitness in terms
of the generations, are presented in Figures 6a and 6b, respectively.
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Figure 4. Zone 2 ANN database information: a) variation of 1 MWh of energy in terms of $/MWh b) active and

reactive powers of load variations, c) active power price variations in terms of $/MWh on the basis of active power

variations.
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Figure 5. Zone 3 ANN database information: a) price variation of 1 MWh of energy in terms of $/MWh, b) active

and reactive load power variations, c) variation of active power price in terms of $/MWh on the basis of active power

variations.
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Figure 6. MSE fitness versus generation in all zones of ANN training: a) the best values, b) the average values.

In Figure 7, the sensitivity of the ANN to active and reactive power in all zones under testing conditions
is presented. In Table 5, the minimum and maximum price sensitivities, rather than active and reactive power
variations in all zones, are provided. It can be observed in Figure 7 that regarding the obtained ANN training,
the price sensitivity to P and Q in zone 1 is larger than the sensitivity of other zones. Price variations based on
active and reactive power in all zones during testing conditions are presented in Figures 8 and 9, respectively.
It can be seen that zone 2 is more congested than the other zones. Furthermore, Figures 8 and 9 show that,
due to congestion increase in zone 2, price variation in this zone (based on Figure 4a) is greater than in other
zones.

Table 5. Maximum price sensitivity to active and reactive power variations in all zones.

Zone No. Sensitivity Price

Zone 1
P 0.439895693
Q 0.229954278

Zone 2
P 0.075942479
Q 0.094324891

Zone 3
P 0.049030118
Q 0.059722095
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Figure 7. ANN sensitivity based on input parameters

during testing conditions for all zones.

Figure 8. Price variation values in terms of active power

(MW) variation in all zones during testing conditions.

For testing the accuracy of the proposed method, hour 19 was tested in all zones. That hour is near the
peak load hour at which price spikes are most likely to occur. The price for all of the load nodes in the 3 zones
of the power system on days 10, 19, and 25, which were considered for ANN testing, was forecasted. As an
example, the amounts for day 19 are shown in Table 6.
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Figure 9. Price variation values in terms of reactive power (MVAR) variation in all zones during testing conditions.

The MSE, RMSE, MAE, and minimum and maximum of absolute error values for ANN response during
testing conditions in all zones are presented in Table 7. These amounts were obtained with Eqs. (12), (13),

and (14). These results show that the performance of the proposed method for price forecasting is very good.

According to Table 7, the maximum absolute error for the proposed method is equal to $2.87/MWh in zone 2
at 1900 hours on day 19. The minimum absolute error for all zones is considerable.

Table 7. Criteria of analysis of ANN response in testing conditions for all zones.

Zone 1 Zone 2 Zone 3
Performance Day 10, Day 19, Day 25, Day 10, Day 19, Day 25, Day 10, Day 19, Day 25,

Index 1900 1900 1900 1900 1900 1900 1900 1900 1900
hours hours hours hours hours hours hours hours hours

MSE (ANN) 0.4733 0.0763 0.3948 0.3093 0.4127 0.2899 0.1843 0.2886 0.2255

MSE (ARIMA) 0.7211 0.1512 1.142 1.9874 2.013 1.4532 2.653 4.635 1.8842

MSE (GARCH) 0.5423 0.098 0.9873 1.654 1.972 1.4121 1.154 3.4383 1.5724

RMSE (ANN) 0.688 0.2762 0.6283 0.5562 0.6424 0.5384 0.4294 0.5372 0.4749

RMSE (ARIMA) 0.8491 0.3889 1.068 1.4097 1.4187 1.2054 1.6288 2.1531 1.3726

RMSE (GARCH) 0.7364 0.3139 0.9936 1.2860 1.4042 1.1883 1.074 1.8542 1.2539

MAE (ANN) 1.0228 0.4696 1.1428 0.8202 0.9203 0.7391 0.9412 1.0913 0.8525

MAE (ARIMA) 1.7423 0.5072 2.1167 1.543 1.011 1.7621 2.0238 1.1714 2.2139

MAE (GARCH) 1.3451 0.3137 1.8942 1.3450 1.003 1.5011 1.8046 1.0098 2.01185

Min Abs Error 0.065 0.007 0.074 0.043 0.056 0.064 0.125 0.148 0.023
(ANN)

Min Abs Error 0.103 0.059 0.216 0.267 0.462 0.023 0.231 0.132 0.156
(ARIMA)

Min Abs Error 0.126 0.084 0.119 0.230 0.294 0.101 0.189 0.182 0.225
(GARCH)

Max Abs Error 2.498 1.359 2.461 1.923 2.78 2.473 1.64 1.976 1.941
(ANN)

Max Abs Error 3.21 1.589 2.55 2.32 3.201 2.412 2.03 4.7645 2.54
(ARIMA)

Max Abs Error 2.98 1.225 2.49 1.961 3.695 2.523 1.79 4.094 2.12
(GARCH)

For comparing the performance of the proposed method, the ARIMA and GARCH time series were
considered. The simulation results of these methods are shown in Table 6 for 1900 hours on day 19. These
results show that the proposed method has a better performance than the other times series for short-term
nodal price forecasting. As shown in Table 7, except for the case of zone 3 on day 19 at 1900 hours, in all
other cases, the MAE of the proposed method is less than that of the ARIMA and GARCH models. The MSE,
RMSE, and maximum and minimum values of the absolute amounts of the proposed method are also better in
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all cases than those of the other time series models. In most cases, the GARCH model had a better performance
than the ARIMA time series. The curves in Figures 10a-10c show the actual and forecasted price variations for
all forecasting methods of Table 6.
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Figure 10. Actual and forecasted price variation for 1900 hours on day 19 in all power system zones: a) zone 1, b) zone

2, c) zone 3.

In real power markets, loading uncertainty, transmission constraints, and other factors lead to volatility
for NCPs. Therefore, in spot markets, reliable and secure price forecast information help both transmission
companies to schedule short-term generator outages and consumers to derive a plan to maximize their own
utility with electricity purchased from the power market.

The test results obtained through the simulation demonstrate that the proposed algorithm is robust,
efficient, and accurate. It produces better results than the ARIMA and GARCH time series for short-term
nodal price forecasting. From the congestion management point of view, congestion management using this

765



Turk J Elec Eng & Comp Sci, Vol.20, No.5, 2012

nodal price is appropriate for maintaining network security. NCPs show the presence and the severity of
congestion at different nodes in the power market. They provide an important signal to both power market
participants and the ISO to handle the congestion problem.

The amounts shown in Table 6 demonstrate the ability of the proposed method for NCP forecasting with
lower and more acceptable errors than the other time series methods in a short time span of only 9 s.

6. Conclusions

In this paper, a new method for short-term NCP forecasting in a large-scale power market employing an
ANN optimized by GA was proposed. The IEEE 118-bus test system was used for the proposed method’s
authenticity testing. To obtain the required database for training the neural network, all hours of a 30-day
period were selected. The optimal power flow equations were then solved with regards to all of the effective
constraints to determine the real price for each node. Finally, by dividing the network into 3 zones of forecasting
and using a neural network for each zone, the price was determined. The comparison of the proposed method to
the ARIMA and GARCH time series models shows the appropriate function of the proposed method for NCP
forecasting and reduction of error, especially at locations of price spikes. The simulation results show that the
proposed algorithm is robust, efficient, and accurate. It produces better results than the ARIMA and GARCH
time series for short-term nodal price forecasting. In this method, NCPs directly indicate the presence and the
severity of congestion at different nodes in the power system. It should be noted that the method produces an
appropriate signal for both power market participants and the ISO to handle congestion problems and maintain
network security.

Symbols

I Set of the indices of generating units
J Set of the indices of loads
Ji Number of the load busbars in every zone
B Set of system busbar indices
N Set of transmission line indices
fi Generation cost of unit i , S/MWh
PGi◦ Must-run active power generation of unit i
Pk, Qk Active and reactive injected powers ink ∈ B , MW, MVAR
PL◦j, QL◦j Uninterruptable active and reactive powers of load j
Pgi, Qgi Active and reactive power outputs of unit i , MW, MVAR
PDj, QDj Active and reactive powers of load j , MW, MVAR
Pg min i, Pg max i Lower and upper limits of active power at unit i , MW
Qg min i, Qg max i Lower and upper limits of reactive power at unit i , MVAR
PD min j, PD max j Lower and upper limits of active power at load j , MW
Vmin k, Vmaxk Lower and upper limits of voltage magnitude at node k , p.u.
Rr AGC (gi) Ramp rate of unit i active power for load following/AGC, MW/min
RrQ (gi) Ramp rate of unit i reactive power, MVAR/min
θ Bus voltage angles, p.u.
Imk Line currents between nodes m and k , p.u.
Pmk Real power flow between nodes m and k
Imk max Upper limit of line current between nodes m and k
Pmk max Upper limit of real power flow through the line between nodes m and k
Rgi Spinning reserve amount of unit i , MW

766



MOAZZAMI, HOOSHMAND: Short-term nodal congestion price forecasting in a...,

Rgimin, Rgimax Lower and upper limits of spinning reserve of unit i , MW
PAj, PFj Actual and forecasted prices at node j , US$/MWh
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[5] M. Olsson, L. Söder, “Modeling real-time balancing power market prices using combined SARIMA and Markov

processes”, IEEE Transactions on Power Systems, Vol. 23, pp. 443-450, 2008.

[6] R.C. Garcia, J. Contreras, M. van Akkeren, J.B.C. Garcia, “A GARCH forecasting model to predict day-ahead

electricity prices”, IEEE Transactions on Power Systems, Vol. 20, pp. 867-874, 2005.

[7] H. Mori, A. Awata, “Normalized RBFN with hierarchical deterministic annealing clustering for electricity price

forecasting”, IEEE Power Engineering Society General Meeting, pp. 1-7, 2007.

[8] P. Areekul, T. Senjyu, H. Toyama A. Yona, “A hybrid ARIMA and neural network model for short-term price

forecasting in deregulated market”, IEEE Transactions on Power Systems, Vol. 25, pp. 524-530, 2010.

[9] A.T. Lora, J.R. Santos, J.C.R. Santos, A.G. Expósito, J.L.M. Ramos, “A comparison of two techniques for next-day

electricity price forecasting”, Proceedings of IDEAL, pp. 384-390, 2002.

[10] V. Nanduri, T.K. Das, “A reinforcement learning model to assess market power under auction-based energy pricing”,

IEEE Transactions on Power Systems, Vol. 22, pp 85-95, 2007.

[11] J.J. Guo, P.B. Luh, “Improving market clearing price prediction by using a committee machine of neural networks”,

IEEE Transactions on Power Systems, Vol. 19, pp. 1867-1876, 2004.

[12] P. Mandal, A.K. Srivastava, J.W. Park, “An effort to optimize similar days parameters for ANN-based electricity

price forecasting”, IEEE Transactions on Power Systems, Vol. 45, pp. 1888-1896, 2009.

[13] S.N. Pandey, S. Tapaswi, L. Srivastava, “Nodal congestion price estimation in spot power market using artificial

neural network”, IET Generation, Transmission & Distribution, Vol. 2, pp. 280-290, 2008.

[14] A. Wang, B. Ramsay, “Prediction of system marginal price in the UK power pool using neural network”, Interna-

tional Conference on Neural Networks, Vol. 4, pp. 2116-2120, 1997.

[15] L. Zhang, P.B. Luh, “Neural network-based market clearing price prediction and confidence interval estimation with

an improved extended Kalman filter method”, IEEE Transactions on Power Systems, Vol. 20, pp. 59-66, 2005.

767



Turk J Elec Eng & Comp Sci, Vol.20, No.5, 2012

[16] B. Zhang, C. Zeng, S. Wang, “Forecasting market-clearing price in day-ahead market using SOM-ANN”, Proceedings

of 39th International Universities Power Engineering Conference, Vol. 1, pp. 390-393, 2004.

[17] G. Li, C.C. Liu, C. Mattson, J. Lawarrée, “Day-ahead electricity price forecasting in a grid environment”, IEEE

Transactions on Power Systems, Vol. 22, pp 266-274, 2007.

[18] N. Bigdeli, K. Afshar, N. Amjady, “Market data analysis and short-term price forecasting in the Iran electricity

market with pay-as-bid payment mechanism”, Electric Power Systems Research, Vol. 79, pp. 888-898, 2009.

[19] C.P. Rodriguez, G.J. Anders, “Energy price forecasting in the Ontario competitive power system market”, IEEE

Transactions on Power Systems, Vol. 19, pp. 366-374, 2004.

[20] B.J. Chen, M.W. Chang, C.J. Lin, “Load forecasting using support vector machines: a study on EUNITE compe-

tition 2001”, IEEE Transactions on Power Systems, Vol. 19, pp. 1821-1830, 2004.

[21] J.K. Lee, J.B. Park, J.R. Shin, “A system marginal price forecasting based on an artificial neural network adapted

with rough set theory”, IEEE Power Engineering Society General Meeting, Vol. 1, pp. 528-533, 2005.

[22] A.J. Conejo, J. Contreras, R. Espinola, M.A. Plazas, ”Forecasting electricity prices for a day-ahead pool-based

electric energy market”, International Journal of Forecasting, Vol. 21, pp. 435-462, 2005.

[23] M. Shahidehpour, H. Yamin, Z. Li, Market Operations in Electric Power Systems: Forecasting, Scheduling, and

Risk Management, New York, John Wiley & Sons, 2002.

[24] M.T. Hagan, M.B. Menhaj, “Training feed forward networks with the Marquardt algorithm”, IEEE Transactions

on Neural Networks, Vol. 5, pp. 989-993, 1994.

[25] http://motor.ece.iit.edu/data/118bus abreu.xls.

[26] J. Wang, M. Shahidehpour, Z. Li, “Security-constrained unit commitment with volatile wind power generation”,

IEEE Transactions on Power Systems, Vol. 23, pp. 1319-1327, 2008.

768


