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Abstract

A novel method for implementing noncausal forward/backward 2-pass recursive digital filters in real time

is presented. It is based on a segment-wise block processing scheme without overlapping. Factors that degrade

the linearity of the overall system’s transfer function are discussed. An analytical condition that corrects the

system’s linearity is elaborated upon using the state variable approach. A recursive algorithm is developed

to compute an implementable condition for real-time filtering. A single first in, first out queue memory

is introduced to ensure an organized and continuous data stream into the proposed system. This technique

allows real-time, sample-by-sample filtering, and it yields reduced delay and data storage memory compared

to previous works. Better performances in total harmonic distortion were also obtained. Experimental results

are illustrated.
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1. Introduction

Noncausal filters are usually realized using a combination of 2-pass filtering and time reversal [1-7]. The first
pass can be performed in a forward direction using a stable recursive digital filter, and the second pass can be
performed in a backward direction using a noncausal subsystem implemented by 2 time reversal operations and
a stable recursive digital filter, as shown in Figure 1. Another scheme can be used by performing the backward
pass first and the forward pass second (Figure 2). Here, H(z) is the transfer function of a causal and stable

infinite impulse response (IIR) digital filter; [x(n)] and [y(n)] are the input and output sequences, where [v(n)]

and [w(n)] are the outputs relative, respectively, to the first and second IIR filters; and S1 and S2 are the
initial state vectors.
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These 2 schemes can realize stable noncausal transfer function H(z)H(z−1) with arbitrary pole and zero
locations inside and outside the unit circle. Unlike the causal IIR filter design problem, there is no conflict
among stability, magnitude, and phase performances in designing noncausal IIR filters [2,4]. This class of filters

has high performance in magnitude using, for example, an elliptic digital filter design and a linear phase [4].
These high performances are strongly required in some special cases of noise suppression filtering where the
signal-to-noise ratio (SNR) is very low, such as in speech parameter estimation in a high-pass band [8-11]; for

extracting weak auditory evoked potentials from spontaneous electroencephalogram signals [12]; or for filtering

high-frequency noise from noisy electrocardiogram (ECG) signals [5,13]. The computational advantages of

noncausal IIR filters over causal IIR or finite impulse response (FIR) filters are clearly indicated in [2,4,5].
However, an output of an IIR filter-based implementation of the above schemes is only achieved without errors
when the input is of finite length [1,2]. Thus, this class of filters is often limited to problems for which offline
filtering is permissible.

H(z -1)

H(z)Time 
reversal

[x(n)]
[v(n)] [v(-n)]

[w(n)]

[y(n)]= [w(-n)]

Time 
reversal

S1 S2

First IIR filter Second IIR filter

H(z)

Figure 1. Noncausal 2-pass recursive digital filter scheme; the noncausal system is performed at the second pass.
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H(z)Time 
reversal

Time 
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H(z)
Input

Output

Figure 2. Noncausal 2-pass recursive digital filter scheme; the noncausal system is performed at the first pass.

Noncausal recursive filters can be extended to process real-time, infinite-length input sequences using
block segment-wise processing techniques. A continuous infinite-length input is divided into finite-length
sections and each section is filtered separately by the 2-pass scheme. The final output can be built using
output sections yielded from finite-length section processing and overlap-based approximations such as overlap-
and-save techniques [2,5], overlap-and-add techniques [3,4,6,7], or the nonoverlapping technique [1]. The final
output is never achieved without errors; the magnitude of the systematic errors depends on section length and
degrades the linearity of the overall system. The major problems related to this class of filters in real-time
processing are:

-Unavoidable systematic errors occur from the noncausal subsystem, H(z−1), and substantial data
storage registers are required for acceptable systematic errors.

-The final output, [y(n)], is substantially delayed because of time reversal operations and segment-wise

block processing techniques for realizing the noncausal part,H(z−1).
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Czarnach [2] proposed a method using state vector representation allowing reduced systematic errors

as compared to Kormylo and Jain’s work [5]. Using a proper choice of the initial state vector of the second
recursive filter, S2 , his technique can eliminate a part of the systematic errors yielded from the truncation of
the first IIR filter’s free response.

Powell and Chau [4] devised an efficient scheme for real-time 2-pass recursive digital filters with a linear
phase, based on a well-known overlap-and-add algorithm for sectioned convolution. The noncausal portion

of overall transfer function H(z−1) is created at the first pass and causal portion H(z) is created at the
second pass, as shown in the general scheme in Figure 2. Section length M for overlap-add segment-wise block
processing is chosen such that the impulse response of H(z) decays to a negligible value after the M th sample

[4,14]. The major contributions of [4] were a reduction in the total delay between input and output with more

efficiency than the previous method in [2].

Arias-de-Reyna and Acha [1] proposed an efficient scheme for real-time 2-pass recursive filters with a
linear phase based on a segment-wise processing technique without overlapping. Their technique was based
on interpreting the impulse response of the overall noncausal system as an autocorrelation. Their major
contribution was a reduction in computational burden compared to the overlap-and-save method of Czarnach
[2].

In this paper, a technique for realizing noncausal 2-pass recursive digital filters in real time is developed
using a state variable approach. The proposed technique performs without overlapping and yields reduced
delay and data storage as compared to Arias-de-Reyna and Acha’s method [1]. Systematic errors are reduced

compared to Powell and Chau’s technique [4].

Section 2 presents an analytical investigation of the segment-wise processing effects when an infinite-
length input is filtered. We study why the output cannot be achieved without systematic errors. We obtain
a theoretical condition achieving the ideal output using a state variable approach. With this different point
of view, we get the same expression as in [1]. An implementable condition calculated recursively is presented
in Section 3. A proposed scheme based on segment-wise block processing without overlapping and a first in,
first out (FIFO) queue memory are described in Section 4. Performances are evaluated, as well. Section 5 is
concerned with some experimental results, and methodology and results are also illustrated. A conclusion is
given in Section 6.

2. Analytical condition yielding a final output without errors

In this section, we investigate the analytical condition that eliminates the segment-wise processing effects. We
emphasize factors of our study that make a real-time 2-pass filtered final output able to be exactly calculated.
For this purpose, the basic scheme shown in Figure 1 is used.

The state variable description of the first and second recursive filters of the N th-order identical subsys-
tems of transfer function H(z) are given by Eqs. (1) and (2), respectively.

{
S1(n + 1) = AS1(n) + Bx(n)

v(n) = CS1(n) + Dx(n)
(1)

{
S2(n + 1) = AS2(n) + Bv(−n)

w(n) = CS2(n) + Dv(−n)
(2)
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Here, S1(n) and S2(n) are the state vectors, respectively, of the first and the second IIR filter. A ,B ,C , and
D are the fixed system matrices.

An infinite-length input, [x(n)], can be divided into M finite-length sections (Figure 3), such as:

[x(n)] =
+∞∑
k=0

[xk(n)] 0 ≤ k < +∞, (3)

and:

xk(n) =

{
x(n) for kM ≤ n < (k + 1)M

0 outside
. (4)

[x0(n)] [x k -1(n)] [x k(n)]

0 M-1 (k-1)M kM -1 kM (k+1)M -1 n

x(n)

Figure 3. Segment-wise blocks for processing of infinite-length input [x(n)].

In order to allow for reduced data storage as compared to the previous work in [2,4], each section [xk(n)]
is filtered by the 2-pass system until the M th sample is reached. The first subsystem’s initial state, S1 , was
used, as in [1,2]. A theoretical condition for the second subsystem’s initial state, S2 , which achieves the ideal
output, is elaborated upon using a state variable approach.

When segment-wise processing is performed, the final output is obtained through the juxtaposition of
the adjacent output sections resulting from each 2-pass IIR filter section. Since each output section is of
infinite length, it is necessary to truncate it before processing the next section. According to this situation, the
systematic error problem that prevents us from getting an exact output computation can be taken as a result
of an unavoidable inherent truncation applied to the first-pass output section response. Once the truncation
is carried out, it holds some input samples from exciting the second subsystem. The truncated response part
cannot be recovered because it depends on upcoming future sections, in addition to the first subsystem’s state
vector [1,2].

Our recovering process consists of summarizing the second subsystem’s excitation due to the truncated
samples by modifying its initial state vector in order to get the same output section response without truncation.
The ideal output response of the 2-pass system can be achieved without errors only if all samples, v(n), are
calculated until infinity. In this case, the second pass starts filtering with a zero initial state at n = +∞ , e.g.,
S2(−∞) = 0.

We assume that the first-pass filtering for each section [xk(n)] is stopped at the moment n = (k+1)M−1.
The truncation effect is observed when the second pass is performed with a zero initial state vector. Thus, we
are trying to recover this truncation effect without using a zero initial state vector, such that the second pass
will be executed as if no truncation is done.
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With Eq. (2), we get:

S2 [−(k + 1)M + 1] = AnS2 [−(k + 1)M + 1 − n] +
n∑

i=1

Ai−1.B.v [(k + 1)M − 1 + i]. (5)

If we consider that processing by the second filter block has been started with a zero initial state at infinity (n

= +∞ ), we get:

S2 [−(k + 1)M + 1] = A+∞S2 (−∞) +
+∞∑
i=1

Ai−1.B.v [(k + 1)M − 1 + i]. (6)

Matrix A describes a stable and causal recursive filter, such that all of its eigenvalues have a modulus smaller

than one. This implies that A+∞ will converge to zero.

Thus:

S2 [−(k + 1)M + 1] =
+∞∑
i=1

Ai−1.B.v [(k + 1)M − 1 + i]. (7)

Or:

S2 [−(k + 1)M + 1] =
+∞∑
i=0

Ai.B.v [(k + 1)M + i]. (8)

The output sequence v [(k + 1)M + i] of the first subsystem can be determined by the state vector S1 [(k + 1)M ] .

With Eq. (1), we get:

v [(k + 1)M + i)] = Ci
AS1 [(k + 1)M ] +

i−1∑
n=0

Ci−n−1
A Bx [(k + 1)M + n] + Dx [(k + 1)M + n]. (9)

With Eqs. (8) and (9), we get:

S2 [−(k + 1)M + 1] =
+∞∑
i=0

Ai.B

⎧⎪⎪⎨
⎪⎪⎩

Ci
AS1 [(k + 1) M ] +

i−1∑
n=0

Ci−n−1
A Bx [(k + 1)M + n] + Dx [(k + 1)M + n]

⎫⎪⎪⎬
⎪⎪⎭. (10)

From Eq. (10), we get:

S2 [−(k + 1)M + 1] = TS1 [(k + 1)M ] +
+∞∑
i=0

i−1∑
n=0

AiBCAi−n−1Bx [(k + 1)M + n]

+
+∞∑
i=0

AiBDx [(k + 1)M + i],
(11)

where T is a fixed matrix depending only on the system, such as:

T =
+∞∑
i=0

AiBCAi. (12)
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Notice that Eq. (12) can be computed as shown in [1,2], using the conventional eigenvalue diagonalizing matrices
technique.

If we assume that λ = i − n − 1 and we take into account that 0 ≤ i < +∞ and 0 ≤ n ≤ i − 1, we get:

S2 [−(k + 1)M + 1] = TS1 [(k + 1)M ] +
+∞∑
n=0

An+1

[
+∞∑
λ=0

AλBCAλ

]
Bx [(k + 1)M + n]

+
+∞∑
n=0

AnBDx [(k + 1)M + n].
(13)

Finally, we get the initial state expression of the second subsystem:

S2 [−(k + 1)M + 1] = TS1 [(k + 1)M ] +
+∞∑
n=0

An (ATB + BD) x [(k + 1)M + n]. (14)

We assume that: ⎧⎪⎪⎨
⎪⎪⎩

S
(
20, k) = S2 [−(k + 1)M + 1]

S1(0, k) = S1(kM)

S
(
10, k + 1) = S1 [(k + 1)M ]

. (15)

Thus, we have:

S2(0, k) = TS1(0, k + 1) +
+∞∑
n=0

An (ATB + BD)x [(k + 1)M + n]. (16)

Eq. (16) presents the expression of the second subsystem’s initial state achieving the ideal output without

errors. We get the same equation found in [1] by using a state vector representation.

If we consider the processing of the finite-length input, where x(n) is 0 for n > (k + 1)M , we get from

Eq. (16) the initial state vector of the second subsystem given by Czarnach in [2].

Note that the term TS1(0, k + 1) corresponds to the previous input sample effects, whereas the sum

depends on the future sample inputs until infinity. Therefore, Eq. (16) cannot be implemented in real time. In
the next section, we will present a suitable approximation of this equation with a novel implemented scheme.

3. Recursive algorithm for an implementable condition of computa-

tion

In this section, we develop an implementable condition of the second IIR filter’s initial state vector on the basis
of the analytical investigations explained above. Unfortunately, a condition achieving an ideal output without
errors seems theoretical and cannot be implemented because of the infinite number of upcoming future samples,
x(n), with n > (k + 1)M .

As an implementable approximation, we can involve the upcoming samples from the next block as chosen
in [1,2]. Therefore, we implement the following equation:

S2(0, k) = TS1(0, k + 1) +
M−1∑
n=0

An (ATB + BD)xk+1(n). (17)
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For this purpose, let: {
H = [An(ATB + BD)]0≤n≤M−1

H(n) = An(ATB + BD)
, (18)

and:
XT

k+1 = [xk+1(n)]0≤n≤M−1 . (19)

From Eq. (17), we get the condensed form:

S2(0, k) = TS1(0, k + 1) + HXk+1. (20)

The previous nonoverlapping scheme in [1] consists of 2 subsystems performing in parallel (Figure 4). The

filtering subsystem is dedicated to executing the forward/backward processing section by section, and the
auxiliary subsystem is used to reduce systematic errors by computing the initial state condition of the second
pass,S2(0, k). However, a direct calculation of the termHXk+1 yields a substantial delay of M samples because

this manner of computation needs to load all samples from the next segment, [xk+1(n)] . Thus, with the previous

nonoverlapping method in [1], the first IIR filter should stop and temporize processing after the M th sample is

reached from section[xk(n)] . This temporization should be kept until the loading of all samples from the next

segment, [xk+1(n)] . Therefore, filtering is delayed by 2M samples and the first M samples should be discarded
before calculating the termHXk+1 .

The scheme shown in Figure 4 leads to the same result, as the filtering subsystem cannot start processing
until loading all 2M samples from the 2 adjacent sections, [xk(n)]and[xk+1(n)] .

Discard 
the first M 
samples

Auxiliary subsystem 

Filtering subsystem

z-M

S1(0,k+1)

S2(0,k)=TS1(0,k+1)+HXk+1

H(z)LIFO

[xk(n)]

LIFO

S1(0,k) S2(0,k)

H(z)

z-M

Xk+1

M samples

Figure 4. Previous nonoverlapping scheme for a noncausal 2-pass IIR filter.

In order to resolve the issue of the substantial delay imposed in Arias-de-Reyna and Acha’s scheme [1],
a key aspect of our idea is a recursive computation of the term HXk+1 in M steps progressively by loading

one sample, xk+1(n), from the next segment, Xk+1 , at each step n and simultaneously calculating vector

Gk(n)N×1 , such that: ⎧⎪⎨
⎪⎩

Gk(n) = Gk(n − 1) + H(n)xk+1(n)

Gk(−1) = [0]N×1

0 ≤ n < M

. (21)
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Notice that vector Gk(n)N×1 is a recursive form of the termHXk+1 . Thus, it is fully computed whenn = M−1,
and we have:

Gk(M − 1) = HXk+1. (22)

The second recursive filter’s initial state vector can then be calculated by:

S2(0, k) = Gk(M − 1) + TS1(0, k + 1). (23)

This dynamic process of loading upcoming sample xk+1(n) from the next segment Xk+1 and progressively

and recursively calculating vector G
k
(n) at the same time can eliminate the delay of M samples imposed

systematically in Arias-de-Reyna and Acha’s method [1].

In order to ensure a continuous data stream into the first IIR filter and the auxiliary subsystem sample
by sample without extra delay, a FIFO queue memory of M words in length is used to organize loaded samples
[xk+1(n)] into a queue data structure, such that the first come is first served.

To understand how the FIFO queue memory runs [15], let us take a closer look at the basic concepts.

• Loading samples can be performed only from the bottom of the FIFO queue memory (write port).

• Reading samples can be done only from the top of the FIFO queue memory (read port).

• Reading tasks can be done only when the FIFO queue is full. In this case, loading of data depends on
reading the data in a sequential process of reading and loading.

• When a sequential process of reading and loading is triggered, a sample is read from the top case of the
FIFO queue memory, the top case content is cleared, and the case contents are shifted from the bottom
to the top cases. Finally, a next sample is loaded into the bottom case. Therefore, the FIFO functioning
can be assigned as a simple shift register with dual ports.

• When data are not completely loaded into the FIFO cases (the FIFO queue is empty or almost empty),
reading is denied and the loading of data can be done independently from reading. Sequential loading
from the bottom can thus be carried out without reading from the top. This situation can have effect
only once before starting the filtering, when we load the first block, [x0(n)] .

Therefore, according to the proposed FIFO queue memory, no reading and no filtering are permitted
before sequentially loading the first segment, [x0(n)] = [x(0) · · ·x(M − 1)] , into the FIFO queue memory of
M length. Once that operation is achieved, the sequential process of reading-loading is initiated, the filtering
subsystem triggers the processing, and all upcoming samples from the next block are simultaneously loaded into
the FIFO queue memory and used by the auxiliary subsystem for the recursive computation of S2 , as explained
before.

Examples of FIFO queue memory contents before starting the filtering and during the sequential process
of reading-loading when length M = 3 are illustrated respectively in Figures 5 and 6. In this example, the
filtered section is [x(0) x(1) x(2)] and the upcoming samples for the auxiliary subsystem computation are [x(3)

x(4) x(6)].
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x(0) is loaded

almost empty 
FIFO state

x(1) is loaded
x(0) is shifted

almost empty 
FIFO state

x(2) is loaded
x(1) is shifted
x(0) is shifted 

FIFO full state

shift

output

input

x(0)bottom (write port)

top (read port)

x(0)
x(1)

x(0)
x(1)
x(2)

shift

reading is denied reading is denied reading can be 
triggered

Figure 5. Example of FIFO queue memory contents before starting filtering (M = 3). Loading of data can be done

independently from reading when the FIFO state is empty or almost empty.

• x(0) is read from top case and 
filtered.

• x(1) and x(2) are shifted.
• x(3) is loaded into the bottom case 

and used by the auxiliary 
subsystem.

shift

output

input

x(1)
x(2)
x(3)bottom (write port)

top (read port) x(2)
x(3)
x(4)

x(3)
x(4)
x(5)

shift

• x(1) is read from top case and 
filtered.

• x(2) and x(3) are shifted.
• x(4) is loaded into the bottom case 

and used by the auxiliary 
subsystem.

• x(2) is read from top case and 
filtered.

• x(3) and x(4) are shifted.
• x(5) is loaded into the bottom 
       case and used by the auxiliary 
       subsystem.

shift

Process of reading-loading is triggered. The FIFO is in full state.

Figure 6. Example of FIFO queue memory contents. The process of reading-loading is trigged and filtering is begun

(M = 3).

In Section 4, we present a real-time scheme for noncausal 2-pass recursive filter implementation on the
basis of the described FIFO queue memory and the recursive algorithm. Performances are evaluated and a
comparative study between the proposed and previous works is illustrated.

4. Proposed method for real-time realization

4.1. Description of the proposed scheme

The proposed architecture allows sample-by-sample continuous data to the filtering 2-pass system, which can
be divided into 2 subsystems (Figure 7) performing in parallel as follows.

-The filtering subsystem contains the following items:

• One delay of the M -length block caused by loading the first segment, [x0(n)] = [x(0) · · ·x(M −1)] , before
starting the filtering, when the FIFO queue is empty or almost empty.
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• The first IIR filtering of M samples once the FIFO queue is full and the process of reading-loading is
triggered.

• The first reverse operation of M samples using a last in, first out (LIFO) stack memory.

• The second IIR filtering.

• The second reverse operation of M samples using another LIFO stack memory.

-The auxiliary subsystem containing theS2(0, k) calculation, as follows:

• A recursive computation of HXk+1 by computing vectorGk(n)in M steps until obtainingGk(M − 1).

• One matrix computation, (N × N) ∗ (N × 1), of TS1(0, k + 1).

• A sum of vectorsGk(M − 1) + TS1(0, k + 1) for the S2(0, k)calculation.

Auxiliary subsystem 

Filtering subsystem

FIFO

S1(0,k+1)

Recursive computation of S2(0,k)

H(z)LIFO

[xk (n)]

LIFO

S1(0,k)
S2(0,k)

H(z)
Xk+1

M samples

M samples

Figure 7. Our proposed scheme for a noncausal 2-pass IIR filter.

As shown in [1,2], initial state vector S1(0, k) is obtained from filtering the previous section, [xk−1(n)] .
The FIFO queue memory, explained above in Section 3, simultaneously allows a continuous data stream into
the filtering and the auxiliary subsystems. Therefore, the real-time processing can be performed sample by
sample. The 2 LIFO stack memories shown in Figure 7 can be implemented as described by Powell and Chau
in [4].

4.2. Evaluation of the proposed scheme’s performances

In this section, we compare the computational burdens, data storage capacity, and delay of the final output
response yielded from the schemes in [1,2,4] and the proposed scheme. Without loss of generality and according

to [1], we consider that the recursive filters of N order are implemented as a canonical structure. In this case,

each IIR filtering process requires (2N + 1) multiplications and 2N additions per filtered sample. However,

the computation of vectorGk(n)requires N multiplications and N additions per loaded sample. Therefore,

processing section [xk(n)]of M -length samples by the proposed noncausal 2-pass recursive filtering requires
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2(2N +1)M multiplications and 4NM additions. If we take into consideration the arithmetic operations related

toTS1(0, k + 1)and the sum of vectors Gk(M − 1) +TS1(0, k + 1), the auxiliary subsystem requires NM + N2

multiplications and NM + N2 additions. Table 1 summarizes the computational burdens of our method and
Table 2 illustrates computational efforts as compared between our technique and previous works [1,2,4]. It is

clear that the proposed scheme yields approximately the same computational burden as compared to [1] with

more efficiency than in [2]; our proposed method also yields the least delay as compared to the methods in

[1,2,4] (Table 3).

Data storage capacity seems acceptable in our realization as compared to [1,2,4]. Our scheme requires 1
M -length FIFO queue memory and 2 M -length LIFO stack memories versus a memory of 2M in length and
2 M -length LIFO stack memories in [1,2], and 2 M -length LIFO stack memories in [4] (Table 3).

Table 1. Computational efforts of the proposed scheme for each M -length block of processing.

Elementary operations Number of multiplications Number of additions
Two filterings of M samples 2(2N + 1)M 4NM

Gk(M– 1) recursive calculation NM NM
One matrix computation, TS1(0, k + 1) N2 N(N – 1)

(N × N) × (N × 1)
One sum of 2 vectors: 0 N

TS1(0,k + 1) + Gk(M – 1) (N × 1)
Total 5NM + N 2 + 2M 5NM + N 2

Table 2. Computational efforts compared between several methods for each M -length block of processing.

Method Number of multiplications Number of additions
Arias-de-Reyna and Acha [1] 5NM + N 2 + 2M 5NM + N 2 − −N

Czarnach [2] 6NM + N 2 + 3M 6NM + N 2 − N
Proposed 5NM + N 2 + 2M 5NM + N 2

Table 3. Delay of the final output that response processing yielded and data storage capacity in samples required by

several schemes.

Method Delay in samples Data storage capacity
in samples

Arias-de-Reyna and Acha [1] 4M 4M
Czarnach [2] 4M 4M

Powell and Chau [4] 3M + 1 2M

Proposed 3M 3M

5. Experimental results

5.1. Methodology

In order to evaluate the proposed system performances as compared to the previous schemes in [1,2,4], MATLAB
and C programming language models of these systems were created.

As is well known, these systems perform differently for input sequences with a finite length (less than

M samples) than for inputs of infinite length (more than M samples). Implementations of the equivalent

779



Turk J Elec Eng & Comp Sci, Vol.20, No.5, 2012

transfer function H(z)H(z−1) can thus be tested in real time with infinite-length inputs using segment-wise

block processing techniques via forward/backward schemes. The systematic errors can be evaluated in the time

domain [1] using a criterion of a relative error, such that:

relative error =
|yideal(n) − y(n)|

|xmax|
. (24)

Here, ideal output [yideal(n)] can be calculated by Czarnach’s processing of the finite-length input [2], whereas , y(n)
is computed by the several segment-wise processing techniques given above and xmax is the maximum of input
signal [x(n)].

We can use the total harmonic distortion (THD) to measure systematic errors, known for the most part

for degrading the linearity of these systems. This measurement is computed in the frequency domain [4] using
a single frequency sinusoidal input of L length:

x(n) = Wr(n). sin (2π.f0.n) . (25)

Here, Wr is a rectangular window, and the frequency f0 = l/L should be inside the filter’s passband. We

choose an integer l for the sake of avoiding the Gibbs distortion caused by a finite-length input (multiplication

by rectangular window Wr) [4]. However, we still get the same spectrum as that resulting from an infinite
sinusoidal input. The THD can then be calculated using the following equation:

THD(dB) = 10 log10

⎛
⎜⎜⎜⎝

NF F T −1∑
k=0

∥∥∥Fk − F̃k

∥∥∥
2

NF F T −1∑
k=0

∥∥∥F̃k

∥∥∥
2

⎞
⎟⎟⎟⎠ . (26)

This equation gives the ratio of the root mean square (RMS) error to output spectrum response F , and the

ideal spectrum response F̃ over the RMS value of this ideal spectrum response F̃ . Here, NFFT is the number
of fast Fourier transform points used to calculate the discrete Fourier transform.

5.2. Results

A noncausal filter having the specifications Fp = 0.3,Fs = 0.325, δ p = 0.01 dB, and δs = 70dB [4] is used
as an example to evaluate linearity in both the time and frequency domains, where Fp,s is the normalized

passband (stopband) frequency and δp,s is the passband (stopband) ripple.

Transfer function H(z)is determined using a well-known conventional elliptic design [4]. We get a seventh-
order elliptic filter defined by coefficient vectors A and B such that:

H(z) =
a0 + a1z

−1 + a2z
−2 + a3z

−3 + a4z
−4 + a5z

−5 + a6z
−6 + a7z

−7

1 + b1z−1 + b2z−2 + b3z−3 + b4z−4b5z−5 + b6z−6 + b7z−7
, (27)

and:
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2

a3

a4

a5

a6

a7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1796
0.8249
1.9352
2.8650
2.8650
1.9352
0.8249
0.1796

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
b1

b2

b3

b4

b5

b6

b7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1.8601
3.0921
2.6427
1.9480
0.7836
0.2577
0.0253

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

We consider an infinite length input of L = 4100 samples filtered by the 2-pass systems shown above such that
the segment-wise processing is performed with a section length of 205 samples. We use the same input signal
as in [1], which consists of the first odd harmonics of a square wave with a fundamental period of 160 samples,
as follows:

x(n) =
4∑

j=1

1
2j − 1

sin[0.0125π(2j − 1)n]. (29)

All 4 harmonics are inside the passband. The linearity of this system can be observed in the time domain when
we obtain the same shapes from both the input and output without considering transients and delays. Figures
8-11 illustrate, respectively, the input, the proposed scheme’s output response, and relative errors yielded from
the proposed and the Powell and Chau realizations. Sequences are presented without considering transients and
total delays. Results obtained from [1,2] are not given here, because we obtain the same outputs and relative
errors with the proposed method.
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Figure 8. Input signal of 4100 samples with a fundamen-

tal period of 160 samples.

Figure 9. Output response yielded from the proposed 2-

pass recursive filter scheme with section length M = 205.

In the second experiment, an ECG signal with additive synthetic Gaussian noise is filtered by a Parks-
McClellan optimal FIR filter and the noncausal 2-pass recursive filters with the different schemes shown above.
The low-pass filter has the following specifications: Fp = 49.5 Hz,Fs = 54 Hz, δ p = 0.001 dB, and δ s = 140

dB as in [13], and sampling frequency = 250 Hz. With the Parks-McClellan optimal FIR filter, we get the order
of 366, whereas we get the order of 13 using an elliptic design with the same specifications. In order to show
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the graphs clearly, we use a zoom for one ECG. Results are illustrated in Figures 12-14. Notice that the filtered
ECG signals from the proposed realization and from Arias-de-Reyna and Acha’s scheme [1] and Czarnach’s

scheme [2] are identical if we do not take into consideration transients and delay caused by real-time processing;
therefore, we only present the filtered ECG signal from the proposed scheme. The filtered ECG signal from
Powell and Chau’s realization [4] is not presented here because the difference is not visible; however, relative

error illustrations (Figures 15 and 16) clearly show the gain in systematic error reduction with our method

(maximum relative errors of about 5.5 × 10−3) as compared to that in [4] (about 14 × 10−3).
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Figure 10. Relative errors yielded from the proposed 2-

pass recursive filter scheme (M = 205).

Figure 11. Relative errors yielded from Powell and

Chau’s 2-pass recursive filter realization (M = 205).
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Figure 12. Noisy ECG signal with a total length of

L = 5000 samples.

Figure 13. Filtered ECG signal (dashed line) with Parks-

McClellan optimal FIR filter, original ECG signal (solid

line), section length M = 250 samples, total length L =

5000 samples, FIR filter with order of 336.
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Figure 14. Filtered ECG signal (dashed line) with pro-

posed noncausal 2-pass recursive filters, original ECG sig-

nal (solid line), section length M = 250 samples, total

length L = 5000 samples, elliptic recursive filter with or-

der of 13.

Figure 15. Relative errors yielded from filtered noisy

ECG signal using the proposed 2-pass recursive filter

scheme, section length M = 250, total length signal

L = 5000. The maximum relative error is about 5.5 ×
10−3 .

5.3. Discussion of results

We observe from the first experiment that both the input and output sequences obtained from our proposed
realization seem the same and have identical shapes (Figures 8 and 9) because all 4 harmonics of the input are
inside the filter’s passband; therefore, linearity is observed and reached in the time domain.

The relative error is much smaller in the proposed realization, with a maximum of about 2.2 × 10−6

compared to that in [4] (about 4.9 × 10−6) (Figures 10 and 11) .

Notice that in the general scheme shown in Figure 1, the causal part is realized without errors, which
are reported and generated from the noncausal part. For this reason, from Figure 10, relative errors seem to be
zero at the right side of each filtered section, whereas they appear to the left side.

In Figure 11, relative errors are symmetric compared to the axis separating 2 adjacent filtered sections
because with the general scheme of Figure 2, relative errors are generated from both the causal and noncausal
parts. Realizing the causal part first systematically eliminates a considerable part of the relative errors.

In the frequency domain, our method leads to –130.065 dB; however, Powell and Chau’s method reaches
about –120.969 dB. Linearity is thus improved in our proposed realization.

With the real noisy ECG signal experiments, it is clear from Figures 12-14 that the noncausal 2-pass
IIR filters lead to the best filtering compared to the Parks-McClellan optimal FIR filter. Even with the same
filter specifications and a high FIR filter order, the results are better in real-time processing with the noncausal
2-pass IIR filters class. When we evaluate the mean of the absolute error between the filtered noisy ECG signal
compared to both types of filter and the original ECG signal, we get a mean of 0.0376 for our filtering and a
mean of 0.0517 for the Parks-McClellan optimal FIR processing.

To determine the recommended section length M that should be used in segment-wise processing to
minimize the effect of truncation caused by preventing future upcoming samples from exciting the 2-pass
system, we repeat the first experiment described above with the same recursive filter specifications and the
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single frequency sinusoidal input of Eq. (25) with f0 = l/L and l = 39, as in [4]. We use several different
section lengths. We then calculate the THD yielded from each experiment. Table 4 presents the results from
our proposed scheme and those of Powell and Chau. Figure 17 illustrates the relationship between THD and
section length M in the samples.
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Figure 16. Relative errors yielded from filtered noisy

ECG signal using Powell and Chau’s 2-pass recursive filter

scheme, section length M = 250, total length signal L =

5000. The maximum relative error is about 14 × 10−3 .

Figure 17. THD in dB versus section length in samples.

Table 4. THD in dB versus section length in samples.

Section length THD from our THD from Powell
M in samples proposed method and Chau’s method

50 –67.14 –56.84
100 –87.51 –78.79
150 –108.20 –99.60
200 –128.12 –119.99
205 –130.13 –123.96
250 –147.79 –140.16
300 –167.28 –160.21
350 –186.64 –180.18
400 –205.91 –200.08
450 –225.10 –219.91
500 –244.23 –239.63
550 –263.31 –259.20
600 –282.34 –278.55
650 –300.99 –297.40
700 –312.83 –310.52
750 –317.21 –311.91
800 –321.07 –312.87
850 –322.09 –312.30
900 –321.40 –312.77
950 –323.13 –309.99
1000 –322.26 –311.76
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It seems that at about M = 800 samples, the effect of truncated upcoming samples will be negligible
and the THD will reach the lowest levels in our proposed scheme (about –321 dB), which cannot be improved

even if we use a greater section length. This lowest level of THD will be less (about –312 dB) in Powell and
Chau’s realization. This means that even when as large of a section length M is used as possible in order to get
impulse responses of recursive filters decaying to very low level [14], the proposed method yields the best results
in these extreme conditions as compared to those of Powell and Chau’s method. Notice that the experiments
are realized with a floating point representation in double precision (about 64 bits). Thus, with N = 64 bits of

quantification, we get an SNR (dB) of about 6N + 1.76 = 385.76 dB .

6. Conclusion

The origin of systematic errors was investigated in the case of real-time noncausal recursive filters via for-
ward/backward realization. An analytical condition was elaborated upon using a state variable representation
approach. On the basis of this study, an implementable condition was proposed with a recursive technique of
calculation. It was associated with a novel scheme based on a FIFO queue memory, allowing sample-by-sample
processing and reduced delay and data storage memory as compared to the previous nonoverlapping method
in [1]. An evaluation of the proposed scheme performances was done and a comparison with previous works
was illustrated. Experimental results were given in order to show our contribution. It seems that our proposed
realization leads to the lowest delay and THD.

Via experimental results, we have shown that the forward/backward realization with the causal part
performed first allows systematically reduced relative errors compared to those of Powell and Chau’s method,
which performs the forward pass the second time.

Finally, an empirical section length M (about 800 samples) was recommended to get the best relative
errors and THD. Results demonstrated that even with extreme conditions in which the section length leads
approximately to the ideal response, our proposed method seems better compared to that of Powell and Chau.

Investigations related to the backward/forward scheme will be expanded in the future in order to improve
this realization. The class of noncausal 2-pass IIR filters will be tested and approved in the near future with
real applications in speech parameter estimation concerning multiband dysperiodicity analyses of disordered
connected speech.
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