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1Department of Electrical & Electronics Engineering, Faculty of Engineering,
Ondokuz Mayıs University, 55139 Kurupelit, Samsun-TURKEY

e-mail: okanoz@omu.edu.tr
2Department of Electrical Education, Marmara University, İstanbul-TURKEY
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Abstract

This paper presents a novel hybrid approach for detection of power quality (PQ) disturbances. The pro-

posed hybrid algorithm is based on applications of principle component analysis, discrete wavelet transform,

and fast Fourier transform on voltage and current waveforms. The proposed PQ monitoring (PQM) software

uses 3-phase voltage and current signals in order to detect possible power disturbances such as voltage sag,

flicker, harmonics, transients, DC component, and electromagnetic interference. The test results demonstrate

the potential of the proposed hybrid technique for PQM and PQ assessment.

Key Words: Power quality, discrete wavelet transform, principal component analysis, fast Fourier trans-
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1. Introduction

Power quality (PQ) problems are one of the main concerns for utilities and manufacturing industries. PQ

events are defined in IEEE Standard 1159 using voltage and current signals for power system monitoring [1].
PQ is not just an indicator in order to help the utilities save costs, but is also an indicator of quality and
reliable services to the customers [2]. A good knowledge of PQ events can help power companies to choose
proper equipment. Therefore, power and utility companies perform PQ surveys in order to gather real-time
PQ information [3-5]. Computers and communication-related electronic equipment are more sensitive to power
disturbances that occur both on the power system and within customer amenities. Moreover, with a huge
application of power electronics equipment such as solid-state switching devices, lighting controls, industrial
plant rectifiers and inverters, and distributed generation power converters, the harmonic pollution for utilities
becomes more serious. Power electronic loads cause serious harmonic voltage distortions, large inrush currents
with excessive harmonics, and high distortions [6].
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PQ problems also cause equipment malfunction, data loss, programmable logical controller malfunctions,
and sensitive load blackout. From an economic point of view, utilities face higher costs due to degraded PQ. For
these reasons, PQ monitoring (PQM) and analysis is becoming a major challenge. PQ and reliability issues are
very important to the successful delivery of electrical energy. Loss of voltage has serious economic consequences.
Therefore, utilities are required to provide the highest reliability and PQ in a deregulated environment [7,8].

Recently, many PQM techniques have been proposed to detect disturbances. These techniques can be
summarized as:

• Those based on a personal computer or digital signal processer with advanced commercial software like

MATLABTM, LabVIEW, or general programming languages like C++ [6,9-12],

• Instance virtual instruments, which are based on general packet radio service and LabVIEW software
[2,13,14],

• Web-based PQM systems using a commercial PQ meter like HIOKI 3196 [15,16], and

• Signal processing algorithms such as wavelets, fast Fourier transform (FFT), and empirical mode decom-

position [7,8,17,18].

The above algorithms and identification techniques are used for detecting limited PQ disturbances (PQDs) such

as voltage sag/swell, momentary interruption, and harmonics. Some algorithms are based on Kalman filtering,

instantaneous voltage vector, and indirect demodulation methods, including detection of voltage flicker [19-

21]. Most of these techniques are not able to give useful information such as the beginning and ending of

the problem and the magnitudes and frequencies of voltage flicker/harmonics during a PQD. The proposed

hybrid algorithm is able to detect PQ problems such as voltage sag/swell, momentary interruption, transients,
harmonics, electromagnetic interferences, and DC component. As soon as a PQ problem is detected in the
decision-making unit, the post calculation is performed in order to give information about the problem. The
proposed algorithm consists of the following 2 calculation steps:

• Feature vectors are obtained from 3-phase voltage and current signals using the discrete wavelet transform
(DWT) and principle component analysis (PCA). A 3-phase pure sine signal is used to represent a healthy
condition, and then DWT coefficients of the disturbance signals are compared with the healthy ones. Since
DWT coefficients in the frequency range of 49.5-50.5 Hz cause wrong decisions for voltage sag/swell, the
PCA technique is applied in order to remove the confusion.

• Local maxima and minima are calculated to extract the envelope of each signal in the decision-making
unit. The proposed PQD detection technique can be decomposed into the following 3 steps:

◦ Testing the algorithm for PQDs. Generation of PQ events consists of mathematical equations and
simulation studies.

◦ Obtaining power system voltage/current waveforms using software from the Scientific and Techno-

logical Research Council of Turkey (TÜBİTAK) in order to test the algorithm [3,4].

◦ Running the decision-making unit for the extracted feature vectors.
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The paper is organized as follows: Section 2 describes discrete wavelet analysis and feature vector extractions
using the DWT; Section 3 describes PCA and feature vector extractions using PCA; Section 4 explains the
calculation procedure and decision-making unit; and Section 5 gives the examples of real-time studies where

the sampling frequency is chosen as 25.6 kHz, in compliance with the TÜBİTAK data.

2. Discrete wavelet transform

The DWT is used to extract transients of the analyzed signal. The DWT approach has been widely used in
engineering signal processing applications over the past decade. The main advantage of the DWT is that it has
a varying window size, which is wide for low frequencies and narrow for high frequencies, leading to an optimal
time-frequency resolution in all frequency ranges [17-22]. In this study, the DWT calculation is required to

obtain distinctive attributes (local discontinuities) from voltage and current samples in the data window. The
DWT of a signal x is calculated by passing it through a series of filters. First, the samples are passed through
a low-pass filter with impulse response g , resulting in a convolution of the input signal and low-pass filter. It
can be represented as:

y[n] = (x ∗ g)[n] =
n∑

k=1

x[k]g[n− k]. (1)

In Eq. (1), x is the normalized voltage signal. The signal is also decomposed simultaneously using a high-

pass filter with impulse response h . The outputs are the detail coefficients (from the high-pass filter) and

approximation coefficients (from the low-pass filter). It is important that the 2 filters are related to each other,
and they are known as a quadrature mirror filter. However, it is not always necessary that they be a quadrature
mirror filter. The filter outputs can be rewritten as:

ylow freq [n] =
n∑

k=1

x[k]g[2n− k], (2)

yhigh freq[n] =
n∑

k=1

x[k]h[2n + 1 − k]. (3)

Eqs. (2) and (3) describe the basic DWT computational step followed by decimation by 2. This decimation
technique is operated to optimize the architecture for a one-dimensional DWT. The decomposition has halved
the time resolution, since only half of each filter output characterizes the signal. However, each output has half
of the frequency band of the input. For multirate analysis, the decomposition is repeated and the approximation
coefficients are further decomposed with high- and low-pass filters.
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h(n)

g(n) 2

2
d1

h(n)
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d2
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Figure 1. Classical wavelet tree based on Mallat’s algorithm.
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This is represented as a binary tree with nodes representing a subspace with different time-frequency
localizations. The tree is known as a filter bank [23-24]. Figure 1 shows the decomposition tree.

In this study, the minimum description length (MDL) data criterion [30] is used for the selection of

wavelet function. The MDL data criterion is applied to the simulation and real-time data from TÜBİTAK.
The Shannon entropy-based criterion is used in this study in order to find the optimum level of resolution of
the proposed PQM system. The entropy-based criterion calculates the entropy of each subspace consisting of
detail coefficients (d) and approximation coefficients (a) at each level of resolution of the DWT. It compares
the entropy of a parent subspace with those of its children’s subspaces in order to find the optimum level of
resolution using the optimum mother wavelet. The criterion states that if the entropy of a signal at a new level
is higher than that at the previous level, the decomposition of the signal is not needed.

2.1. Feature extraction

To distinguish different types of disturbances in power systems, it is essential to perform additional processing
of the original signals. For this purpose, the eighth-order Daubechies (db8) wavelet filter is used and the
decomposition level is set to 9. No single wavelet transform has a statistically significant advantage over other
wavelets in performance of the proposed hybrid method for PQM problems. If the harmonic components in
the signal are perfectly localized, then the interpretation of the wavelet coefficients is rather difficult because
of the Heisenberg uncertainty principle [21]. This principle implies that if the variance of a signal in the time

domain f(t)is σt , the variance of the signal in the frequency domain f(f)is σt , and || f || = 1, then the product
σt σf is at least 0.5. In the wavelet transform, there is a natural limit to the localization of the time and

frequency. Therefore, energy levels of the detail coefficients are used instead of using raw coefficients after each
decomposition level. The energy level of each of the detail coefficients is calculated using Eq. (4).

d1−9Energy =
N/2∑
k=1

d2
1−9 (4)

In Eq. (4), N is total number of samples of the data window and d1−9are the detail coefficients for each level.

The input signal x(t) is a 3-phase voltage signal and is supposed to be real-valued. In order to refrain from
numerically high magnitudes, each energy level is normalized as:

d1−9 norm =
fs

106
d1−9 Energy. (5)

In Eq. (5), fs is the sampling frequency. Useful features are extracted from the decomposed signals, which are
used to recognize the type of PQDs. The DWT itself is not adequate to identify the type of PQDs since detail
coefficients are highly affected by the power frequency. This is illustrated in Figure 2.

In Figure 2, the system frequency is chosen as 50 Hz, and the analyzed signal is a pure sine wave. It can
be seen from Figure 2 that the energy levels of the d8 and d9 coefficients, which correspond to 50-100 Hz and
25-50 Hz, do not change. Provided that the power frequency does not change over time, the detail coefficient
can be effectively used for identifying the PQDs. However, it is well known that power frequency can change
over time by ±1.5 Hz. This will yield variations of the detail coefficients. This phenomenon is illustrated in
Figure 3. The analyzed signal is again a pure sine, but the power frequency is 49.8 Hz. It can be seen from
Figure 3 that the energy levels of the d8 and d9 coefficients change over time, and in this case, these coefficients
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cannot be used for PQ identification because they have a similar variation during a voltage sag/swell condition.
The proposed algorithm uses a rectangular window with 512 samples in the DWT calculation. If the power
frequency deviates from 50 Hz, the number of samples in the data window differs from 512 samples. For this
reason, the d8 and d9 curves change over time and are hardly used.
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Figure 2. Detail coefficients of the analyzed signal for the

system frequency of 50.0 Hz.

Figure 3. Detail coefficients of the analyzed signal for the

system frequency of 49.8 Hz.

A previous study [17] in the literature uses the detail coefficients for feature extraction, assuming that
the power frequency does not change from 50 Hz. However, power system frequency can deviate from 50 Hz by
±0.5 Hz. This causes the sharp slopes in the detail coefficients of the analyzed signal. In this case, it is hard to
define upper limits and lower limits for threshold values. In order to solve this problem, a new signal processing
technique, PCA, is used. PCA has an offline training procedure, and so it cannot be affected if the system
frequency changes. PCA is trained with d8 and d9 coefficients. If the same curves are applied to a successfully
trained PCA, the decision-making unit will identify the pure sine wave with a slight change in power frequency
as the normal operating condition. The following section gives a brief explanation of PCA.

3. Principal component analysis

PCA is a lower-dimensional projection method that can use multivariate data mining. The main idea behind
PCA is to represent multidimensional data with fewer numbers of variables while retaining the main features of
the data. The PCA method tries to project multidimensional data to a lower dimensional space while retaining
the variability of the data as much as possible. PCA is also a useful statistical technique for face recognition
and image compression. It is a common technique for finding patterns in data of high dimensions [25,26]. The
main idea of PCA is to reduce dimensionality without losing too much information, in addition to finding a
canonical representation of the data and preserving the variance of the data. The following examples, step1
and step2, are useful for understanding the concept of the PCA algorithm.

step1 : Projecting a point (data vector) into a lower dimensional space using PCA.

1. Let the data vector be x , and x ∈ R , x = [x1, x2, ...xn] .

2. Select a basis. Let the basis vectors be u = [u1, u2, ...un] .
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An orthonormal basis is considered with the following condition: ui.ui = 1, and ui.uj = 0 for i �= j .

3. Select a center
−
x , which defines the offset of the space.

4. The best coordinates in the lower dimensional space are defined by dot products as:

Variable1

Variable2 Factor2

Factor1

Figure 4. Rotating the coordinate frame in order to maximize the variance of the projections.

(z1, z2, ....zk), zi = (x − x̄).ui. (6)

It is required to find the direction of zi , which maximizes the variance and minimizes the mean square error.
As is seen in Figure 4, PCA is a linear transformation that transforms the data into a new coordinate system
such that the direction with the greatest variance lies on the first coordinate, the second greatest variance on
the second coordinate, and so on [27].

step2 : The basic PCA algorithm is defined in the steps given below.

1. Reading the data matrix of xby m × n (76,800 × 6). The first group of data (half of the matrix) is
composed of voltage samples, and the other half of current samples.

2. Recentering procedure by subtracting the mean value from each row of data x .

xc = x − −
x (7)

3. Computing the covariance matrix.

Cov =
1
m

m∑
i=1

(xc(i) −
−
x)(xc(i) −

−
x)T (8)

4. Finding eigenvalues and eigenvectors of Cov from Eq. (8).

5. Selecting the k th eigenvectors with the highest eigenvalues (principal components). Note that the
covariance matrix can be very large; therefore, finding eigenvectors may take too much computer time.
In order to overcome this problem, the singular value decomposition (SVD) is used to calculate the k th
eigenvectors. The following subsection gives a brief explanation of the SVD.
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3.1. SVD calculation

The general SVD form is defined as:

x = WSV T , (9)

where x is the data matrix with 1 row per data point; W is the weight matrix with an m × m matrix of

eigenvectors of xx T – coordinate of xi in eigenspace;S is the singular value matrix, diagonal matrix (in our

setting, each entry is eigenvalue λi), i.e. n diagonal elements contain the square root of the eigenvalues of xT x

or xx T , and all of the other elements are 0; andV T is the singular vector matrix (in our setting, each row is

eigenvector vj), i.e. rows of V contain the coefficients of the principal components.

The product of WS contains scores of the principal components, which is the amount each observation
contributes to the principal components.

3.2. Residual generation

The first stage is data manipulation. The data are constructed in a dynamic way under normal working
conditions from the samples of the system inputs x(k) as:

x = [ xT
k−l+1 xT

k−l+2, ... , xT
k ]T , (10)

where l denotes the system order and x contains input data with a length of k . Since different variables in
engineering systems usually use different units, the columns of x usually need to be scaled. Thus, they have
zero mean and unity variance [28]. In the second stage, which is the offline stage, the covariance matrix is
calculated using the autoscaled matrix as:

Cov =
xTx

N − 1
, (11)

where x shows the autoscaled data matrix and N is the total number of samples. To calculate the principal
components, the eigenvectors and eigenvalues of the covariance matrix are computed and arranged in decreasing
order of eigenvalues. The eigenvectors of the autoscaled covariance matrix are called principal components and
they are used for residual generation purposes. In the last stage, the online residual generation stage, each new
observation vector is autoscaled using the means and variances obtained in the offline stage and projected on to
the principal component subspace. A residual vector at discrete time k is then calculated, using a few principal
components, as:

ek =
∥∥∥xm − ∧

x
∥∥∥2

=
∥∥(I − W1W

T
1 )xm

∥∥2
, (12)

where xm shows the measurement vector and x̂ is called the prediction of the measurement vector. In a different
way, the residual vector eat discrete timek is calculated using a few principal components related to the error
matrix W2 as:

ek =
∥∥W2W

T
2 xm

∥∥2
. (13)

The residual vector ek is applied to the decision-making unit as an input. It has low magnitudes for no
disturbance conditions and high magnitudes during any power system disturbance. The decision-making unit
produces decisions about the type and degree of PQDs, such as the starting and ending of the disturbances and
the magnitudes of the disturbances.
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Figure 5. A normalized voltage signal with a flicker of 12

Hz, 0.1 pu.

Figure 6. The detail coefficients of the analyzed signal (f

= 49.28 Hz) with a flicker (fl = 12 Hz, 0.1 pu).

The use of feature vectors based on the DWT and PCA is adequate to decide voltage sag/swell, momentary
interruptions, harmonics, and electromagnetic interference, but it is not capable of identifying a voltage flicker
condition. During a voltage flicker, it is observed that the signal has local maximums and minimums. Traditional
classifiers identify this as voltage sag or swell on the analyzed signal. To correctly identify the condition, local
maximums and minimums are calculated and used as feature vectors in the decision-making unit. Figure 5
shows the signal with a flicker of 12 Hz and 0.1 pu, and its calculated total envelope. The total envelope of
the signal is the summation of the positive and negative peaks (local maximums and minimums). Here, the
disturbance starts at the 12th period and ends at the 30th period. Figure 6 shows the detail coefficients of the
analyzed signal (power frequency = 49.8 Hz) with a flicker frequency of 12 Hz and magnitude of 0.1 pu. The
detail coefficients of Figure 6 are almost identical to those in Figure 3. The PCA output of this signal is nearly
the same, as well. Therefore, the total envelope of the signal is included in the decision-making unit. Section 4
gives useful information about the decision-making unit and the whole calculation process.

4. Definition of the calculation procedure and the decision-making

unit

The proposed hybrid algorithm for the detection of PQDs is first tested with artificially generated signals. The
following subsections explain the whole calculation process.

4.1. Calculation process

1) In order to simulate real-time power signals, the power frequency and flicker frequency are randomly selected
in simulations. The range for the power frequency is defined as ±0.3 Hz and the flicker frequency is defined as
between 5 and 25 Hz, which allows more realistic values to be obtained in the computer simulations.

2) The positive and negative peaks (local maximums and minimums) are calculated as:

xx = x(1 + N ∗ (k − 1) : N ∗ k),

pos(k) = max(xx),
neg(k) = min(xx).

(14)
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In Eq. (14), xx is the per data frame, N is the number of samples in a period, pos and neg are the respective
positive and negative peaks of the signal, and k= 1 to 25,600. The total envelope of the signal is obtained as:

Total = pos + neg. (15)

The number of peaks of pos, neg, and Total are then calculated. This procedure is required to identify a flicker
condition.

3) The DWT is applied for each data window, and the detail coefficients are obtained for 9 levels. The

energy levels of the detail coefficients are calculated and normalized as in Eqs. (4) and (5). The use of the
DWT is summarized in Section 2.

4) PCA is used for analyzing the energy levels of the detail coefficients. A 3-phase pure sine signal

(balanced and 50.0 Hz) is used for offline training of the PCA module. The manipulation steps can be
summarized as follows:

• Read 3-phase pure sine signal.

• Read 3-phase real-time signal.

• Obtain a dynamic data set using a pure sinusoidal signal. In the offline procedure, the data matrix x ’s
mean and variances are first calculated. It is also autoscaled (i.e. zero mean, unity variance) using means
and variances calculated before constructing the correlation matrix.

• Calculate the covariance matrix.

• Calculate the principle components and eigenvectors of the covariance matrix.

• Obtain a dynamic data set for a real-time signal. In the online fault monitoring stage, each new observation
vector is autoscaled using the means and variances obtained in the offline stage and projected onto the
principal component subspace.

• Calculate the residual (error) vector.

The use of PCA is summarized in Section 3. The correlation between the DWT and PCA is given in Table 1.

Table 1. Normalized energy levels of the detail coefficients and corresponding PCA outputs.

Normalized energy levels of the detail coefficients PCA outputs
d1 norm (6400-12,800 Hz) xr1
d2 norm (3200-6400 Hz) xr2
d3 norm (1600-3200 Hz) xr3
d4 norm (800-1600 Hz) xr4
d5 norm (400-800 Hz) xr5
d6 norm (200-400 Hz) xr6
d7 norm (100-200 Hz) xr7
d8 norm (50-100 Hz) xr8
d9 norm (25-50 Hz) xr9
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4.2. Decision-making unit

The decision-making unit uses a set of crisp rules based on threshold values. The threshold values are applied
to PCA outputs obtained from the DWT analysis. Since the DWT coefficients are scaled to relatively low
magnitudes, the threshold value changes between 0 and 14 for PQM problems. These set values, 0→14, are
determined empirically after numerous computer simulations and can easily be applied to real-time test data
if the analyzed signal (voltage/current) is normalized to ±1. This unit produces 9 decisions: no disturbance,
voltage sag, voltage swell, flicker, harmonics, transients, DC component, electromagnetic interference, and
momentary interrupt. The rules are given as follows:

1) IF number of peaks of Total > 1 and mean(pos) �=1 and mean(neg) �=1 and mean value of (Total)
THEN ‘no disturbance’ OTHERWISE ‘disturbance detected’. If ‘no disturbance’ is detected, the algorithm
runs the power frequency calculation algorithm for each period [29]. The details of this algorithm can be found
in the Appendix. If the power frequency is calculated as 50 ± 0.1 Hz, the decision is again repeated as ‘no
disturbance’. Otherwise, the frequency information is saved for postprocessing and the decision is changed as
‘frequency distortion’. The saved frequency information gives the user period by period frequency knowledge
of the analyzed signal.

2) IF max(pos) < 0.999 and max(neg) > -1 and max(xr8) > 0.02 THEN ‘voltage sag’. The value of
voltage sag is calculated as:

V sag =
max(pos) − min(pos)

max(pos)
. (16)

3) IF max(pos) > 1 and max(neg) < -1 and max(xr8) > 0.5 THEN ‘voltage swell.’ The value of voltage

swell is calculated as in Eq. (17).

V swell =
max(pos) − min(pos)

min(pos)
(17)

4) IF Maximum number of positive peaks of Total > 2 and Maximum number of negative peaks of Total > 2

THEN ‘voltage flicker.’ The magnitude of the flicker is calculated as in Eq. (18).

F lic ker mag = 0.5
(max(pos) − 1)
(min(neg) − 1)

(18)

The flicker frequency is calculated using the FFT. In the frequency domain, a region of frequency between 0 and
46.66 Hz is searched to find the flicker frequency. However, the flicker frequency is randomly chosen as 5-25 Hz
in this study. The maximum value of the frequency component in the scanned region is assigned as the flicker
frequency.

5) IF max(xr7) > 0.1 and max(xr6) > 0.015 THEN ’harmonics’. The FFT approach is again used for

calculating voltage/current harmonics. Up to the 11th harmonic component is calculated in the FFT array. As
soon as the harmonic components are calculated, the 3-phase unbalance factor and total harmonic distortions
are calculated.

%d =
Vmax − Vmin

Vrated
(19)

In Eq. (19), d is a 3-phase unbalance factor in percent, Vmax and Vmin are the maximum and minimum values

of the voltage signal, and Vrated is the rated value of the voltage signal. Eq. (20) gives the total harmonic
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distortion for the voltage and current signals.

THDv =

√
11∑

k=2

V 2
k

V1
and THDi =

√
11∑

k=2

I2
k

I1
(20)

In Eq. (20), V1 and I1 are the fundamental voltage and current harmonic components, respectively, and k is
the order of the harmonics.

6) IF max(xr3) > 1.5E-3 and max(xr8) > 0.01 and max(xr9) > 0.01 THEN ‘transients’.

7) IF number of positive (pos) peaks > 3 and number of negative (neg) peaks = 0 and max(xr8) > 0.1
THEN ‘DC component’

OR
IF number of positive (pos) peaks = 0 and number of negative (neg) peaks > 3 and max(xr8) >

0.1 THEN ‘DC component’. In the above IF-THEN statement, positive and negative DC components are
detected. If a DC component is detected in the analyzed signal, the FFT is used for calculating its magnitude
and variation with respect to time.

8) IF max(xr2) > 0.01 OR max(xr1) > 0.01 THEN ‘electromagnetic interference’.

9) IF max(Total) = 0 and min(Total) ≤ -0.9 and max(xr8) > 9 and max(xr9) > 14 THEN ‘momentary
interruption’. If any power system disturbance is detected, the beginning of the disturbance is calculated using
pos and neg values. The variant from 1 and –1 of the pos and neg envelopes of the signal is scanned. Thus,
the beginning of the disturbance is detected. The following condition is used for detecting the beginning of the
disturbance:

IF number of pos > 1 and mean(pos) �=1 and mean(neg) �=-1 and mean(top) �=0 THEN ‘find the
variant from 1 and –1 of the pos and neg envelopes of the signal’.

5. Case studies

The case studies are divided into 2 groups. The first is based on a computer simulation using artificially
generated power system signals. In order to simulate the real-time conditions, the fundamental system frequency
and flicker frequency are selected randomly during the computer simulations. The duration of a disturbance is
also selected randomly. Figure 7 shows the voltage sag example. The decision-making unit successfully identifies
this condition as ‘voltage sag’. In the example given in Figure 7, the disturbance starts at 0.124 s and ends at
0.5 s. The calculated period of the beginning of the disturbance is 7 and the sag value is 0.1 pu. The power
system frequency is randomly chosen to be 49.90 Hz. The following particular example belongs to a transient
condition. The transient frequency is chosen as 3 kHz. Figure 8 shows the calculated values.

The decision-making unit identifies this condition successfully. The beginning of the disturbance is
calculated to be the fourth period. A voltage swell condition is also detected as a disturbance and the value

of the swell is given as 1.02 pu. In a real-time application, the data supplied by TÜBİTAK are used. This is
an ongoing project devoted to taking the nationwide PQ figures of the Turkish electricity transmission system
via field measurements carried out by application-specific mobile monitoring equipment. In this project, PQ
measurements are being carried out according to IEC 61000-4-30, except the sampling rate, continuously during
7 days at the selected locations. In the transmission system, most of the bus bars have more than one incoming
and outgoing feeder. Therefore, the number of measurement points can be taken as the number of feeders for
currents and as the number of bus bars for voltages. The classification of these points as heavy industry, urban
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+ industrial, and urban sites are given in Table 2 with respect to voltage level. It is noted that there are more
than 95 incoming and outgoing feeders at the 33 measured transformer substations [4]. The real-time data
are acquired in 3 s, which corresponds to 150 periods. Figure 9 shows the normalized real-time voltage signal
with flicker. Figure 10 shows the total envelope of the signal under consideration. Figure 11 shows the DWT
coefficients of the signal under investigation.
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Figure 7. Voltage sag example.
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Figure 8. A transient condition example.

Since the calculated power system frequency is 50.2545 Hz, the related coefficients are not straightforward.
In this particular example, the decision-making unit determines the beginning of the disturbance as the first
period, the flicker frequency as 37 Hz, and the sag value as 0.29 pu. A number of real-time data obtained from
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TÜBİTAK are investigated to evaluate the performance of the proposed hybrid algorithm. These studies have
proven that the proposed algorithm is successfully able to identify PQ problems.

In Figure 11, there are only 2 visible lines, d8 and d9, due to the scaling.

Table 2. Number of measurement points [4].

Number of measurement points

Voltage level
Load type

Heavy Industry Urban
Totalindustry urban only

NB NF NB NF NB NF NB NF
33 kV 8 16 17 28 14 16 39 60
154 kV 3 5 10 13 9 9 22 27
380 kV 1 1 4 7 0 0 5 8
Total 12 22 31 48 23 25 66 95
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Figure 9. Real-time voltage signal with flicker. Figure 10. Total envelope of the voltage signal.
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6. Conclusions

In this paper, a hybrid algorithm for the detection of PQ problems was proposed. The algorithm was capable
of detecting and classifying many PQDs. The disturbance classification scheme was performed with the DWT,
PCA, total envelope of the signal, and FFT approaches. A decision-making unit was used for classification
based on crisp rules and it did not require other classification algorithms, such as a neural network or fuzzy
classifiers. The proposed algorithm was applied to 2 sets of data, the first for generated data on a computer and

the other for data obtained from TÜBİTAK. Practical applications showed that the proposed hybrid algorithm
can be used in PQM software. The most important advantage of the suggested method is the reduction of
the data size in the PCA unit. The DWT module was applied to 512 samples of data, while the FFT module
was applied to 25,600 samples, to mitigate the effect of the spectral leakage problem. The PCA unit uses the
first 5 singular values (square root of eigenvalues) of the 512 samples of the per data frame to produce feature
vectors for the decision-making unit. Thus, it reduces memory space, shortens preprocessing requirements, and
increases computational speed for the classification of PQDs. The analysis and results presented in this study
clearly show the potential capability of the suggested hybrid algorithm in detecting and classifying the distorted
PQ waveforms. In future work, the proposed algorithm will be turned into a web-based power monitoring
system. The entire system will be developed on a Java technology platform.
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