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Abstract

A power system is a typical nonlinear dynamical system and voltage stability is an important subject

of power system stability. This paper describes the use of the variable gradient method in a reduced order

model of a single-machine infinite-bus power system. Additionally, the system’s Lyapunov (energy) function

is created and thus the system’s energy level changes’ effects on the system’s stability are shown using the

MACSYMA program. The Lyapunov function allows the determination of stability for nonlinear systems

without the need to find exact solutions.

Key Words: Lyapunov (Energy) function, reduced order model of single-machine infinite-bus power system,
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1. Introduction

Since the 1920s, electric power system stability has been considered as an important problem in terms of reliable
system operation [1,2]. Consequently, many authors have been studying power system stability using different

analyses [3-6]. Recently, voltage stability has become a basic issue in electric power systems because of the

energy system collapses that have occurred in various places of the world such as Egypt [7], Chile [8], and the

United States and Canada [9,10]. The concept of voltage stability is expressed as the ability of a power system
to maintain steady voltage at all of the buses in the system after being subjected to a disturbance or contingency
from a given initial operating condition [11].

In cases of not maintaining voltage control and an increase in the load due to disabling, for any reason,
elements such as the generator, line, transformer, or bus if an uncontrolled voltage drop occurs, the result is
power system instability. The main reason for voltage instability is that in an overloaded system, the system
cannot ensure the reactive energy needed by the system to keep voltage values at a certain level [12-15]. Other
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reasons are generator reactive power limits, load characteristics, characteristics of load tap changer transformer,
characteristics of reactive power compensation devices, and behaviors of voltage control devices [16].

This paper is organized as follows: Section 2 outlines the main idea of Lyapunov stability analysis. In
Section 3, we recall the single-machine infinite-bus (SMIB) power system considered in [17] and give a reduced

order model of the SMIB power system considered in [18]. Section 4 examines the reduced order model’s energy
function. Section 5 presents simulation results of the energy function analysis. Finally, conclusions are given in
Section 6.

2. Lyapunov stability analysis

The study of Lyapunov stability via energy functions has been applied in power systems [19-22]. The Lyapunov

stability theory includes 2 methods, Lyapunov’s first method and Lyapunov’s second method (also called

Lyapunov’s direct method). Lyapunov’s first method uses the linearization of a system to determine the local
stability of the original system. Lyapunov’s second method allows us to study the stability of the system
concerning the dynamic system before finding the solution to the differential equation. The second method is
appropriate for the voltage stability of nonlinear systems that do not have accurate solutions. This method is
the most common one in terms of the determination of stability conditions of time-dependent nonlinear systems
and could be applied to all known systems.

2.1. Stability analysis of nonlinear systems

Voltage stability of nonlinear systems is regional. Hence, the Lyapunov function, which obtains sufficient
stability conditions in the largest region around the origin, is sought.

Some methods that arise from Lyapunov’s second method are proper for examining the stability of
nonlinear systems. One of them is the variable gradient method, which is used for the generalization of Lyapunov
functions.

2.1.1. The variable gradient method

There are no generally applicable methods for finding Lyapunov functions. The variable gradient method
provides a systematic approach to determining a suitable Lyapunov function. The variable gradient method
assumes a certain form for the gradient of an unknown Lyapunov function, and then finds the Lyapunov function
itself by integrating the assumed gradient [23].

Consider a nonlinear dynamical system described by:

ẋ = f(x, t). (1)

Accept an equilibrium point at the origin of the space. Denote a test Lyapunov function by using V and its

time derivative, V̇ . Assume that in Eq. (1), V is x’s open function but not t’s. Then,

V̇ =
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2 + ... +

∂V

∂xn
ẋn (2)

can be written. Hence,

V̇ = (∇V )∗ẋ. (3)
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In Eq. (3), (∇V )∗ is∇V ’s transpose. The gradient of V is denoted by ∇V , as follows:

∇V =

⎡
⎢⎢⎢⎢⎣

∂V
∂x1

.

.

.
∂V
∂xn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

∇V1

.

.

.
∇Vn

⎤
⎥⎥⎥⎥⎦ . (4)

∇V ’s line integral can be expressed by:

V =

x∫

0

(∇V )∗dx. (5)

In Eq. (5), the integral’s upper limit does not point out that V is a vector magnitude, but the integral is preferred

to the line integral of a random point (x1 ,x2 ,. . . ,xn) at the space. This integral can be done separately from
the integration method.

2.1.2. Investigation of Lyapunov function using gradient system

A special class of dynamical system is particularly well suited to the Lyapunov method. This system arises
from the gradient of a function [24]. A gradient dynamical system is given as:

ẋ = −A∇v(x, x0). (6)

In Eq. (6), v: �nx�n → � can be continuously differentiable. A ∈ �nxn is defined as det(A) �= 0 and

v(x,x0) = 0 for x = x0 . If v(x,x0)’s Hessian is a completely positive definite at x0 , the equilibrium point is
asymptotically stable at x0 . The Lyapunov function is given as:

V (x) =

x∫

x0

[f(ξ)]T dξ. (7)

The Lyapunov function given above will be used in order to find the reduced order model of the SMIB power
system’s energy function.

3. The SMIB power system: the reduced order model

In this section, the SMIB power system is described [17,25]. First, a full order model is given, and then the
resulting reduced order model is obtained.

3.1. The SMIB power system

We consider the power system model shown in Figure 1, which is taken from [17].
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Figure 1. Power system model.

This system consists of a load bus and 2 generator buses. One of the generator buses is treated as a slack
bus. The load is modeled by a simplified induction motor in parallel with a constant P-Q load and constant
impedance. The load also includes a fixed capacitor, C, to raise the voltage up to near 1.0 per unit [17]. The
network, load, and generator parameters are presented in the Appendix.

The active and reactive powers supplied to the load by the network are:

P = −E′
0V Y ′

0 sin(δ + θ′0) − EmV Ym sin(δ − δm + θm) + (Y ′
0 sin θ′0 + Ym sin θm)V 2, (8)

Q = E′
0V Y ′

0 cos(δ + θ′0) + EmV Ym cos(δ − δm + θm) − (Y ′
0 cos θ′0 + Ym cos θm)V 2. (9)

First order differential equations are expressed, which show the power system model’s equations of state as
follows [17]:

δ̇m = w, (10)

Mẇ = −Dw + Pm + EmV Ym sin(δ − δm − θm) + E2
mYm sin θm, (11)

Kqw δ̇ = −KqvV − Kqv2V
2 + Q − Q0 − Q1, (12)

TKqwKpvV̇ = KpwKqv2V
2 + (KpwKqv − KqwKpv)V + Kpw(Q0 + Q1 − Q) − Kqw(P0 + P1 − P ). (13)

3.2. The reduced order model

The SMIB power system model presents significant numerical ill-conditioning. The dimensionality of this model
is reduced by eliminating from it the variable δ , as considered in [18]. This is justified for the data used in [17],

since Kqw is small in comparison with other system data [18]. The resulting reduced order model is:

δ̇m = w, (14)

Mẇ = −Dw + Pm + EmV Ym sin(δ − δm − θm) + E2
mYm sin θm, (15)

TKpvV̇ = −KpvV − P0 − P1 + P. (16)
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4. Energy function of the reduced order model

The reduced order model differential equations above can be written again under the condition that the generator
mechanical power is equivalent to the active load requirement (Pm = P l).

ẇ = − D

M2
Mw − 1

M
f(δm , V ) (17)

δ̇m =
1
M

Mw (18)

V̇ = −h(δm, V ) (19)

Here,

f(δm , V ) = −(Pm + EmV Ym sin(δ − δm − θm) + E2
mYm sin(θm)), (20)

h(δm, V ) = − 1
TKpv

(−KpvV − P0 − P1 + P ). (21)

4.1. Defining gradient system to the form of the Lyapunov function for the

reduced order model

The derivation of the Lyapunov function for the reduced order model of the system in Figure 1 and Eqs. (17),

(18), and (19) could be determined as:

⎡
⎢⎣

δ̇m

ẇ

V̇

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

0 − 1
M 0

1
M

D
M2 0

0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f(δm , V )

Mw

h(δm, V )

⎤
⎥⎥⎥⎦ . (22)

Eq. (22) for the reduced order model of the system defined in Eqs. (14), (15), and (16) is an alternative
definition for this system’s dynamics.

For (w0 , δm0 , V0)’s equilibrium point, a candidate energy function, which is seen on the right of Eq.

(22) ((3 × 1) gradient matrix seen on the right of Eq. (22)), is obtained and thus can be used in Eq. (7). The

candidate energy function can be written in Eq. (7) as:

v(w, δm, V ) =

(w,δm,V )∫

(w0,δm0,V0)

⎡
⎢⎣

Mx

f(δm , V )

h(δm, V )

⎤
⎥⎦

T ⎡
⎢⎣

dx

dδm

dV

⎤
⎥⎦. (23)

If f(w,δm ,V) and h(w,δm ,V) are replaced in Eq. (23), the reduced order model of the SMIB power system’s
energy function is obtained.

The equilibrium point is (w∗ , δ∗m , V∗) = (0.0, 0.3, 0.97).
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5. Simulation results of the reduced order model

The generator rotor angle will be changed, beginning with 0, and will be increased to 1.6 by a 0.4 rise each turn
in order to observe the reduced order model of the SMIB power system’s stability. The sample of the energy
function for the reduced order model is given as follows:

v(δ, V ) = −0.699V 3 + a2V
2 + a1V + a. (24)

When the sample of the energy function given above is equalized, the reduced order model of the SMIB power
system’s energy function, which is obtained from Eq. (23), and a2 , a1 , and a are respectively obtained for each
case.

The following cases are considered:

Case 1. Generator rotor angle δm = 0 rad, system frequency w = 1 per unit (p.u.).

a2 , a1 , and a are respectively obtained as:

a2 = −0.15− 10 sin(δ − 0.209)− 2.5 sin(δ − 0.087), (25)

a1 = −0.6 + 5 cos(δ − 0.213)− 5 cos(δ + 0.087), (26)

a = 1.379 + 9.409 sin(δ − 0.209) + 2.352 sin(δ − 0.087). (27)
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Figure 2. The reduced order model’s stored energy for δm = 0: (a) 2-dimensional representation and (b) 3-dimensional

representation.

The reduced order model’s energy density is in the range of 0 ≤ V ≤ 0.3 and 1.4 ≤ δ ≤ 1.8, which is
seen in Figure 2 and Table 1. The reduced order model’s energy density varies between 12 and 13 energy units
around these points.

For δm = 0 rad and w = 1 p.u., Table 1 shows the numerical values of the energy function for different
load angles and different load voltages.
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Table 1. Energy measurement for δm = 0.

δ Energy measurement
0 –0.8 –0.8 –0.8 –0.8 –0.8 –0.7 –06 –0.5 –0.3 –0.2 0.0

0.2 1.6 1.5 1.5 1.4 1.3 1.2 1.0 0.9 0.7 0.4 0.1
0.4 3.9 3.9 3.8 3.6 3.4 3.0 2.7 2.2 1.6 1.0 0.3
0.6 6.1 6.1 5.9 5.7 5.3 4.8 4.2 3.5 2.6 1.6 0.4
0.8 8.2 8.1 7.9 7.6 7.1 6.4 5.6 4.6 3.4 2.1 0.5
1 9.9 9.9 9.7 9.3 8.7 7.8 6.8 5.6 4.1 2.5 0.6

1.2 11.4 11.3 11.1 10.6 9.9 9.0 7.8 6.4 4.7 2.8 0.7
1.4 12.4 12.4 12.1 11.6 10.8 9.8 8.5 6.9 5.1 3.0 0.7
1.6 13.0 12.9 12.7 12.1 11.3 10.2 8.9 7.3 5.4 3.2 0.7
1.8 13.1 13.1 12.8 12.2 11.4 10.3 8.9 7.3 5.4 3.2 0.7
V 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Case 2. Generator rotor angle δm = 0.4 rad, system frequency w = 1 p.u.

a2 , a1 , and a are respectively obtained as:

a2 = −0.15− 10 sin(δ − 0.209)− 2.5 sin(δ − 0.487), (28)

a1 = −0.6 + 5 cos(δ − 0.213)− 5 cos(δ − 0.313), (29)

a = 1.153 + 9.409 sin(δ − 0.209) + 2.352 sin(δ − 0.487). (30)
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Figure 3. The reduced order model’s stored energy for δm = 0.4: (a) 2-dimensional representation and (b) 3-dimensional

representation.

The reduced order model’s energy density is in the range of 0 ≤ V ≤ 0.3 and 1.4 ≤ δ ≤ 1.8, which is
seen in Figure 3 and Table 2. The reduced order model’s energy density varies between 11 and 12 energy units
around these points.
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Table 2. Energy measurement for δm = 0.4.

δ Energy measurement
0 –1.9 –1.9 –1.9 –1.8 –1.6 –1.4 –1.2 –1.0 –0.7 –0.3 0.0

0.2 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 –0.1 –0.2
0.4 2.7 2.6 2.5 2.4 2.1 1.9 1.5 1.1 0.7 0.1 –0.5
0.6 5.0 4.9 4.7 4.4 4.0 3.5 2.9 2.2 1.3 0.4 –0.7
0.8 7.1 7.0 6.7 6.3 5.7 5.0 4.1 3.1 1.9 0.6 –0.9
1 9.0 8.8 8.5 7.9 7.2 6.3 5.2 3.9 2.5 0.8 –1.1

1.2 10.6 10.4 10.0 9.3 8.5 7.4 6.2 4.6 2.9 0.9 –1.3
1.4 11.8 11.5 11.1 10.4 9.5 8.3 6.9 5.2 3.2 1.0 –1.4
1.6 12.5 12.3 11.8 11.1 10.1 8.8 7.3 5.5 3.5 1.1 –1.5
1.8 12.8 12.6 12.1 11.4 10.3 9.1 7.5 5.7 3.6 1.2 –1.5
V 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

For δm = 0.4 rad and w = 1 p.u., Table 2 shows the numerical values of the energy function for different
load angles and different load voltages.

Case 3. Generator rotor angle δm = 0.8 rad, system frequency w = 1 p.u.

a2 , a1 , and a are respectively obtained as:

a2 = −0.15− 10 sin(δ − 0.209)− 2.5 sin(δ − 0.887), (31)

a1 = −0.6 + 5 cos(δ − 0.213)− 5 cos(δ − 0.713), (32)

a = 0.927 + 9.409 sin(δ − 0.209) + 2.352 sin(δ − 0.887). (33)
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Figure 4. The reduced order model’s stored energy for δm = 0.8: (a) 2-dimensional representation and (b) 3-dimensional

representation.

The reduced order model’s energy density is in the range of 0 ≤ V ≤ 0.2 and 1.6 ≤ δ ≤ 1.8, which is
seen in Figure 4 and Table 3. The reduced order model’s energy density varies between 11 and 12 energy units
around these points.
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ÇİFCİ, UYAROĞLU, YALÇIN: Voltage stability via energy function analysis on...,

Table 3. Energy measurement for δm = 0.8.

δ Energy Measurement
0 –2.8 –2.8 –2.6 –2.4 –2.1 –1.7 –1.3 –0.8 –0.3 0.2 0.8

0.2 –0.6 –0.6 –0.6 –0.5 –0.4 –0.3 –0.2 –0.1 0.0 0.1 0.2
0.4 1.6 1.6 1.5 1.4 1.2 1.1 0.9 0.6 0.3 0.0 –0.4
0.6 3.8 3.7 3.5 3.3 2.9 2.5 2.0 1.4 0.7 –0.1 –1.0
0.8 6.0 5.8 5.5 5.0 4.5 3.8 3.0 2.0 1.0 –0.3 –1.7
1 7.9 7.6 7.2 6.6 5.9 5.0 3.9 2.6 1.2 –0.4 –2.2

1.2 9.5 9.2 8.7 8.0 7.1 6.0 4.7 3.1 1.4 –0.5 –2.7
1.4 10.8 10.5 9.9 9.1 8.0 6.8 5.3 3.5 1.6 –0.7 –3.1
1.6 11.7 11.3 10.7 9.8 8.7 7.3 5.7 3.8 1.7 –0.8 –3.4
1.8 12.2 11.8 11.1 10.2 9.0 7.6 5.9 3.9 1.7 –0.8 –3.6
V 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

For δm = 0.8 rad and w = 1 p.u., Table 3 shows the numerical values of the energy function for different
load angles and different load voltages.

Case 4. Generator rotor angle δm = 1.2 rad, system frequency w = 1 p.u.

a2 , a1 , and a are respectively obtained as:

a2 = −0.15− 10 sin(δ − 0.209)− 2.5 sin(δ − 1.287), (34)

a1 = −0.6 + 5 cos(δ − 0.213)− 5 cos(δ − 1.113), (35)

a = 0.701 + 9.409 sin(δ − 0.209) + 2.352 sin(δ − 1.287). (36)
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Figure 5. The reduced order model’s stored energy for δm = 1.2: (a) 2-dimensional representation and (b) 3-dimensional

representation.

The reduced order model’s energy density is in the range of 0 ≤ V ≤ 0.2 and 1.4 ≤ δ ≤ 1.8, which is
seen in Figure 5 and Table 4. The reduced order model’s energy density varies between 9 and 10 energy units
around these points.
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Table 4. Energy measurement for δm = 1.2.

δ Energy measurement
0 –3.5 –3.3 –2.9 –2.5 –2.0 –1.5 –0.9 –0.2 0.6 1.4 2.2

0.2 –1.5 –1.3 –1.1 –0.9 –0.6 –0.3 0.0 0.3 0.6 1.0 1.3
0.4 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.5 0.4
0.6 2.8 2.7 2.6 2.5 2.2 2.0 1.6 1.2 0.7 0.1 –0.6
0.8 4.8 4.7 4.4 4.1 3.6 3.0 2.3 1.5 0.6 –0.4 –1.6
1 6.7 6.5 6.1 5.5 4.8 4.0 3.0 1.8 0.5 –0.9 –2.6

1.2 8.4 8.0 7.5 6.8 5.9 4.8 3.5 2.1 0.4 –1.4 –3.5
1.4 9.7 9.3 8.6 7.8 6.7 5.4 3.9 2.2 0.3 –1.8 –4.2
1.6 10.7 10.2 9.4 8.5 7.3 5.9 4.2 2.3 0.2 –2.2 –4.9
1.8 11.3 10.7 9.9 8.9 7.6 6.1 4.3 2.3 0.0 –2.6 –5.4
V 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

For δm = 1.2 rad and w = 1 p.u., Table 4 shows the numerical values of the energy function for different
load angles and different load voltages.

Case 5. Generator rotor angle δm = 1.6 rad, system frequency w = 1 p.u.

a2 , a1 , and a are respectively obtained as:

a2 = −0.15− 10 sin(δ − 0.209)− 2.5 sin(δ − 1.687), (37)

a1 = −0.6 + 5 cos(δ − 0.213)− 5 cos(δ − 1.513), (38)

a = 0.474 + 9.409 sin(δ − 0.209) + 2.352 sin(δ − 1.687). (39)
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Figure 6. The reduced order model’s stored energy for δm = 1.6: (a) 2-dimensional representation and (b) 3-dimensional

representation.

The reduced order model’s energy density is in the range of 0 ≤ V ≤ 0.1 and 1.6 ≤ δ ≤ 1.8, which is
seen in Figure 6 and Table 5. The reduced order model’s energy density varies between 9 and 10 energy units
around these points.
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Table 5. Energy measurement for δm = 1.6.

δ Energy measurement
0 –3.8 –3.4 –2.8 –2.2 –1.6 –0.8 0.0 0.9 1.8 2.8 3.9

0.2 –2.0 –1.6 –1.2 –0.8 –0.4 0.1 0.6 1.2 1.7 2.3 2.9
0.4 0.0 0.2 0.4 0.6 0.9 1.1 1.2 1.4 1.6 1.7 1.8
0.6 2.0 2.1 2.1 2.1 2.0 1.9 1.8 1.6 1.3 0.9 0.5
0.8 3.9 3.8 3.7 3.5 3.2 2.8 2.2 1.6 0.9 0.1 –0.8
1 5.7 5.5 5.2 4.7 4.2 3.5 2.6 1.7 0.5 –0.7 –2.1

1.2 7.2 6.9 6.4 5.8 5.0 4.0 2.9 1.6 0.1 –1.6 –3.4
1.4 8.5 8.1 7.5 6.6 5.6 4.4 3.0 1.4 –0.4 –2.4 –4.6
1.6 9.5 9.0 8.2 7.2 6.1 4.7 3.1 1.2 –0.8 –3.1 –5.6
1.8 10.1 9.5 8.6 7.5 6.2 4.7 3.0 1.0 –1.3 –3.7 –6.5
V 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

For δm = 1.6 rad and w = 1 p.u., Table 5 shows the numerical values of the energy function for different
load angles and different load voltages.

After all of these cases, we observed that the value of the whole energy density decreased. This decrease
in energy measurement is an indicator of the operating point’s movement toward the instability region. In Case
1, while δ = 1.8 rad and V = 0 p.u., the maximum energy level was 13.1 energy units. However, in Case 5,
the energy level was 10.1 energy units, even with the same values of δ and V. It is observed clearly that any
changes in load will continue to decrease the level of energy density to low values, and it is even possible to see
negative values.

6. Conclusion

Energy function has long been recognized as a useful way of analyzing voltage stability. This paper demonstrated
that a more realistic energy function, which can clearly demonstrate the critical load angles gained on the
energy measurement levels, corresponding to the representations of system works in the different levels and load
voltages, and the reduced order model of the SMIB power system’s stability attitude, can be obtained. Thus,
this shows the effect of energy fluctuations in the system on system stability, nearly definitely. Eventually, for
the system dependency of load angle and load voltage, the optimal range of load angle and load voltage can be
defined with the energy fluctuation that is plotted on the range of stability shown.

Appendix

The load parameter values used in the simulation are [17]:

Kpv = 0.3, T = 8.5, P0 = 0.6, Q0 = 1.3, P1 = 0.0, Q1 = 0.0.

The network and generator parameter values used in the simulation are [17]:

Y0 = 20, θ0 = −5, E0 = 1, C = 12, Y ′
0 = 8, θ′0 = −12, E′

0 = 2.5, Ym = 5, θm = −5, Em = 1, Pm = 1,

D = 0.05, M = 0.3.

All of the values are given per unit (p.u.) except for angles, which are in degrees.
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List of Symbols

δ Load angle, rad
V Load voltage, p.u.
w Angular speed, rad/s
Em Generator voltage, p.u.
E0 Infinite bus or slack bus voltage, p.u.
Ym Generator admittance, p.u.
Y0 Infinite bus or slack bus admittance, p.u.
δm Generator rotor angle, rad
C Compensated load capacitor, p.u.
θm Generator admittance angle, degrees
θ0 Infinite bus admittance angle, degrees
M Generator inertia, p.u.
D Damping coefficient
T Characteristic time constant of the motor, p.u.
P0, Q0 Constant real and reactive powers of the motor, p.u.
P1, Q1 Constant P-Q load, p.u.
Pm Mechanical power, p.u.
Kpw, Kpv, Kqw, Kqv, Kqv2 Constant parameters
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