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Abstract

This paper presents an investigation into the development of system identification using the artificial bee

colony (ABC) algorithm. A system identification task can be formulated as an optimization problem where

the objective is to obtain a model and a set of parameters that minimize the prediction error between the

measured plant outputs and the model outputs. The most common existing system identification approaches,

such as the recursive least squares method and autoregressive exogenous method, are substantially analytical

and based on a mathematical derivation of the system’s model. Evolutionary computation, which seems

to be a very promising approach, is an alternative to these methods because a little knowledge about the

problem is sufficient in this approach and it can be easily combined with many other techniques from artificial

intelligence, control engineering, machine learning, and so on. In this paper, an evolutionary approach for

system identification is considered and attempted to demonstrate how the ABC algorithm can be applied in

system identification tasks. Mathematical models of dynamic systems are obtained using difference equations

represented in discrete time and the ABC algorithm is used to estimate the unknown parameters of the

systems. Simulation results demonstrate that the proposed linear system identification method has good

identification performance. Moreover, this method is applied to the identification of a direct current motor

in order to show the performance of the ABC algorithm. The obtained results show that the identified and

actual plant outputs successfully match each other.

Key Words: Dynamic modeling, system identification, artificial bee colony algorithm, linear time-invariant

system, DC motor speed

1. Introduction

System identification contains 2 tasks, such as the structural identification of the equations and estimation of
the plant parameters. From the point of view of the control engineering, the aim of system identification is to
find a model of the plant to control. If the structure of the model is known in advance, the only task remaining
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is to estimate the plant’s parameters. Therefore, the needed knowledge depends on the numerical values of
a number of parameters. The “black box” modeling approach is the technique used in system identification.
This means that system identification is not interested in what the system looks like, but by applying an input
signal and using the resultant output signal, an estimate of the system’s transfer function can be found. There
are other forms of identification that are widely used in industry, such as modeling systems by their physical
properties. As system identification is only concerned with input and output signals from the system, it takes
less time than physical modeling [1].

The system identification problem is based on proposing an approximated model of a real system. Control
theory has many techniques to solve this problem [1-3]: Laguerre functions, the recursive least squares (RLS)

method, the autoregressive exogenous (ARX) method, etc. Recently, other techniques based on computational

intelligence (artificial neural networks, evolutionary programming, etc.) have been used [4-7]. The most common
existing system identification approaches, such as the RLS and ARX methods, are substantially analytical and
based on mathematical derivation of the system’s model. Evolutionary computation, which seems to be a very
promising approach, is an alternative to these methods because it does not require any derivative information,
contrary to the conventional gradient-based methods. Furthermore, a little knowledge about the problem is
sufficient in this approach and it can be easily combined with many other techniques from artificial intelligence,
control engineering, machine learning, and so on. The artificial bee colony (ABC) algorithm is a search tool
based on the idea of searching for food sources in nature. The ABC algorithm has been used successfully to solve
many problems and has been applied to constrained and unconstrained single objective function optimizations
[8-20]. If the task of system identification is to estimate the parameters of a system, the ABC algorithm searches
for these parameters from a specified range. In this paper, a method to estimate the parameters of dynamic
systems based on the ABC algorithm using input-output data is proposed. This method guides the evolution of
a function toward an input-output mapping of the system. The various simulation examples of linear dynamic
systems identified by the proposed method are demonstrated. As a more realistic example, the proposed method
is applied to estimate DC motor parameters [21-23] in order to show the performance of the ABC algorithm.

In this paper, the parameters of different linear single input-single output (SISO) plants and a DC motor
are estimated using the ABC algorithm. The paper is organized as follows. The principle of the ABC algorithm
is introduced in Section 2. Linear system identification is outlined in Section 3. Application of the ABC
algorithm in system identification is introduced in Section 4. In Section 5, the simulation results of numerical
examples for different order linear plants and a DC motor using the ABC algorithm are reported in order to
illustrate the performance of the proposed method. Finally, the conclusions are given in Section 6.

2. The ABC algorithm

A basic model of foraging behavior of a honeybee colony was developed based on reaction-diffusion equations
by Tereshko [24]. This model mimics the behavior of the collective intelligence of honeybee swarms. It includes

3 essential components, food sources, employed foragers, and unemployed foragers [24]. A forager bee identifies
the quality of a food source, such as the taste of its nectar, nearness to the hive, efficiency of the energy,
and the ease or difficulty of extracting this energy, in order to choose a food source. An employed forager
serves as an information carrier from a specific food source to other bees waiting in the hive. The information
contains the distance between the hive and the food source, the direction, and the cost of the food source. An
unemployed forager is a forager bee looking for a food source to exploit. It can be a scout who searches the
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environment arbitrarily or an onlooker who attempts to find a food source through the information transported
by an employed bee [24].

The main steps of the ABC algorithm are given below [11-13]:

1. Generate the population of solutions (positions of food sources) randomly x i , i = 1. . .SN

2. Evaluate the generated population

3. Cycle = 1

4. Repeat

5. Produce new solutions υ i for the employed bees using Eq. (2) and evaluate them

6. Apply the greedy selection process

7. Calculate the probability values p i for the solutions x i by Eq (1)

8. Produce the new solutions υ i for the onlookers from the solutions x i selected depending on p i and
evaluate them

9. Apply the greedy selection process

10. Determine the abandoned solution for the scout and replace it with a new randomly produced solution
x i by Eq. (3)

11. Record the best solution achieved so far

12. Cycle = cycle + 1

13. Until cycle = maximum cycle number

In the ABC algorithm, there are 3 flocks of bees: onlooker, employed, and scout bees. A colony consists of
the onlooker bees plus the employed bees. If an employed bee abandons its food source, it becomes a scout bee.
The number of solutions (population) to a problem is equal to the number of onlooker bees or employed bees.
A possible solution to the optimization problem is presented by the position of a food source, and the quality
(fitness) is measured with the amount of nectar of the associated food source. The number of food sources equals

the number of employed bees. At the first step, the initial population P (G = 0) of SN solutions (food source

positions) is generated randomly by the ABC algorithm. SN denotes the size of the population. Each solution

xi (i = 1, 2, ..., SN) is presented using a D -dimensional vector. Here, D denotes the number of optimization
parameters. After initialization of the population, the employed, onlooker, and scout bees repeatedly search
for all of the food sources during a predetermined number of iterations denoted by the cycle (cycle = 1, 2, ...

, MCN). First, an employed bee starts a neighborhood search depending on the local information, and then
it evaluates the nectar amount of the new food source, which corresponds to the fitness value. This fitness
value is the only knowledge used to solve an optimization problem, as in other population-based optimization
algorithms. If the position of the new food source is better than the previous one, it replaces it; otherwise, the
position of the previous one is kept. After the search process is completely finished by all of the employed bees,
they transport the nectar and position information of the food sources to the hive. The employed bees then
share all of this information with the onlooker bees in the dance area of the hive. An onlooker bee evaluates
the nectar information obtained from the employed bees and then it chooses a food source using a selection
probability related to its nectar amount [11-13].

After an onlooker bee takes all of the information about the food sources from the employed bees, an
onlooker bee selects a food source according to the selection probability value associated with that food source.
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The selection probability pi is computed as follows [11-13]:

pi =
fiti

SN∑
i=1

fiti

, (1)

where fit i is the fitness value of the ith solution, which is proportional to the nectar amount of the food source
in the position i . SN is the number of solutions (the size of the population), which is equal to the number of
employed bees or the number of onlooker bees.

To create a new food position from the old one selected by the onlooker bee, depending on the probability
given in Eq. (1), the ABC algorithm uses the following expression [11-13]:

vij = xij + Φij(xij − xkj), (2)

where i , k {1, 2,..., SN}, and j {1, 2,..., D}. The index k is determined randomly, but it has to be different

from i . The parameter ij is an independent and identically distributed (i.i.d.) uniform random number obtained

by a random number generator with a different seed in each case and is chosen in the range [–1, 1]. A bee

compares 2 food locations visually using this parameter. As seen from Eq. (2), as long as the change between
the positions of xij and xkj diminishes, the perturbation on the position xij decreases. Therefore, the search
comes close to an optimum solution in the search space.

The scout bees replace new food sources, which are produced randomly in their dynamic ranges, with
the ones that the employed bees abandon. In the ABC algorithm, during a predetermined number of cycles, if
a position cannot be improved further, then that food source is thought to be abandoned. Here, since only 1
source is abandoned in each cycle, 1 employed bee becomes a scout bee. The parameter’s so-called “limit” is an
important one for abandonment, which is the value of a predetermined number of cycles [25]. If the abandoned

source is xi and j {1, 2,..., D}, then a new food source is determined by the scout bee and it is replaced with

xi . The new food source position is given as [11-13]:

xj
i = xj

min + rand(0, 1)(xj
max − xj

min), (3)

where xj
min and xj

max denote the lower and upper boundary values of the food source position, respectively.

After the ABC algorithm produces and then evaluates each candidate source position vij , its performance

is compared with that of its old one. If the nectar amount of the new food source is equal to or better than the
old one, it replaces the old one; otherwise, the old one is retained. This procedure is called a greedy selection. In
the ABC algorithm, there are 3 control parameters: the number of food sources, which is equal to the number
of employed or onlooker bees (SN ); the value of the limit, and the maximum cycle number (MCN ). In a robust
search process, exploration and exploitation processes have to be performed together in such a manner that
a trade-off between them must be considered. In the ABC algorithm, the scout bees control the exploration
process, while onlooker and employed bees carry out the exploitation process in the search space [11-13]. Before
applying the ABC algorithm in the identification of dynamic systems, the linear system identification process
will be outlined in the next section.
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3. Linear system identification

A linear time-invariant (LTI) discrete-time system is defined using the following linear equations in vector-matrix
form:

X(k + 1) = AX(k) + BU(k), (4)

Y(k) = CX(k) + DU(k), (5)

where the coefficients A, B , C , and D are properly dimensioned matrices. The notation k represents the time
index. U(k) is the input vector, Y(k) is the output vector, and X(k) is the state vector:

U(k) =

⎡
⎢⎢⎢⎣

u1(k)
u2(k)
...
ur(k)

⎤
⎥⎥⎥⎦ , Y(k) =

⎡
⎢⎢⎢⎣

y1(k)
y2(k)
...
yp(k)

⎤
⎥⎥⎥⎦ , X(k) =

⎡
⎢⎢⎢⎣

x1(k)
x2(k)
...
xn(k)

⎤
⎥⎥⎥⎦ . (6)

In system identification, the main task is to find a suitable model structure of a system with unknown parameters,
given some prior knowledge about the system and input-output observations. Employing the ABC algorithm for
identification, one can exploit its ability to learn the system behavior and its requirement of a reduced amount
of knowledge, such as observed input-output data and order of the system. The proposed method approximates
the system using the observed input-output data pairs and order of the system. In its estimating process, since
the identification model is parallel to the system being identified, both get the same external input U(k). For

the same input, the output of the model Ŷ(k) is compared with the output of the system Y(k) . Therefore, the

error signal e(k) is produced by the difference between the output of the identification model and the output

of the system in the following way [26,27]:

e(k) = Y(k) − Ŷ(k). (7)

3.1. Applying the ABC algorithm in systems identification

A discrete-time signal is a sequence:

u = {u (0) , u (1) , . . . , u (k) , . . .} and y = {y(0), y (1) , . . . , y (k) , . . .} . (8)

For a SISO system of order n , the causal LTI system’s difference equation can be written as follows:

y [k] = −β1y [k − 1] − β2y [k − 2] − · · · − βmy [k − m]
+α0u [k] + α1u [k − 1] + α2u [k − 2] + · · ·+ αnu [k − n] , n ≤ m,

(9)

where β 1 , β 2 , ... β m, α 0 , α 1, ... α n are the system parameters. Applying the Z-transform to Eq. (9), we

can obtain the following equation:

(
1 + β1z

−1 + · · ·+ βmz−m
)
Y

(z) = (α0 + α1z
−1 + · · ·+ αnz−n)U (z), n ≤ m. (10)

Hence, the transfer function, G(z), can be defined as:

G (z) =
Y (z)
U (z)

, (11)
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or:
G (z) =

(
α0 + α1z

−1 + · · ·+ αnz−n
)/(

1 + β1z
−1 + · · ·+ βmz−m

)
, n ≤ m. (12)

The concept of a transfer function can be extended to a linear system having p inputs and r outputs, in which
case a transfer function matrix, G(z), is defined. It has the dimensions of r × p. In the identification problem,

the parameters in each element of the matrix G(z)need to be found. The signal y(k) can be constructed by
iterative computation, given the input signal and initial conditions. After a discrete system transfer function has
been formed, the linear system equation is written as input and output form. The initial conditions are set to 0.
The measured input-output data are used for parameter estimation. At the beginning of parameter estimation,
the input and output data are known and the real system parameters are assumed as unknown. Using initial
conditions and obtained real system data, system parameters are estimated with the ABC algorithm. The error
between real system output and estimated system output is defined as an error function. The estimation of
the system parameters is achieved as a result of minimizing the error function by the ABC algorithm. The
sum-squared error function is used here as an error criterion [28-30]:

J =
1
2

∑
k

e(k)2 , (13)

where J is the measure of the error. For one training epoch, the root-mean-square error (RMSE ) is represented
as follows:

RMSE =

√√√√√
r∑

k=1

e(k)2

r
, (14)

where r represents the number of data.
The ABC algorithm search is based on the well-known Jury stability criterion within the stability

boundary for parameter estimation [31]. The roots of a transfer function in the z-plane should be located

inside the unit circle |z| ≤ 1 for stability. A zero-order hold element for discretization is used.

4. Simulation results and discussions

In this study, 2 main examples are utilized in order to illustrate the efficiency of the proposed algorithm: the
ABC algorithm in systems identification for comparing different linear SISO plants with different orders, and
the ABC algorithm in systems identification for a DC motor. Here, there are 4 control parameters in the
ABC algorithm: the 1st parameter is the number of food sources, which is equal to the number of employed
or onlooker bees (SN); the 2nd is the number of parameters of the problem to be estimated (D); the 3rd is

the value of the limit parameter (limit); and the 4th is the MCN. The value of the limit is generally chosen as

SN ×D [12,32]. In the ABC algorithm, the values of the control parameters were chosen as SN = 10, MCN =
500 for the 1st order and DC motor plant and as SN = 25, MCN = 2000 for the 3rd, 5th, and 7th order plants.

4.1. The ABC algorithm in systems identification for different linear SISO plants

with different orders

The system identification algorithm looks for the parameters to be estimated to satisfy the desired real system
parameters by the cost function computed using the RMSE at the each iteration. For estimation of the
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parameters, 4 different linear SISO processes with different order are used, as follows:

G1(s) =
3

30s + 1
, (15)

G2(s) =
750

s3 + 36s3 + 205s + 750
, (16)

G3(s) =
−6.35× 10−6s4+4.933× 10−5s3+2812s2+1.172× 104s + 1.953× 104

s5+32.5s4+475s3+3625s2+1.422× 104s + 1.914× 104 , (17)

G4(s) =
Y4(s)
U4(s)

, (18)

where:
Y4(s) = 1.435× 10−5s6+6.232× 10−6s5+8.882× 10−5s4

−1.699× 10−5s3+1.671× 10−4s2+17.98s− 17.98,
U4(s) = s7+5.234s6+19.7s5+45.92s4+76.52s3

+84.09s2+57.11s + 17.98.

The transfer functions of the 1st (sampling time = 1.0 s), 3rd (sampling time = 0.1 s), 5th (sampling time =

0.1 s), and 7th (sampling time = 1.0 s) orders are given in the z-domain as:

G1(z) =
0.098352

z−0.967216
, (19)

G2(z) =
0.057176z2 + 0.107891z + 0.009899

z3−1.414464z2 + 0.616755z − 0.027324
, (20)

G3(z) =
0.225545z4 + 0.071233z3 − 0.490390z2 + 0.197875z + 0.035971

z5−2.380647z4 + 2.335256z3 − 1.204551z2 + 0.328146z − 0.038774
, (21)

G4(z) =
Y4(z)
U4(z)

, (22)

where:
Y4(z) = 0.008550z6 + 0.102751z5 − 0.123576z4 − 0.502080z3

−0.248905z2 − 0.026393z − 0.000277,
U4(z) = z7 − 0.363682z6 + 0.257812z5 − 0.166412z4+0.096288z3

−0.047987z2 + 0.019244z − 0.005333.

The difference equations of the systems are as follows:

y1 [k] = 0.967216y1 [k − 1] + 0.098352u1 [k − 1] , (23)

y2 [k] = 1.414464y2 [k − 1]− 0.616755y2 [k − 2] + 0.027324y2 [k − 3]
+0.057176u2 [k − 1] + 0.107891u2 [k − 2] + 0.009899u2 [k − 3] , (24)

y3 [k] = 2.380647y3 [k − 1]− 2.335256y3 [k − 2] + 1.204551y3 [k − 3]
−0.328146y3 [k − 4] + 0.038774y3 [k − 5] + 0.225545u3 [k − 1]
+0.071233u3 [k − 2] − 0.490390u3 [k − 3] + 0.197875u3 [k − 4]
+0.035971u3 [k − 5] ,

(25)
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y4 [k] = 0.363682y4 [k − 1]− 0.257812y4 [k − 2] + 0.166412y4 [k − 3]
−0.096288y4 [k − 4] + 0.047987y4 [k − 5]− 0.019244y4 [k − 6]
+0.005333y4 [k − 7] + 0.008550u4 [k − 1] + 0.102751u4 [k − 2]
−0.123576u4 [k − 3] − 0.502080u4 [k − 4] − 0.248905u4 [k − 5]
−0.026393u4 [k − 6] − 0.000277u4 [k − 7] .

(26)

A training set consisting of 400 data for the 1st order and 2000 data for the 3rd, 5th, and 7th order plants is
obtained using a random input, whose amplitude is uniformly distributed in the interval [–2.0, 2.0] for 0 initial
conditions. To avoid a similar particular solution, all of the parameters to be estimated are initialized randomly
over the range [–10.0, 10.0]. The proposed algorithm is run 10 times for each plant. For all of the plants,
each parameter is estimated and the simulation results are presented in Table 1. The results in Table 1 were
found using 10 employed bees for the 1st order and 25 employed bees for the 3rd, 5th, and 7th order plants,
respectively.

Table 1. Simulation results of the estimated different order linear SISO processes.

Plant Parameters Real system Estimated system (by the ABC algorithm)

G1(s)
β1 0.967216 0.967216
α0 0.098352 0.098352

G2(s)

β1 1.414464 1.114346
β2 –0.616755 –0.188177
β3 0.027324 –0.151084
α0 0.057176 0.057323
α1 0.107891 0.124714
α2 0.009899 0.042447

G3(s)

β1 2.380647 1.305520
β2 –2.335256 –0.984349
β3 1.204551 0.283957
β4 –0.328146 –0.043367
β5 0.038774 –0.034219
α0 0.225545 0.225264
α1 0.071233 0.313395
α2 –0.490390 –0.140650
α3 0.197875 0.047479
α4 0.035971 0.033275

G4(s)

β1 0.363682 0.260398
β2 –0.257812 –0.497459
β3 0.166412 0.169752
β4 –0.096288 –0.060764
β5 0.047987 0.012406
β6 –0.019244 0.004800
β7 0.005333 –0.005562
α0 0.008550 0.008500
α1 0.102751 0.103899
α2 –0.123576 –0.110693
α3 –0.502080 –0.485597
α4 –0.248905 –0.327795
α5 –0.026393 –0.207619
α6 –0.000277 –0.094800
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The performance of the ABC algorithm was tested with the unit step input as well as the following input
sequence consisting of mixtures of sinusoids and constant signals:

u(k) = sin(πk/25), k < 250
= 1.0, 250 ≤ k < 500
= −1.0, 500 ≤ k < 750
= 0.3 sin(πk/25) + 0.1 sin(πk/32) + 0.6 sin(πk/10), 750 ≤ k < 1000.

(27)

Responses of G1(s), G2(s), G3(s), and G4(s)are shown in Figures 1-4. The step responses of G1(s), G2(s),

G3(s), and G4(s), plotted with the best values of the parameters estimated by the ABC algorithm in 10 runs,

are shown in Figures 1a, 2a, 3a, and 4a, respectively. The sinusoidal input responses of G1(s), G2(s), G3(s),

and G4(s), plotted with the best values of the parameters estimated by the ABC algorithm in 10 runs, are
shown in Figures 1b, 2b, 3b, and 4b, respectively.
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Figure 1. Responses of plant G1(s) : a) step responses and b) sinusoidal responses.
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Figure 2. Responses of plant G2(s) : a) step responses and b) sinusoidal responses.
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Figure 3. Responses of plant G3(s) : a) step responses and b) sinusoidal responses.
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Figure 4. Responses of plant G4(s) : a) step responses and b) sinusoidal responses.

The RMSE values for the unit step input and sinusoidal input are presented in Table 2. The results show
that the value of the RMSE is quite small. The ABC algorithm showed satisfactory performance.

Table 2. RMSE for different order linear plants.

Plant
RMSE for step RMSE for
response input sinusoidal input

G1(s) 0.0 0.0
G2(s) 0.0019 0.0027
G3(s) 0.0104 0.0345
G4(s) 0.0021 0.0017

4.2. The ABC algorithm in systems identification for a DC motor

An identification method is presented here for a DC motor. A simplified mathematical model of the DC motor
was used in order to build the DC motor’s transfer function. There are differential equations of the electrical
part and mechanical part of the DC motor model, and an interconnection also exists between them.

Using a simplified equivalent electromechanical diagram of the DC motor, illustrated in Figure 5, the
differential mathematical model is written as [21]:

Ua(t) = Raia(t) + La
dia(t)

dt
+ ev(t), (28)

e(t) = KeΩ(t), (29)

Cm(t) = Kmia(t), (30)

Cm(t) = J
dΩ(t)

dt
+ BΩ(t), (31)

where Cm denotes the motor torque (Nm), Ia denotes the rotor circuit current (A), Ke denotes the electrical

constant, Km denotes the mechanical constant, La denotes the rotor circuit inductance (H), Ra denotes the

rotor circuit resistance (ohm), Ua denotes the input voltage (V), B denotes the damping ratio (Nms), ev

denotes the electromotive voltage (V), J denotes the rotor moment of the inertia (kg m2), and Ω denotes the

rotor speed (rad/s).
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ERÇİN, ÇOBAN: Identification of linear dynamic systems using the artificial bee...,

ev(t)

ia(t)
Ra La

ua(t)

�(t)

M

Figure 5. A DC motor equivalent circuit.

The transfer function of the speed model is obtained to allow the control of speed by the voltage input
from the characteristic equations of the DC motor model. It is given by:

Ω(s)
Ua(s)

=
Km

LaJs2 + (RaJ + LaB)s + (RaB + KeKm)
. (32)

This transfer function makes it possible to simulate motor behavior to various inputs. The specifications of the
motor used for simulation are given in Table 3. The DC motor transfer function in the s-domain is given by:

GDC MOTOR(s) =
0.1433

5.2× 10−7s2 + 2.172× 10−4s + 0.0227
. (33)

The discrete time transfer function of the DC motor model of the 2nd order (sampling time = 0.001 s) is given
by:

GDC MOTOR(z) =
0.12z + 0.1044

z2 − 1.623z + 0.6586
. (34)

Its difference equation is given by:

y [k] = 1.623y [k − 1] − 0.6586y [k − 2] + 0.12u [k − 1] + 0.1044u [k − 2] . (35)

A training set consisting of 400 data is obtained using a random input, whose amplitude is uniformly distributed
in the interval [–2.0, 2.0] for 0 initial conditions. Simulations are carried out using employed or onlooker bees,
SN = 10, with the maximum cycle number of MCN = 500 for the DC motor. To avoid a similar particular
solution, all of the parameters are initialized randomly over the range [–10.0, 10.0]. The proposed algorithm is
run 10 times for DC motor parameter estimation.

Table 3. Parameters of the motor [23].

Parameters Value
Armature circuit resistance (Ra) 21.2 ohm
Armature circuit inductance (La) 0.052 H

Back EMF constant (Km) 0.1433 kg m/A
Coefficient of friction (B) 1 × 10−4 Nms

Moment of inertia (J) 1 × 10−5 kg m2

Torque constant (Ke) 0.1433 V/(rad/s)
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The plant given in Eq. (33) is tested with a unit step input as well as the input sequence consisting

of mixtures of sinusoids and constant signals given in Eq. (27), to show the effectiveness and performance of
the proposed method. A comparative graph of the actual and simulated dynamic responses with the identified
parameters is illustrated in Figure 6, which shows a considerable agreement between the actual and identified
plant responses using the estimated parameters. The real and estimated parameters of the DC motor are given
in Table 4. The RMSE values for the step and sinusoidal inputs are given in Table 5.
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Figure 6. Response of the DC motor: a) step response and b) sinusoidal response.

Table 4. The real and estimated parameters of the DC motor.

Plant Parameters Real system
Estimated system

(by the ABC algorithm)

GDC MOTOR(s)

β1 1.6230 1.5940
β2 –0.6586 –0.6332
α0 0.1200 0.0101
α1 0.1044 0.2343

Table 5. RMSE for the DC motor.

Plant
RMSE for RMSE for

unit step input sinusoidal input
GDC MOTOR(s) 0.0722 0.0844

5. Conclusion

In this paper, a novel parameter estimation method for linear system identification based on the ABC algorithm
was developed. The ABC algorithm has been shown to be versatile when applied to parameter estimation,
without requiring a detailed mathematical representation of the identification problem. The unit step and
sinusoidal response performance of the ABC algorithm was tested with several orders of linear plants for system
identification. It is well known that the ABC algorithm has good results in solving numerical optimization
problems. Thus, the effectiveness of system identification using the ABC algorithm was researched and a
satisfactory performance was obtained. The proposed method was also applied to estimate the parameters of
a DC motor commonly used in industry. The proposed method was flexible and applicable in a wide range of
optimization and identification problems. The simulation results show that the proposed method achieved a
minimum tracking error and estimated the parameter values with high accuracy. Due to the fact that some
stability criteria were taken into account in the system parameters estimation, the proposed method can thus
be regarded as a general parameter estimation method that can be applied to a wide range of linear plant
identification problems.

1186
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