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Abstract

Stabilization using fixed-order controllers is one of the key topics in control system design for the linear

time-invariant (LTI) systems. In this paper, the stabilization of LTI neutral and retarded time-delay systems

by means of PI and PID controllers is investigated in detail. The basic theme of the presented approach is

to obtain a global stability region in the 2-dimensional (2-D) (kp , k i)-plane for the PI controller and in the

3-dimensional (3-D) (kp , k i , kd)-space for the PID controllers. This region is formed by stability boundaries

that are defined as the real root boundary, infinite root boundary, and complex root boundary. The 3-D global

stability region for the PID case is made up of the set of 2-D stability regions that are obtained in the (kp ,

k i)-plane, (kp , kd)-plane, or (k i , kd)-plane by changing the other third parameter. To achieve this, the

stability boundary locus approach is incorporated into the D-decomposition method. Thus, the complete set

of stabilizing PI and PID controllers for the system is obtained. The simulation results indicate that the

presented stabilization method is effective and practically useful in the analysis and control of the neutral and

retarded time-delay systems.
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1. Introduction

Delay differential equations are often preferred for the modeling of real plants, including the delay effect to the
classical system description given by the ordinary differential equations [1]. Systems represented by a set of
delay differential equations are called time-delay systems. In general, the time-delay systems can be grouped
into 2 classes. One uses the system model with time delay in the control input. The other utilizes the system
model with time delay in the state [2]. Studies on stability analysis and control of the first type of systems have

been widely investigated in the last 3 decades [3,4]. However, the second class of time-delay systems, which is
categorized into neutral systems and retarded systems, has been less studied than the first type in the literature
[5]. Many time-delay systems that can be modeled by neutral and retarded differential equations are used in
various disciplines, including lumped parameter networks interconnected by transmission lines, turbojet engine
systems, the industrial systems containing steam lines, and some chemical reactors [6-8]. In recent years, some
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studies related to the control of neutral and retarded time-delay systems that are based on modern control
techniques such as the pole-placement method [9], linear-quadratic regulator control [10], and sliding mode

control [11] have been reported in the literature. However, the control of neutral and retarded systems using

simple and fixed-order controllers like first-order, proportional-integral (PI), and proportional-integral-derivative

(PID) controllers is not prevalent.

It is surely beyond doubt that the PI and PID controllers are the most ubiquitous controllers used
by control system designers due to the simplicity of their structures and facility in their implementations [4].

Theoretical research on these controllers was initiated in the mid-1900s after the works of Ziegler and Nichols [12].
Since then, an extensive amount of studies have been conducted in the fields of tuning methods, identification
rules, and stabilization techniques [2,4,13]. In the stabilization area, the main purpose is to determine all of the

stabilizing PI or PID controller values for the plant, as in the Youla parameterization [14]. Many stabilization

algorithms using these controllers for the linear time-invariant (LTI) time-delay systems have been presented

in the literature. For instance, Datta et al. [15] proposed a method using the extension of the Hermite-Biehler

theorem applicable to quasipolynomials. Bajcinca [16] used the parameter space approach [17] based on the
singular frequencies concept. The stability boundary locus method, which obtains a stability region using
graphical relations in the parameter space, was presented by Tan [18]. The fractional-order PID stabilization

of the integer and fractional-order systems with time delay was reported in [19] and [20] using Neimark’s D-

decomposition method [21]. However, the PI and PID stabilization processes taken into account in all of these
cases deal entirely with systems with a single time delay in the control input or measurement output. For the
neutral and retarded time-delay systems, stabilization using PI and PID controllers is an open problem, since
these systems include a state delay and therefore have complicated system structures whose dynamics are also
affected by past states. To the best of the author’s knowledge, only 2 PI and PID stabilization studies in relation
to H∞ stability are available in the literature [22,23], but no studies are found concerning asymptotic stability.
The formulation and simulations presented for neutral and retarded systems in this paper are intended to fill
this gap.

In this paper, a practical algorithm for the solution to the question of determining all PI controllers that
stabilize a neutral or a retarded system is introduced. This algorithm presents a method that determines the
global stability region in the (kp , ki)-plane using stability boundaries so that all of the controller parameters

within this region stabilize the given plant. For stability boundaries, analytical and straightforward expressions
are derived using the results of the D-decomposition method [21]. Furthermore, an enhancement of the presented
approach to the case of PID stabilization is also provided. The global stability region enclosing all of the
stabilizing values of the PID parameters for a given plant is obtained in the (kp , ki , kd)-space. There are 3

ways to determine the 3-dimensional (3-D) stability region: 1) a set of 2-dimensional (2-D) stability regions

obtained by changing kd in the (kp , ki) plane, 2) a set of 2-D stability regions obtained by changing ki in the

(kp , kd) plane, and 3) a set of 2-D stability regions obtained by changing kp in the (ki , kd) plane. The first 2
ways are possible in the D-decomposition method while the last is impossible, as will be clarified in Section 5.
Therefore, the stability boundary locus method [18] and the D-decomposition method were combined for this

case. Hence, a set of convex stability regions were obtained by changing kp in the (ki , kd) plane graphically.
The advantage of this approach is that investigating the stability range of proportional gain with complex
calculations as in the Hermite-Biehler method is not required, nor is it necessary to compute the singular
frequencies for the proportional gain, as in the parameter space approach. The algorithm offered in this study
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is important because it can be applied to the stabilization of neutral and retarded systems with parametric
uncertainties.

2. Fundamentals of neutral and retarded time-delay systems

Time-delay systems with state delay belong to the class of infinite dimensional systems [1]. Following the

classification given by Cooke [24] for these systems, we may have the systems of neutral type, advanced argument

type, or delayed argument type (also known as the retarded case) [3]. Since the advanced argument case has

no practical significance (no causality), the present study focuses only on the neutral and retarded cases.

Definition 2.1. A LTI neutral time-delay system (NTDS) is defined by state-space equations with a delayed
state vector and the derivative of the delayed state vector. Consider the state-space representation of the single-
input, single-output NTDS given as the following expression:

ẋ(t) = Ax(t) + A1x(t − τ ) + A2ẋ(t − τ ) + Bu(t)

y(t) = Cx(t), (1)

where x(t) ∈ Rn denotes the state vector while u(t) ∈ R and y(t) ∈ R are the control input and output variables,

respectively. In addition, A , A1 , A2 ∈ Rnxn , B ∈ Rnx1 , and C ∈ R1xn are the known constant matrices, and

τ ∈ R+ is the state delay.

The transfer function of the NTDS given in Eq. (1) can be obtained as:

G(s) =
Y (s)
U(s)

= C(sI − A − A1e
−τs − A2se

−τs)−1B. (2)

Definition 2.2. A LTI retarded time-delay system (RTDS) is described by the state-space representation
including only the term of the delayed state vector. The state-space equations of the RTDS have the general
form:

ẋ(t) = Ax(t) + A1x(t − τ ) + Bu(t),

y(t) = Cx(t). (3)

Note that the RTDS is a simple subclass of the NTDS for A2 = 0 in Eq. (1). The transfer function of the
RTDS is given in the form:

G(s) =
Y (s)
U(s)

= C(sI − A − A1e
−τs)−1B. (4)

By making the matrix operations in Eq. (2), the transfer function of the NTDS can be transformed to a rational
transfer function form as:

G(s) =
N(s)
D(s)

=

n−1∑
i=0

n−1∑
k=0

biksie−kτs

n∑
i=0

n∑
k=0

aiksie−kτs

, (5)
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where aik and bik are the arbitrary real constants. In Eq. (5), N(s) and D(s) are the quasipolynomials, which

have no common factors in {Re s ≥ 0} \ {0}. If some coefficients in Eq. (5) are 0, as follows:

bi(n−1+k−i) = 0; for i = 1 ∼ (n − 1) and k = 1 ∼ i
ai(n+k−i) = 0; for i = 1 ∼ n and k = 1 ∼ i

(6)

a rational transfer function for the RTDS is obtained. It follows from Eqs. (5) and (6) that the analysis and
control of the neutral systems are more difficult than those of the retarded systems.

There are important differences between the pole distributions of the neutral and retarded time-delay
systems. For the retarded system, the number of poles that are arranged to the right of the vertical stripe drawn
in any real α is always limited, as seen in [25]. The poles of the RTDS are usually located as a finite number
of pole sequences asymptotically departing to the upper-left direction from the origin. For the neutral systems,
the poles of the system are arranged within the stripes drawn in some specific real α and β . The poles of the
NTDS are also located as a finite number of asymptotic sequences. In spite of these differences in their pole
distributions, the stability for the NTDS and RTDS is equivalent to the condition that all of the poles of the
transfer function in Eq. (5) lie in the open left half plane (LHP) of the complex plane [2]. Interested readers

may refer to [1] for details of the pole distributions and the stability issues of the NTDS and RTDS.

3. D-decomposition method from the viewpoint of control theory

Consider a characteristic polynomial of a closed-loop system including n real-valued unknown controller pa-
rameters:

P (s; x1, x2, ...xn) = P0(s) +
n∑

i=1

Pi(s)xi = P0(s) + P1(s)x1 + ..... + Pn−1(s)xn−1 + Pn(s)xn, (7)

where P0(s) and Pi(s) are simple polynomials. The aim is to find the unknown controller parameters x1 ,
x2 ,. . . ., xn , which make the closed loop system asymptotically stable. There is such a stability domain S in
the parameter space that for any point (x1 , x2 ,. . . ., xn) ∈ S , the characteristic equation P (s; x1, x2, ...xn) has
only LHP roots. The other domains have the instability property such that at least one root is in the right half
plane (RHP). Hence, finding the stability domain is a significant job for the controller design. This method is

called the D-decomposition method, which was proposed by Neimark [21]. The D-decomposition method is a

powerful graphical technique for stability analysis and design of control systems [19,26].

Accordingly, as a root passes the imaginary axis at the origin, infinity, or any location, 3 different types of
stability boundaries isolating the stability region from the instability regions can be described as follows [17,19]:

- Real root boundary (RRB): If any real root passes through the origin, this boundary occurs. The

equation of the RRB is determined by P (s; x1, x2, ...xn)|s=0 = 0.

- Infinite root boundary (IRB): If any real root passes the vertical axis of the s-plane at s = ∞ , this

boundary is formed. The equation of IRB is found by P (s; x1, x2, ...xn)|s=∞ = 0 for Eq. (7). In this case, the

characteristic polynomial has a degree drop; that is, the largest coefficient of the polynomial is equal to 0.

- Complex root boundary (CRB): This boundary takes place in the parameter space when any pair of
complex roots passes the vertical axis of the s-plane at s = jω . In this case, the real and imaginary parts of
Eq. (7) are equal to 0, i.e. P (s; x1, x2, ...xn)|s=∓jω = 0.
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Using these boundaries, the imaginary axis in the complex plane is mapped into parameter space P . This
mapping decomposes the parameter space into root invariant areas. All of the points (x1 , x2 ,. . . ., xn) in a root
invariant area result in a fixed number of stable and unstable control system poles. If an area does not include
any RHP poles, then stabilizing controllers exist for the plant being considered. If no such area exists, then it
is not possible to stabilize the given plant [27,28]. This is the basic idea of the D-decomposition approach.

4. Stabilization using a PI controller

Consider the block diagram of the stabilization problem shown in Figure 1. Here, G(s) is the plant given in

Eq. (5) and C(s) is a PI controller denoted by:

C(s) = kp +
ki

s
=

kps + ki

s
. (8)

e y r 

_� plant 

u 
C (s)

  
controller 

  
G (s)

  

Figure 1. Block diagram of the stabilization problem.

Let y denote the output of the control system in Figure 1 defined as:

y =
G(s)C(s)

1 + G(s)C(s)
r, (9)

where r is the reference input.

Definition 4.1. The denominator of Eq. (9) is always a quasipolynomial since it includes terms with time delay.
Therefore, the characteristic equation of the closed-loop system is defined as the transcendental characteristic
equation (TCE). A general form of the TCE for the NTDS and RTDS is represented by:

P (s) = 1 + G(s)C(s) =
n∑

i=0

n∑
k=0

piksie−kτs (10)

= (p00 + p10s + ... + pn0s
n) + (p01 + p11s + ... + pn1s

n)e−τs + ... + (p0n + p1ns + ... + pnnsn)e−nτs,

where pik are the real coefficients.

Putting Eqs. (5) and (8) into Eq. (10), the TCE of the closed-loop system becomes:

P (s; kp, ki) = sD(s) + (kps + ki)N(s) =
n∑

i=0

n∑
k=0

aiksi+1e−kτs +
n−1∑
i=0

n−1∑
k=0

[
bik

(
kps

i+1 + kis
i
)
e−kτs

]
. (11)

For the PI controller parameters kp and ki , the closed-loop system is said to be asymptotically stable if the

characteristic equation P (s; kp, ki) has no roots in the RHP of the complex plane.

By applying the descriptions in Section 3 to the TCE in Eq. (11), the RRB is determined as a line:

ki = 0. (12)
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Because the order of the denominator is larger than that of the numerator in the G(s)C(s) transfer
function, the IRB for the PI case does not exist. This can also be seen by equating the coefficient of the largest
order of the TCE in Eq. (11) to 0.

For the construction of the CRB, we substitute s = jω into Eq. (11) and equate it to 0 to obtain:

P (ω; kp, ki) =
n∑

i=0

n∑
k=0

aik(jω)i+1e−jωkτ +
n−1∑
i=0

n−1∑
k=0

[
bik

(
kp(jω)i+1 + kibik(jω)i

)
e−jωkτ

]
= 0, (13)

which is equivalent to:

n∑
i=0

n∑
k=0

aikji+1ωi+1(cos kτω − jsinkτω) +
n−1∑
i=0

n−1∑
k=0

[
bik

(
kpj

i+1ωi+1 + kibikjiωi
)
(cos kτω − jsinkτω)

]
= 0.

(14)

The terms ji and ji+1 can be stated by the following ordinary complex numbers:

ji = cos i
π

2
+ j sin i

π

2
= xi + jyi, (15)

ji+1 = cos(i + 1)
π

2
+ j sin(i + 1)

π

2
= zi + jti. (16)

Hence, P (ω; kp, ki)in Eq. (13) can be written as:

n∑
i=0

n∑
k=0

aik(zi + jti)ωi+1(cos kτω − jsinkτω)

+
n−1∑
i=0

n−1∑
k=0

[
bik

(
kp(zi + jti)ωi+1 + ki(xi + jyi)ωi

)
(cos kτω − jsinkτω)

]
= �{P (ω; kp, ki)} + j�{P (ω; kp, ki)} = 0, (17)

where �{P (ω; kp, ki)} and �{P (ω; kp, ki)} are the real and imaginary parts of Eq. (17), respectively. By
equating the real and imaginary parts to 0, we obtain the following 2-D equation set:

kpA(ω) + kiC(ω) = E(ω)

kpB(ω) + kiD(ω) = F (ω)
, (18)

where

A(ω) =
n−1∑
i=0

n−1∑
k=0

bikωi+1 (zi cos kτω + ti sin kτω), (19a)

B(ω) =
n−1∑
i=0

n−1∑
k=0

bikωi+1 (−zi sin kτω + ti cos kτω), (19b)

C(ω) =
n−1∑
i=0

n−1∑
k=0

bikωi (xi cos kτω + yi sin kτω), (19c)
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D(ω) =
n−1∑
i=0

n−1∑
k=0

bikωi (−xi sin kτω + yi cos kτω), (19d)

E(ω) = −
n∑

i=0

n∑
k=0

aikωi+1 (zi cos kτω + ti sin kτω), (19e)

F (ω) = −
n∑

i=0

n∑
k=0

aikωi+1 (−zi sin kτω + ti cos kτω). (19f)

The solution for Eq. (18) is given by:

kp = [D(ω)E(ω) − C(ω)F (ω)]/Δ(ω), (20)

ki = [A(ω)F (ω) − B(ω)E(ω)]/Δ(ω), (21)

where Δ(ω) = A(ω)D(ω)−B(ω)C(ω) . Changing ω from 0 to ∞ in Eqs. (20) and (21), the CRB is constructed

as a curve in the (kp , ki)-plane.

Corollary 4.1. The parameter plane (kp , ki) is partitioned into stable and unstable areas by the RRB and
CRB. The stable areas can be attained by testing any check point in each area. The TCE associated with the
stable area has roots only with negative real parts. In order to test a TCE’s stability, some effective and useful
algorithms reported in [6] and [29] can be used. The area that has the stable TCE is defined as the global stability
region, which includes a set of all stabilizing PI parameters.

To clarify the PI stabilization process presented in this section, the example below is examined.

4.1. Example

Consider the LTI neutral system with the following system matrices:

A =

[
−0.9 0.2

0.1 −0.9

]
, A1 =

[
−1.1 −0.2

−0.1 −1.1

]
, A2 =

[
−0.2 0

0.2 −0.1

]
, (22)

which was examined for stability analysis in [29] and was reported as a system that is asymptotically stable for

τ ≤ 2.225. For the control vector B =
[

1 1
]T and the output vector C =

[
1 0

]
, the transfer function

of the system is obtained as:

G(s) =
(s + 1.1) + (0.1s + 0.9)e−τs

(s2 + 1.8s + 0.79) + (0.3s2 + 2.43s + 2.02)e−τs + (0.02s2 + 0.37s + 1.19)e−2τs
. (23)

In this example, the unstable system case is selected. Therefore, the value of the time delay is taken into account
as τ = 3. The purpose is to get all of the stabilizing PI controllers for the system given in Eq. (23).

In consideration of Eqs. (20) and (21), the CRB equations are determined by:

kp =

(
0.673ω2 + 2.687 + (1.399ω2 + 4.004) cos(3ω) + (0.202ω2 − 0.674)ω sin(3ω)

+(0.348ω2 + 1.309) cos(6ω) + (0.02ω2 − 0.783)ω sin(6ω)

)

−1.01ω2 − 2.02− (0.2ω2 + 1.98) cos(3ω) + 1.58ω sin(3ω)
, (24)
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ki =

(
−1.03ω4 − 3.175ω2 − (0.402ω2 + 2.408)ω2 cos(3ω) + (2.839ω2 + 2.582)ω sin(3ω)

+(−0.02ω2 + 0.783)ω2 cos(6ω) + (0.348ω2 + 1.309)ω sin(6ω)

)

−1.01ω2 − 2.02− (0.2ω2 + 1.99) cos(3ω) + 1.58ω sin(3ω)
. (25)

The RRB line defined in Eq. (12) and the CRB curve obtained depending on ω in Eqs. (24) and (25) are
shown in Figure 2a, where it can be seen that the boundaries decompose the complete parameter plane into
many areas. By taking any check point in any area and applying the stability method presented in [29], the
global stability region, which is illustrated by the colored area in Figure 2, is obtained. The PI controllers
corresponding to the (kp , ki) points in the colored area cause the poles of the closed loop system to be located

completely in the LHP. Figure 2b shows the boundary values of ki when kp is chosen as 0.5. From this, the

TCE is stable for ki ∈ (0, 1.08) ∪ (1.834, 8.107). On a large scale, the CRB curve has a growing helix form
proportional with ω , as shown in Figure 3. In this case, the curve is plotted for a wide range of ω , from 0 to
29.07.

(b)(a)
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ω   = 1.16
ω  = 1.579 and 2.831

ω  =  2.21
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Figure 2. a) The global stability region for ω ∈ [0, 3.27] and b) the boundary values of ki for kp = 0.5.

Finally, to verify the results, the pole distributions of the PI control system choosing some points in the
(kp , ki)-plane can be examined. Pole spectrums of the control system for ki = 4.5, 8.107 and 10, when taking
kp = 0.5 as fixed, are shown in Figure 4. Furthermore, for the same purpose and the controller parameter

values, the unit step responses of the PI control system can be plotted, as shown in Figure 5. As can be seen
from Figures 4 and 5, the PI control system is asymptotically stable for the controller parameters (kp , ki) =

(0.5, 4.5) in the global stability region, marginally stable for the controller parameters (kp , ki) = (0.5, 8.107) on

the CRB boundary curve, and unstable for the controller parameters (kp , ki) = (0.5, 10) outside of the global

stability region. The results indicated by the Figures in this example conclude that the presented stabilization
technique is a successful and easy approach to obtain the stabilizing PI controllers for the neutral (and retarded)
systems.
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5. Stabilization using PID controller

In this section, the steps of PI stabilization for the neutral and retarded time-delay systems are extended to the
PID case. The TCE of the closed-loop system for this case is in the following form:

-5� 0 5 10�
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800

1000

ki 

kp

Global 

stability 

region 

Figure 3. The large scale global stability region for ω ∈ [0, 29.07].
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Figure 4. The pole distributions of the PI control system: a) kp = 0.5 and ki = 4.5 (asymptotically stable case), b)

kp = 0.5 and ki = 8.107 (marginally stable case), and c) kp = 0.5 and ki = 10 (unstable case).
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Figure 5. The unit step responses of the PI control system: a) kp = 0.5 and ki = 4.5 (asymptotically stable case), b)

kp = 0.5 and ki = 8.107 (marginally stable case), and c) kp = 0.5 and ki = 10 (unstable case).
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P (s; kp, ki, kd) =
n∑

i=0

n∑
k=0

aiksi+1e−kτs +
n−1∑
i=0

n−1∑
k=0

[
bik

(
kds

i+2 + kps
i+1 + kis

i
)
e−kτs

]
. (26)

Considering P (s; x1, x2, ...xn)|s=0 = 0 in Eq. (26), the PID stabilization has the same RRB as in the PI case.

However, because the order of the numerator is equal to that of the denominator for the G(s)C(s) transfer
function, there exists an IRB such that:

ann + b(n−1)(n−1)kd = 0, (27)

found by P (s; x1, x2, ...xn)|s=∞ = 0 for the PID controller.

For the CRB, the 2-D equation system is now obtained with 3 unknowns as follows:

kpA(ω) + kiC(ω) + kdG(ω) = E(ω)

kpB(ω) + kiD(ω) + kdH(ω) = F (ω)
, (28)

where

G(ω) =
n−1∑
i=0

n−1∑
k=0

bikωi+2 (qi cos kτω + risinkτω), (29a)

H(ω) =
n−1∑
i=0

n−1∑
k=0

bikωi+2 (−qi sin kτω + ricoskτω), (29b)

where

qi = �
{
ji+2

}
= cos(i + 2)

π

2
and ri = �

{
ji+2

}
= sin(i + 2)

π

2
. (30)

Since the number of unknowns is greater than the number of equations, the solution for the CRB can only be
obtained depending upon one of the controller parameters. It follows from Eq. (28) that the CRB curve can be

expressed in the (kp , ki)-plane in terms of kd , in the (kp , kd)-plane in terms of ki , or in the (ki , kd)-plane in
terms of kp .

The controller parameters kp and ki to construct the CRB in the (kp , ki)-plane in terms of kd are

determined from the solution of Eq. (28).

kp = [(C(ω)H(ω) − D(ω)G(ω)) kd + (D(ω)E(ω) − C(ω)F (ω))]/Δ1(ω), (31)

ki = [(B(ω)G(ω) − A(ω)H(ω)) kd + (A(ω)F (ω) − B(ω)E(ω))]/Δ1(ω), (32)

where Δ1(ω) = A(ω)D(ω) −B(ω)C(ω). Similarly, to obtain the CRB in the (kp , kd)-plane in terms of ki , the

controller parameters kp and kd are calculated as follows:

kp = [(C(ω)H(ω) − D(ω)G(ω)) ki + (F (ω)G(ω) − E(ω)H(ω))]/Δ2(ω), (33)

kd = [(A(ω)D(ω) − B(ω)C(ω)) ki + (B(ω)E(ω) − A(ω)F (ω))]/Δ2(ω), (34)

where Δ2(ω) = B(ω)G(ω) − A(ω)H(ω). Finally, to determine the CRB in the (ki , kd)-plane in terms of kp ,
the controller parameters ki and kd are obtained by:

ki = [(B(ω)G(ω) − A(ω)H(ω)) kp + (E(ω)H(ω) − F (ω)G(ω))]/Δ3(ω), (35)
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kd = [(A(ω)D(ω) − B(ω)C(ω)) kp + (C(ω)F (ω) − D(ω)E(ω))]/Δ3(ω), (36)

where Δ3(ω) = C(ω)H(ω) − D(ω)G(ω).

Corollary 5.1. It is impossible to find a solution for the CRB in the (ki , kd)-plane in terms of kp , since the

denominator of Eqs. (35) and (36), i.e. Δ3 (ω ), is always equal to 0. However, it should be noted that Δ3 (ω )

being 0 does not necessarily mean that there is no (ki , kd) pair whose closed-loop poles cross over the imaginary
axis for a given kp value. On the contrary, as will be shown in Remark 5.2, there must be such values in the

(ki , kd)-plane, since there exist solutions for the other 2 planes.

Proof. Substituting Eqs. (19c), (19d), (29a), and (29b) for Δ3 (ω ), we obtain:

Δ3(ω) =

[
n−1∑
i=0

n−1∑
k=0

bikωi (xi cos kτω + yi sinkτω)

][
n−1∑
i=0

n−1∑
k=0

bikωi+2 (−qi sin kτω + ri cos kτω)

]

−
[

n−1∑
i=0

n−1∑
k=0

bikωi (−xi sin kτω + yi cos kτω)

][
n−1∑
i=0

n−1∑
k=0

bikωi+2 (qi cos kτω + ri sin kτω)

] . (37)

Let the time-delay system be a first-order one. Hence, Eq. (37) simply becomes:

Δ3(ω) = (b00x0)(b00ω
2r0) − (b00y0)(b00ω

2q0). (38)

Putting the values x0 = 1, y0 = 0, q0 = –1, and r0 = 0, which are obtained from Eqs. (15) and (30), into the

above equation, the determinant is readily obtained as Δ3(ω) = 0.

For n ≥ 2, the proof follows from applying the above procedure to Eq. (37). �

Remark 5.1. Since Δ1 (ω ) and Δ2 (ω ) are different from 0, the CRB is found directly in the (kp , ki)-plane

using Eqs. (31) and (32) or in the (kp , kd)-plane using Eqs. (33) and (34). Hence, the 3-D global stability

region can be easily obtained for the changing values of kd in the (kp , ki)-plane or for the changing values of

ki in the (kp , kd)-plane.

Remark 5.2. For the neutral and retarded time-delay systems, the CRB in the (ki , kd)-plane for any kp cannot

be found directly since the gains ki and kd are linearly dependent on each other, which is shown in Corollary
5.1. However, to obtain the global stability region for this case, a key idea of the 2 methods in the literature,
namely the singular frequencies of the parameter space approach [17] or the graphical relations of the stability

boundary locus method [18], can be combined with the D-decomposition method. Since the D-decomposition
method is mainly a graphical approach, the second method is selected here. With this combination, the 3-D
global stability region can be now constructed by a set of 2-D convex stability regions, which are obtained for
various values of kp in the (ki , kd)-plane. For this construction, first of all, the stability intervals of the values

of PID controller parameters (kp , ki , and kd) are determined. The intervals are found by the intersection of

the RRB with the CRB in the (kp , ki)-plane for any value of kd and the intersection of the IRB with the CRB

in the (kp , kd)-plane for any value of ki . Next, considering the stability intervals, a pair of CRBs for any

2 values of kd in the (kp , ki)-plane and a couple of CRBs for any 2 values of ki in the (kp , kd)-plane are

drawn. For any kp value, the (ki , kd) points are determined and the stability boundary lines belonging to the

2-D convex stability region for the (ki , kd)-plane using these points are calculated. Finally, assembling these
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lines with the RRB and IRB lines, the 2-D stability region in the (ki , kd)-plane for the kp selected is plotted.
Changing kp in its stability interval gives all of the 2-D stability regions, which generate the 3-D global stability

region in the (kp , ki , kd)-space.

5.1. Example

The second-order RTDS considered in [30] has the following state-space representation:

A =

[
0 0

0 1

]
, A1 =

[
−1 −1

0 −0.9

]
, B =

[
0

1

]
, C =

[
0 1

]
, τ = 0.8. (39)

The transfer function of the RTDS is given by:

G(s) =
s + e−0.8s

(s2 − s) + (1.9s− 1)e−0.8s + 0.9e−1.6s
. (40)

The closed-loop system with PID controller has the following TCE:

P (s) =
(
(kd + 1)s3 + (kp − 1)s2 + kis

)
+

(
(kd + 1.9)s2 + (kp − 1)s + ki

)
e−0.8s + 0.9se−1.6s. (41)

From Eqs. (12) and (27), the RRB and IRB are obtained as:

(RRB) : ki = 0, (42)

(IRB) : kd + 1 = 0 ⇒ kd = −1. (43)

In order to get the CRB curve in the (kp , ki)-plane in terms of kd , it follows from Eqs. (31) and (32)

that:

kp =
−ω2 + (0.9ω2 + 0.9) cos(ωτ ) + 2ω sin(ωτ ) − 0.9ω sin(2ωτ ) − 1

−ω2 + 2ω sin(ωτ ) − 1
, (44)

ki =

(
−ω4 − 1.9ω2 + (2.9ω3 + 0.9) sin(ωτ ) + 0.9ω2 cos(2ωτ )

)
+ kd

(
−ω4 + 2ω3 sin(ωτ ) − ω2

)
−ω2 + 2ω sin(ωτ ) − 1

. (45)

Selecting a kd value (kd > –1), such as kd = 1, the stability boundaries and the 2-D stability region in the (kp ,

ki)-plane are shown in Figure 6a. By varying kd and calculating the stability boundaries, many 2-D stability
regions are attained for each kd . The 3-D global stability region can then be depicted as shown in Figure 6b.
As seen, the lower boundaries of the global stability region are ki = 0 (RRB) in the ki -axis and kd = –1 (IRB)
in the kd -axis. In the kp -axis, this boundary changes between 0.1 and 1.9. However, the global stability region
has no upper boundaries in the 3 axes. Therefore, these axes are limited to the upper values kp = 4, ki = 200,

and kd = 4 for a good view. If the range of kp ∈ (0.1, 1.9) is disregarded, the global stability region can be

characterized as a cube.
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Figure 6. a) The 2-D stability region in the (kp , ki)-plane for kd = 1 and b) the global stability region obtained by

the gridding of kd .

It is possible to use the (kp , kd)-plane instead of the (kp , ki)-plane to obtain the global stability region.

From Eqs. (33) and (34), it has been calculated that kp is the same as in Eq. (44), and kd is found to be:

kd =

(
−ω4 − 1.9ω2 + (2.9ω3 + 0.9) sin(ωτ ) + 0.9ω2 cos(2ωτ )

)
+ ki

(
ω2 − 2ω sin(ωτ ) + 1

)
ω4 − 2ω3 sin(ωτ ) + ω2

. (46)

Choosing a ki value (ki > 0), such as ki = 1, the 2-D stability region in the (kp , kd)-plane and the 3-D global
stability region for the changing values of ki are shown in Figures 7a and 7b.

The 3-D global stability region can be also obtained in the (ki , kd)-plane for the changing values of kp .
For this case, the global stability region consists of the 2-D convex stability regions utilizing the stability regions
in the (kp , ki)-plane and the (kp , kd)-plane, as mentioned in Remark 5.2. Recall that the admissible stability

ranges of the controller parameters were determined above as kp ∈ (0.1, ∞), ki ∈ (0, ∞), and kd ∈ (–1, ∞).

To obtain the convex set for the values of kp , the CRB curves in the (kp , ki)-plane for any 2 kd values chosen

from the range, for example kd = 2 and kd = 3, and in the (kp , kd)-plane for any 2 ki values in the range

obtained, for example ki = 50 and ki = 60, are shown in Figures 8a and 8b. The aim is to obtain the (ki , kd)
points for any kp value in these Figures and then to constitute the equations for the ki − kd lines across from

these points. The set of these equations forms a convex stability region in the (ki , kd)-plane for this value of

kp . For example, let us consider the value kp = 1. There are many (ki , kd) points corresponding to kp = 1.

For better visibility, only 3 pairs are given in Figure 8a. These points and their equations for the ki − kd lines
across from these points are given as follows:

for (ki, kd) = (13.655, 3) and (ki, kd) = (9.799, 2) → kd = 0.2593ki − 0.5412, (47)

for (ki, kd) = (144.091, 3) and (ki, kd) = (109.394, 2) → kd = 0.0288ki − 1.1528, (48)

for (ki, kd) = (376.69, 3) and (ki, kd) = (280.315, 2) → kd = 0.0104ki − 0.9086, (49)

for (ki, kd) = (768.01, 3) and (ki, kd) = (579.1, 2) → kd = 0.0053ki − 1.0655, (50)

1201



Turk J Elec Eng & Comp Sci, Vol.20, No.Sup.1, 2012

(b)(a)

-1 0 1 2 3� 4
0�

2

4

0

80

120

160

200

40

-1
k d 

k p

k i

-1 0 1 2 3 4
-3

-2

-1

0

1

2

3

4

RRB line

CRB curve 
kd 

k p

    Global 

    stability 

                       region for ki = 1

0� 0.5 1� 1.5 2
-1.5�

-1

-0.5�

0

k i 

k p

CRB curve 

Figure 7. a) The stability region in the (kp , kd)-plane for ki = 1 and b) the global stability region obtained by the

gridding of ki .
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Figure 8. The points used to obtain the convex stability region in the (ki , kd)-plane for kp = 1: a) the points in the

(kp , ki)-plane and b) the points in the (kp , kd)-plane.

for (ki, kd) = (1233.22, 3) and (ki, kd) = (920.94, 2) → kd = 0.0032ki − 0.9491, (51)

for (ki, kd) = (1885.4, 3) and (ki, kd) = (1418.91, 2) → kd = 0.0021ki − 1.0417, (52)

for (ki, kd) = (2583.22, 3) and (ki, kd) = (1931.67, 2) → kd = 0.0015ki − 0.9647. (53)

There are also a great number of points higher than the point in Eq. (53), but they can be neglected since the

equations of these points come close to that of Eq. (53). Note that these equations for the ki − kd lines can be

identically obtained by the (kp , kd)-plane in Figure 8b.

The lines corresponding to the points in Eqs. (47) through (53), and also the RRB and IRB lines,
decompose the entire plane to many areas. By testing these areas using the arbitrary check points, the multiple
2-D convex stability regions in the (ki , kd)-plane for kp = 1 are constituted as shown in Figure 9. Repeating

the procedure for the changing values of kp , the global stability region can be sketched as a 3-D plot, shown in
Figure 10. As seen, the global stability region is in the form of disconnected regions for 0.1 < kp < 1.9 and in

the form of a 1-piece cubic region for kp > 1.9.
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Figure 9. The 2-D convex stability region for kp = 1. Figure 10. The global stability region obtained by the

gridding of kp in the (ki , kd)-plane.

6. Conclusions

The stabilization process is an important topic in the design of fixed-order controllers such as first-order, PI,
and PID controllers, and it is gaining increasing attention as an effective approach to control system design
for time-delay systems with or without parametric uncertainties. However, efficient stabilization algorithms are
only available for the systems with time delay in the control input. In this paper, the PI and PID stabilization
of a class of systems with time delay in the state, namely the neutral and retarded time-delay systems, was
investigated. The principle of the method is to obtain the boundaries of the global stability region that are
determined from the TCE of the closed-loop system using the D-decomposition technique. The global stability
region contains the set of all of the stabilizing controller parameters. The simulation studies illustrated that
the presented method provides accurate and trustworthy results.

It is known that the global stability region of a system with time delay in the control input is in the
form of an enclosed area when the PI or PID controllers are used [18,31]. However, it can be concluded from
Examples 4.1 and 5.1 that the global stability region for a system with state delay, i.e. a neutral or retarded
system, using these controllers has no upper limits in the parameter axes. Therefore, the global stability regions
of these systems are generally larger than those of the systems with control input delay.

The forthcoming trend of this study is to present an approach giving the set of optimal PI or PID
controllers for the desired maximum overshoot, rise time, and settling time requirements. Such a set, which
corresponds to the curves in the global stability region, provides the designer with an easier way to accomplish the
control requirements. Furthermore, this study can be extended to stabilization using higher-order polynomial
controllers [32].
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