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doi:10.3906/elk-1101-1

A novel approach for optimal allocation of distributed

generations based on static voltage stability margin

Mohsen Rezaie ESTABRAGH1, Mohsen MOHAMMADIAN1,∗, Mehdi SHAFIEE2

1Department of Electrical Engineering, Sahid Bahonar University of Kerman, Kerman-IRAN
e-mails: m.mohammadian@uk.ac.ir, mohsenrezaie2009@gmail.com

2Department of Electrical Engineering, Amir Kabir University of Technology, Tehran-IRAN
e-mail: shafie@aut.ac.ir

Received: 01.01.2011

Abstract

This paper presents a newly developed approach to find the optimal location of distributed generations

(DGs) to improve power system voltage stability margin and reduce losses incorporating the constraints.

The loadability limit index is used to assess the static voltage stability security margin, which is associated

with the point of voltage collapse limit. Based on this, a toolbox is developed to recognize the loadability

margin in power networks. Finally, the mentioned problem is modeled as a nonlinear and multiobjective

optimization problem. The proposed method establishes a tradeoff between the security index and power

losses in DG placement using the hybrid particle swarm optimization (HPSO) algorithm method to reach the

best performance and acceptable operation. The simulations are performed on IEEE 14- and IEEE 30-bus

test systems to find the optimal location of the DGs. The results are compared with the particle swarm

optimization (PSO) algorithm to ascertain the effectiveness.

Key Words: Distributed generations, static voltage stability, load ability limit, power loss, hybrid particle

swarm optimization, nonlinear optimization

1. Introduction

Several major blackouts have occurred due to voltage instability in recent years, causing the voltage instability
phenomenon to draw more and more attention worldwide. Voltage stability is the ability of a system to maintain
voltage and is closely associated with power delivering capability. The voltage instability phenomenon, which
can occur in both transmission systems and distribution systems, may not be new to power system practicing
engineers and researchers [1,2]. With development of the national economy and the improvement of people’s
lives, load demands on networks are sharply increasing and the operation conditions of transmission networks are
much closer to the voltage stability boundaries. The decline of the voltage stability level is one of the important
factors that restrict the increase of the load served by transmission companies. Therefore, it is necessary to
consider voltage stability constraints for the planning and operation of transmission systems.
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Regarding these matters, distributed generation (DG) is increasingly gaining great attention from en-
gineers. The development of DGs will bring new opportunities for traditional distribution and transmission
systems. There are many technical benefits of employing DGs in existing networks, such as reducing line losses,
reducing the emission of pollutants, improving power quality, and relieving transmission and distribution con-
gestion [3]. DG refers to small sources ranging between 1 kW and 50 MW electrical power generations, which
are normally placed close to consumption centers. Specifically, DGs connected to networks have the potential
to improve system voltage stability. The research on voltage stability can be classified into static and dynamic
analysis [4-6]. DG renders a group of advantages, such as economic, environmental, and technical. The economic
advantages are the reduction of transmission and distribution costs, reduction of electricity price, and saving
of fuel. Environmental advantages entail reductions of sound pollution and emissions of greenhouse gases. The
technical advantages cover a wide variety of benefits, such as line loss reduction, peak shaving, increased system
voltage profile, and, hence, increased power quality and relieved transmission and distribution congestion as well
as grid reinforcement. It can also provide stand-alone remote applications with the required power. Therefore,
the optimal placement of DGs and optimal sizing attract active research interest. Several researchers have
worked in this area [7-13].

DGs are placed at optimal locations to reduce losses [7]. Some researchers have presented power flow

algorithms to find the optimal size of DGs at each load bus [8,9]. Wang and Nehrir have shown analytical

approaches for optimal placement of DGs in terms of loss [10]. Chiradeja quantified the benefit of reduced

line loss in a radial distribution feeder with a concentrated load [11]. Further, many researchers have used

evolutionary computational methods for finding the optimal DG placement [14-19]. Mithulananthan used a

genetic algorithm (GA) for placement of DGs to reduce the losses [15]. Celli and Ghiani used a multiobjective

evolutionary algorithm for the sizing and placement of DGs [18]. Nara et al. used a tabu search algorithm to

find the optimal placement of DGs [19]. The former is intended to evaluate the voltage stability margin based
on power flow calculations. The latter is to clarify the process of the voltage instability phenomenon while the
effect of various control equipment is taken into account.

Due to the discrete nature of the allocation and sizing problem, the objective function has a number
of local minima. Since the analytical methods are generally poorly suited to this type of function, only a few
papers have used these methods. Almost all of the related papers are based on heuristic methods. Among the
proposed methods, the hybrid particle swarm optimization (HPSO) algorithm has emerged as a useful tool for

engineering optimization, which has been used in complex optimization problems [20-25].

This paper presents a novel search approach with respect to the voltage stability margin for the optimal
placement of DGs using the HPSO algorithm and compares it with the particle swarm optimization (PSO)
algorithm. Optimal bus locations are determined to obtain the best objective. The multiobjective optimization
simultaneously covers the optimization of both the voltage stability margin and active power loss. This paper
uses static analysis to discuss the impacts of DGs on voltage stability in transmission systems. This static voltage
stability analysis is based on nonlinear optimization. The analysis process is performed using a steady-state
voltage stability index, PT , which is maximum loading under the feasibility of power flow equations [26-30].
The problem is defined and the objective function is introduced to maximize the voltage stability index, PT ,
and minimize losses. Hence, a toolbox is developed to assess the power system voltage stability margin based
on the loadability limit. This method is executed on the IEEE 14- and IEEE 30-bus test systems, showing
the robustness of this method in finding the optimal and fast placement of DGs, efficiency for improvement of
voltage stability index PT , and reduction of power losses.
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2. Problem formulation

A multiobjective function is implemented in this section. The objects considered in this study, for finding the
optimal placement of DGs, are maximizing the loadability limit and minimizing the total system power losses.

2.1. Maximize voltage stability index

2.1.1. Voltage stability index formulation

The decline of the voltage stability level is one of the important factors that restrict the increase of load served by
distribution companies. DGs connected to distribution networks have the potential to improve system voltage
stability. In this study, the loadability limit is used as an index to security assessment [27]. The proposed index
formulates and calculates as a nonlinear optimization problem. One of objectives of this study for the allocation
DGs is maximizing the loadability limit, PT , with the optimal placement of DGs. The system loadability limit
can be evaluated by means of nonlinear optimization, in which it tries to maximize system loading under the
constraint of power flow equations. For this purpose, the problem can be formulated as follows:

Min : −PT

s. :
{

PGi − PDi − fi(v, δ) = 0
QGi − QDi − gi(v, δ) = 0 ,

(1)

where PT is the system total active load, PGi and QGi represent vectors of active and reactive generation,
PDi and QDi represent vectors of active and reactive load, and fi and gi are active and reactive power flow
equations, respectively.

The main constraint for voltage stability is the feasibility of the power flow solution; therefore, Eq. (1)
tries to find maximum loading under the feasibility of the power flow equation, which corresponds to the system
loadability limit. Eq. (1) can be solved using the Lagrange method. For this purpose, the nonconstrained
Lagrange function can be constructed as follows:

L = −PT + [λ]T [PG − PD − f(V, δ)] + [γ]T [QG − QD − g(V, δ)], (2)

where [λ] and [γ] are vectors of Lagrange multipliers.

2.1.2. Model of load/generation increase

An increase of load and generation patterns at buses is one of the main factors that dominates the loadability
limit; in order to include their effects, it can be modeled as shown below [27,28].

PDi =
[
P

(0)
Di + βiPfi(PT − P

(0)
T )

](
Vi

V
(0)
i

)kpvi

QDi =
[
Q

(0)
Di + βiQfi(QT − Q

(0)
T )

](
Vi

V
(0)

i

)kqvi

(3)

PGi = αiPT αi ≤ 1
NB∑
i=2

βi = 1
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QGi = QMax
Gi

NB∑
i=2

αi ≤ 1 (4)

Here, P
(0)
Di and Q

(0)
Di are the primary values of the active and reactive load powers, αi and βi are the generation

and load contributions for each bus, Pfi and Qfi are load factor coefficients, V 0
i is the primary value of the

bus voltage magnitude, Vi is the value of the bus voltage, kpvi and kqvi are the load active and reactive powers,

P
(0)
T is the total primary active load of the system, and PT is the total active load of the system. Hence, the

final Lagrange function will be as shown below.

L : −
NB∑
i=2

[
P

(0)
Di + βiPfi(PT − P

(0)
T )

](
Vi

V
(0)
i

)kpvi

+

NB∑
i=2

λi

{
αiPT −

[
P

(0)
Di + βiPfi(PT − P

(0)
T )

](
Vi

V
(0)

i

)kpvi

− fi(v, δ)

}
+

NB∑
i=2

γi

{
Qmax

Gi −
[
Q

(0)
Di + βiQfi(PT − P

(0)
T )

] (
Vi

V
(0)

i

)kqvi

− gi(v, δ)

} (5)

For solving Eq. (5), the Newton-Raphson method is employed. For this purpose, the first derivatives of Eq. (5)
are calculated as follows:

FX =
∂L

∂X
= 0 X = [V, δ, λ, γ, PT ] . (6)

The factors of each equation, which contain ΔV , Δδ , Δλ , Δγ , and ΔPT , are then calculated. By implementing
Eq. (6), the following matrix can be obtained:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F
(0)
V

F
(0)
δ

F
(0)
λ

F
(0)
γ

F
(0)
PT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

FV V FV δ FV λ FV γ FV PT

Fδ V Fδ δ Fδ λ Fδ γ Fδ PT

Fλ V Fλ δ Fλ λ Fλ γ Fλ PT

Fγ V Fγ δ Fγ λ Fγ γ Fγ PT

FPT V FPT δ FPT λ FPT γ FPT PT

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ΔV

Δδ

Δλ

Δγ

ΔPT

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

In this study, it is assumed that the first bus is a slack bus and, to simplify, it is assumed that all of the PV

buses are converted to PQ in the maximum loadability limit condition (QGi = QMax
i ). This is based on the

fact that in the maximum loadability condition, all of the capable reactive generations are generated.

It is noticeable that 3 models of PV buses have been developed to reach the proper model of PV buses
in the developed voltage stability toolbox [27]. In the first model, a PV bus is assumed as a PQ bus, similar
to this study with respect to the discussed reasons for the voltage collapse condition. This means that in the
loadability limit condition, almost all of the Q sources have been applied in the power network normally. The
second proposed model is based on the model of PV buses in a load flow problem. In the mentioned study, it
was shown that this model is not proper for voltage stability studies. In the third model, the PV bus is modeled
with respect to the maximum exciting current of each generator (Ifmax), which is the proper and real model of
PV bus behavior in a voltage collapse condition. However, the proposed method has been implemented using
MATLAB and, based on the described methodology, the voltage stability toolbox has been developed.
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2.2. Power loss reduction index

One of the major potential benefits offered by DG is the reduction in electrical line losses. The loss can be
significant under heavy load conditions. The utility is forced to pass the cost of electrical line losses to all
customers by means of higher energy cost. With the inclusion of DG, line loss in the distribution system can
be reduced. The proposed index for a bus is defined as follows:

O2 =
b∑

l=1

RlI
2
l =

=
b∑

l=1

[V 2
i + V 2

j − 2ViVj cos(δi − δj)]Yij cos ϕij,

(8)

where b is the number of branches, Rl is the resistance of line l , Il is the current passing through line l , Vi

and δi are the voltage magnitude and voltage angle of node I , and Yij and ϕij are the magnitude and angle
of the i − j line admittance.

Hence, the objective function includes 2 terms that maximize the voltage stability margin and minimize
the power losses in DG allocation. This will be described more in detail in the next sections.

3. PSO and HPSO algorithms

3.1. Brief survey

In this section, we discuss the main topic, which is an introduction on hybrid algorithms, of which PSO is
one of the prime algorithms. A natural evolution of the population-based search algorithms, like that of PSO,
can be achieved by integrating the methods that have already been tested successfully for solving complex
problems. Researchers have enhanced the performance of PSO by incorporating in it the fundamentals of
other popular techniques like selection, mutation, and a crossover of the GA and differential evolution (DE)
algorithms. Moreover, attempts have been made to improve the performance of other evolutionary algorithms
like GA, DE, and ant colony optimization (ACO) by integrating into them the velocity and position update
equations of PSO. The main goal, as we see it, is to harness the strong points of the algorithms in order to keep
a balance between the exploration and exploitation factors, thereby preventing the stagnation of the population
and preventing premature convergence.

In a PSO system, multiple candidate solutions coexist and collaborate simultaneously. Each solution
candidate, called a “particle”, flies in the problem space looking for the optimal position. A particle with time
adjusts its position to its own experience, while adjusting to the experience of neighboring particles. If a particle
discovers a promising new solution, all of the other particles will move closer to it, exploring the region more
thoroughly in the process. This new approach features many advantages. First of all, PSO is very simple, easy
to understand, and a natural algorithm. It is fast and can be coded in a few lines. Moreover, its strength
requirement is minimal [31-34]. Despite the passage of more than a decade, this algorithm still has many noted
researchers. The debut of the PSO algorithm took place in 1995 with the first paper by Kennedy and Eberhart
[35]. Recently in [36], Li et al. proposed a hybrid of PSO and GA called the PSOGA-based hybrid algorithm

(PGHA) for optimization design. They used improved genetic mechanisms like nonlinear ranking selection for
the GA process. They generated 3 offspring from 2 parents and used a newly defined mutation operator. Ting
et al. [37] proposed a hybrid constrained GA/PSO algorithm for solving load flow problems. Jeong et al. [38]
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proposed a hybrid algorithm called the GA/PSO for solving multiobjective optimization problems, and they
validated their algorithm on test problems and also on engineering design problems. In this algorithm, the first
multiple solutions are generated randomly as an initial population and objective function values are evaluated
for each solution. After the evaluation, the population is divided into 2 subpopulations, one of which is updated
by the GA operation, while the other is updated by PSO operation. Kannan et al. used the combination of
fuzzy and HPSO methods for optimal allocation of capacitors in a power network [23]. Valdez et al. integrated

the concept of fuzzy logic into a hybrid of the GA and PSO algorithm [39]. The new hybrid algorithm, called
PSO + GA, also works by dividing the individuals into GA and PSO populations. However, it differs from the
previous approaches as the GA + PSO fuzzy rules are applied to decide whether to take GA individuals or to
take PSO individuals. Bhuvaneswari et al. [40] reported a hybrid approach using GA and PSO called hybrid

genetic algorithm-particle swarm optimization (HGAPSO). Abdel-Kader [41] proposed the genetically improved

particle swarm optimization (GAI-PSO) algorithm, which combines the standard velocity and position update
rules of PSO with the ideas of selection and crossover from GAs. The GAI-PSO algorithm searches the solution
space to find the optimal initial cluster centroids for the next phase. The second phase is a local refining stage,
utilizing the k-means algorithm, which can efficiently converge to the optimal solution. The proposed algorithm
combines the ability of globalized searching of the evolutionary algorithms and the fast convergence of the
k-means algorithm, and it can avoid the drawbacks of both.

It is clear that HPSO is a powerful optimization technique that has been applied to a wide range of
optimization problems. Nevertheless, its performance can be enhanced many-fold with the aid of certain
modifications. The present research article focuses on the concept of hybridization, which is presently a popular
idea being applied to evolutionary algorithms in order to increase

their efficiency and robustness. In this paper we use this algorithm to solve the modeled optimization
problem.

3.2. Definition

The PSO definition is presented as follows:

1) Each individual particle i has the following properties:

xi , vi : current position and velocity in the search space,

yi : personal best position in the search space.

2) The personal best position, pi , corresponds to the position in the search space where particle ipresents
the smallest error as determined by objective function f , assuming a minimization task.

3) The global best position denoted by g represents the position yielding the lowest error among all pi s.

Eqs. (9) and (10) define how the personal and global best values are updated at time k, respectively.

Below, it is assumed that the swarm consists of s particles [18,19].

Thus, i E 1, . . . , s :

pk+1
i =

{
pk

i if f
(
pk

i

)
≤ f

(
Xk+1

i

)
Xk+1

i if f
(
pk

i

)
> f

(
Xk+1

i

) , (9)

gk ∈
{
pk
1 , pk

2, ..., pk
S

}
f

(
gk

)
= min

{
f

(
pk
1

)
, f

(
pk
2

)
, ..., f

(
pk

S

)} . (10)

During each iteration, every particle in the swarm is updated using Eqs. (11) and (12). Two pseudorandom
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sequences, r1 ∼ U (0,1) and r2 ∼ U (0,1), are used to affect the stochastic nature of the algorithm.

vk+1
i = w × vk

i + c1 × rand()1 ×
(
pk

i − Xk
i

)
+ c2 × rand()2 ×

(
gk − Xk

i

)
(11)

Xk+1
i = Xk

i + vk+1
i (12)

w = wmax − wmax − wmax

itermax
× iter (13)

vmax = k × xmax 0.1 ≤ k ≤ 1 (14)

Here, vk
i is the velocity of the ith particle at the k th iteration; vk+1

i is the velocity of the ith particle at the

(k + 1)th iteration;w is the inertia weight; Xk
i is the position of the ith particle at the k th iteration; Xk+1

i is

the position of the ith particle at the (k + 1)th iteration;c1 and c2 are positive constants both equal to 2; iter

and iter max are the iteration number and maximum iteration number; and rand()1 and rand()2 are random
numbers selected between 0 and 1.

Evolutionary operators like selection, crossover, and mutation have been applied to PSO. By applying
the selection operation in PSO, the particles with the best performance are copied into the next generation;
therefore, PSO can always keep the best performed particles. By applying the crossover operation, information
can be exchanged or swapped between 2 particles so that they can “fly” to the new search area as in evolutionary
programming and GAs. Among the 3 evolutionary operators, the mutation operators are the most commonly
applied evolutionary operators in PSO. The purpose of applying mutation to PSO is to increase the diversity
of the population and the ability to have the PSO escape the local minima. HPSO uses the mechanism of PSO
and a natural selection mechanism utilizing the GA [18,29].

4. Implementation HPSO algorithm

4.1. Initialization

In this study, the optimum values of the parameters are easily and accurately computed using the HPSO. In
a typical run of the HPSO, an initial population is randomly generated. This initial population is referred to
as the 0th generation. Each individual in the initial population has an associated performance index value.
Using the performance index information, the HPSO then produces a new population. In order to obtain
the value of the performance index for each of the individuals in the current population, the system must be
simulated. The HPSO then produces the next generation of individuals using the reproduction crossover and
mutation operators. These processes are repeated until the population is converged and the optimum value of
the parameters is found. Each designed chromosome is a 5-component vector. These components represent the
locations and the nodes in which the DGs should be connected, and they can take values from 2 to the number
of buses in the network. A population of possible solutions will evolve from one generation to another, in order
to obtain a very well fitted individual.

4.2. Fitness function

This function measures the quality of each chromosome of populations and it is closely related to the objective
function. The objective function is computed using Eqs. (1)-(8). In this study, 1 generation and 4 load pattern

scenarios are considered. Hence, in each iteration, 4 objective functions values are calculated by Eq. (15), and
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the fitness value is calculated by means of these 4 values by Eq. (16). The effects of DG on maximizing the
loadability limit and minimizing power losses are considered in this section with its contribution of the generation
pattern in the power system. The contribution of the generation of each DG is added to the contribution of
the generation of each bus at which algorithms place the DGs, and the PT and power losses are calculated.
Corresponding coefficients are used for each objective. The overall objective function designed during this study
is:

fi (x) = K1.PTi − K2. PLossi, (15)

where K1 and K2 are arbitrary gain factors. They imply a tradeoff between security and losses. Their values
are 10% and 90%, respectively, in the simulation studies, as well.

Based on the scenarios (generations and loads patterns), the final fitness value is calculated by the means
of these 4 values:

F (x) =

4∑
i=1

fi (x)

KS
, (16)

where KS is the number of patterns, which is 4 in this study.

5. Case study

The IEEE 14-bus, 220 kV, and IEEE 30-bus are used as test systems. The single line diagrams of these
systems are shown in Figures 1 and 2. The IEEE 14-bus network consists of 5 generators, 11 consumers, and
15 interconnected lines (Table 1). DG units are applied to PQ buses based on their contributions in real power

generation (Figure 3). The IEEE 30-bus network consists of 6 generators, 22 consumers, and 41 interconnected

lines (Table 2).
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Figure 1. Single-line diagram of the IEEE 14-bus test network.
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Figure 2. Single-line diagram of the IEEE 30-bus test network.

Table 1. Line data for the IEEE 14-bus system.

From To R(p.u) X(p.u) B Tap
1 2 0.01938 0.05917 0.0528 1
1 5 0.05403 0.22304 0.0492 1
2 3 0.04699 0.19797 0.0438 1
2 4 0.05811 0.17632 0.0374 1
2 5 0.05695 0.17388 0.0340 1
3 4 0.06701 0.17103 0.0346 1
4 5 0.01335 0.04211 0.0128 1
6 11 0.09498 0.1989 0.0000 1
6 12 0.12291 0.25581 0.0000 1
6 13 0.06615 0.13027 0.0000 1
7 8 0.00000 0.17615 0.0000 1
7 9 0.00000 0.11010 0.0000 1
9 10 0.03181 0.08450 0.0000 1
9 14 0.12711 0.27038 0.0000 1
10 11 0.08205 0.19207 0.0000 1
12 13 0.22092 0.19988 0.0000 1
13 14 0.17093 0.34802 0.0000 1
4 7 0.00000 0.20912 0.0000 0.978
4 9 0.00000 0.55618 0.0000 0.969
5 6 0.00000 0.25202 0.0000 0.932
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Figure 3. System model with the connection of a DG unit.

Table 2. Line data for the IEEE 30-bus system.

No.
From To R(p.u) X(p.u) B Tap

No.
From To R(p.u) X(p.u)

B Tap
line line
1 1 2 0.0192 0.0575 0.0528 1 22 10 20 0.0936 0.209 0.0000 1
2 1 3 0.0452 0.1852 0.0408 1 23 10 17 0.0324 0.0845 0.0000 1
3 2 4 0.0507 0.1737 0.0368 1 24 10 21 0.0348 0.0749 0.0000 1
4 3 4 0.0132 0.0379 0.0084 1 25 10 22 0.0727 0.1499 0.0000 1
5 2 5 0.0472 0.1983 0.0418 1 26 21 22 0.0116 0.0236 0.0000 1
6 2 6 0.0581 0.1763 0.0374 1 27 15 23 0.1000 0.202 0.0000 1
7 4 6 0.0119 0.0414 0.009 1 28 22 24 0.115 0.179 0.0000 1
8 5 7 0.046 0.116 0.0204 1 29 23 24 0.132 0.27 0.0000 1
9 6 7 0.0267 0.082 0.017 1 30 24 25 0.1885 0.3292 0.0000 1
10 6 8 0.012 0.042 0.009 1 31 25 26 0.2544 0. 38 0.0000 1
11 9 11 0.00000 0.208 0.0000 1 32 25 27 0.1093 0.2087 0.0000 1
12 9 10 0.00000 0.11 0.0000 1 33 27 29 0.2198 0.4153 0.0000 1
13 12 13 0.00000 0.14 0.0000 1 34 27 30 0.3202 0.6027 0.0000 1
14 12 14 0.1231 0.2559 0.0000 1 35 29 30 0.2399 0.4533 0.0000 1
15 12 15 0.0662 0.1304 0.0000 1 36 8 28 0.0636 0.2 0.0428 1
16 12 16 0.0945 0.1987 0.0000 1 37 6 28 0.0169 0.0599 0.012 1
17 14 15 0.221 0.1997 0.0000 1 38 6 9 0.0000 0.208 0.0000 1.0155
18 16 17 0.0824 0.1932 0.0000 1 39 6 10 0.0000 0.556 0.0000 0.9629
19 15 18 0.107 0.2185 0.0000 1 40 4 12 0.0000 0.256 0.0000 1.0129
20 18 19 0.0639 0.1292 0.0000 1 41 26 27 0.0000 0.396 0.0000 0.9581
21 19 20 0.034 0.068 0.0000 1

One generation and 4 load patterns are considered in this paper to involve a real operational power
network. Their data are given in Tables 3 and 4. In each of the algorithm’s iterations, 4 objective values are
calculated, respectively, from 1 generation and 4 load patterns, and by means of these values, the fitness of
each population is calculated. This creates all of the scenarios for load increasing and generation scheduling
mentioned in this study. Hence, the load and generation effects are applied in optimal DG placement. The
program is run without DG placement and the results for the total network power losses and loadability limit
are derived, as in Table 5.

Five DGs (1.5, 0.78, 0.78, 6, and 3.2 MW) are considered for placement on 5 buses in the power systems
for improving the voltage stability index, PT , and minimizing power losses. The results of the mentioned
algorithms for 5 running times are summarized in Tables 6-9. These results show that the proposed algorithms
suggested weak buses for optimal DG placement. Moreover, it causes an improvement in the loadability limit
of system and voltage magnitudes, and a reduction in total power losses. The initial population is randomly
generated.
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Table 3. Generation and load patterns (14-bus).

Bus α1 β1 β2 β3 β4

1 0.00 0.00 0.00 0.00 0.00
2 0.14052 0.084 0.08 0.083 0.085
3 0.00 0.364 0.368 0.362 0.36
4 0.00 0.185 0.18 0.1951 0.187
5 0.00 0.0293 0.0298 0.0299 0.029
6 0.00 0.0432 0.0475 0.0463 0.0414
7 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00
9 0.00 0.1132 0.11 0.1123 0.102
10 0.00 0.0347 0.0342 0.035 0.0244
11 0.00 0.0135 0.0142 0.014 0.024
12 0.00 0.0235 0.0262 0.0282 0.026
13 0.00 0.0521 0.0531 0.0534 0.0639
14 0.00 0.0575 0.057 0.0408 0.0573

Table 4. Generation and load patterns (30-bus).

Bus No. α1 β1 β2 β3 β4 Bus No. α1 β1 β2 β3 β4

1 0.4572 0.00 0.00 0.00 0.00 16 0.00 0.0012 0.0002 0.0032 0.003
2 0.1902 0.08 0.07 0.06 0.068 17 0.00 0.032 0.033 0.03 0.0302
3 0.00 0.008 0.018 0.028 0.02 18 0.00 0.011 0.022 0.033 0.03
4 0.00 0.027 0.017 0.01 0.012 19 0.00 0.033 0.022 0.011 0.012
5 0.0816 0.33 0.34 0.3529 0.35 20 0.00 0.007 0.004 0.014 0.015
6 0.00 0.00 0.00 0.00 0.00 21 0.00 0.061 0.064 0.054 0.055
7 0.00 0.08 0.06 0.16 0.1109 22 0.00 0.00 0.00 0.00 0.00
8 0.1162 0.1 0.12 0.02 0.03 23 0.00 0.0011 0.001 0.021 0.01
9 0.00 0.00 0.00 0.00 0.00 24 0.00 0.03 0.0301 0.0101 0.0111
10 0.00 0.02 0.03 0.04 0.05 25 0.00 0.00 0.00 0.00 0.00
11 0.0595 0.00 0.00 0.00 0.00 26 0.00 0.0123 0.0195 0.01353 0.023
12 0.00 0.04 0.03 0.02 0.03 27 0.00 0.00 0.00 0.00 0.00
13 0.0557 0.00 0.00 0.00 0.00 28 0.00 0.00 0.00 0.00 0.00
14 0.00 0.02 0.03 0.04 0.05 29 0.00 0.008 0.0088 0.00844 0.0089
15 0.00 0.03 0.02 0.01 0.02 30 0.00 0.0684 0.0604 0.06083 0.0609

Table 5. The results without DG placement.

14-bus system 30-bus system
PT (MW) Ploss(MW) PT (MW) Ploss(MW)

447.92 83.07 301.26 24.08

Figures 4 and 5 show the performances of the algorithms for first runs. The graphs show a good
convergence of the fitness value with the generations. The best fitness value rises with generations, which
shows that these algorithms are suitable for solving the DG optimal location problem. With respect to the
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mentioned graphs, the HPSO algorithm has better performance compared with the other algorithm, since its
converging graph has better and faster convergence behavior than that of PSO. It is obvious that the HPSO
algorithm has a proper convergence in low iteration numbers because the HPSO algorithm converges in the 5th-
6th iteration. Moreover, the main object of this paper is maximizing the fitness function, and the convergence
graph of HPSO shows better results when compared to PSO.

Table 6. Best population for each running time of PSO for the IEEE 14-bus system.

Run Iter
Bus Bus Bus Bus Bus

PT (MW) Ploss(MW)No. 1 No. 2 No. 3 No. 4 No. 5
1st 3 3 3 3 3 455.6 80.64
2nd 3 9 8 3 3 456.43 80.92
3rd 3 8 3 3 3 455.83 80.84
4th 3 8 3 3 3 455.83 80.84
5th 3 3 3 3 3 455.6 80.64

Table 7. Best population for each running time of HPSO for the IEEE 14-bus system.

Run Iter
Bus Bus Bus Bus Bus

PT (MW) Ploss(MW)No. 1 No. 2 No. 3 No. 4 No. 5
1st 3 3 3 3 3 455.94 80.45
2nd 8 8 3 3 3 456.32 80.93
3rd 3 3 3 3 3 455.94 80.45
4th 3 14 3 3 3 456.56 80.86
5th 3 3 3 3 3 455.94 80.45

Table 8. Best population for each running time of PSO for the IEEE 30-bus system.

Run Iter
Bus Bus Bus Bus Bus

PT (MW) Ploss(MW)No. 1 No. 2 No. 3 No. 4 No. 5
1st 5 29 29 30 29 332.72 22.5
2nd 26 15 5 29 29 329.81 22.15
3rd 5 29 8 29 29 325.69 21.61
4th 26 29 8 30 5 323.21 21.51
5th 5 30 18 30 29 334.88 22.84

Table 9. Best population for each running time of HPSO for the IEEE 30-bus system.

Run Iter
Bus Bus Bus Bus Bus

PT (MW) Ploss(MW)No. 1 No. 2 No. 3 No. 4 No. 5
1st 11 11 30 30 30 334.93 22.78
2nd 11 30 30 30 30 337.31 22.98
3rd 30 2 30 30 30 339.45 23.21
4th 30 30 30 30 30 341.86 23.39
5th 30 11 30 30 30 339.5 23.18
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Figure 4. PSO performance for the 1st run (14-bus). Figure 5. HPSO performance for the 1st run (14-bus).

Tables 10 and 11 show the results of the bus voltage magnitude and maximum loading of each bus for
executing the program in a voltage collapse condition without installing DGs.

Table 10. Bus loading and voltage without DG placement for the IEEE 14-bus system.

Bus No. Vpre−install (p.u) Pmax−pre−install (MW) Bus No. Vpre−install (p.u) Pmax−pre−install (MW)
1 1.06 0.00 8 0.7743 0.00
2 0.8951 37.26 9 0.674 49.1
3 0.738 163.17 10 0.661 14.4
4 0.7463 83.86 11 0.6751 7.37
5 0.7741 13.24 12 0.6672 11.66
6 0.7123 20.02 13 0.6544 24.97
7 0.7197 0.00 14 0.6155 23.84

Table 11. Bus loading and voltage without DG placement for the IEEE 30-bus system.

Bus No. Vpre−install (p.u) Pmax−pre−install (MW) Bus No. Vpre−install (p.u) Pmax−pre−install (MW)
1 1.0600 0 16 0.9889 0.58
2 1.0339 20.86 17 0.9790 9.43
3 1.0258 5.62 18 0.9575 7.27
4 1.0185 4.94 19 0.9597 5.84
5 0.9943 103.44 20 0.9644 3.02
6 1.0153 0 21 0.9570 17.61
7 0.9954 31.16 22 0.9535 0
8 1.0268 20.18 23 0.9274 2.54
9 1.0015 0 24 0.8833 6.09
10 0.9833 10.56 25 0.7287 0
11 1.0427 0 26 0.6598 5.13
12 1.0011 8.99 27 0.6744 0
13 1.0386 0 28 1.0192 0
14 0.9741 10.56 29 0.6173 2.57
15 0.9668 5.98 30 0.5766 18.85

Tables 12-14 show the magnitude of bus voltages of each bus in the network with the placement of the
5 mentioned DGs. Tables 13-15 show the increase in the maximum loading of each bus in network with the
placement of the 5 mentioned DGs. These tables show that with the placement of DGs on the proposed buses,
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bus voltage magnitude and maximum bus loading improve in almost all of the buses. With comparison results
between the 2 algorithms, it is obvious that the HPSO results proposed better choices than those of the PSO
algorithm.

Table 12. Bus voltage in 5 time runs for the IEEE 14-bus system.

Bus No.
Vafter−install−DG

PSO runs HPSO runs
# 1 # 2 # 3 # 4 # 5 # 1 # 2 # 3 # 4 # 5

1 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600
2 0.8982 0.8979 0.8978 0.8982 0.8982 0.8986 0.8979 0.8986 0.8979 0.8986
3 0.7461 0.7463 0.7441 0.7467 0.7461 0.7483 0.7460 0.7483 0.7465 0.7483
4 0.7494 0.7488 0.7488 0.7488 0.7494 0.7493 0.7490 0.7493 0.7484 0.7493
5 0.7765 0.7760 0.7761 0.7762 0.7765 0.7764 0.7762 0.7764 0.7756 0.7764
6 0.7115 0.7106 0.7117 0.7112 0.7115 0.7110 0.7108 0.7110 0.7103 0.7110
7 0.7202 0.7197 0.7202 0.7196 0.7202 0.7198 0.7200 0.7198 0.7191 0.7198
8 0.7747 0.7743 0.7748 0.7742 0.7747 0.7744 0.7745 0.7744 0.7737 0.7744
9 0.6735 0.6729 0.6737 0.6728 0.6735 0.6730 0.6731 0.6730 0.6723 0.6730
10 0.6601 0.6598 0.6604 0.6595 0.6601 0.6596 0.6597 0.6596 0.6588 0.6596
11 0.6740 0.6734 0.6743 0.6736 0.6740 0.6735 0.6735 0.6735 0.6728 0.6735
12 0.6655 0.6645 0.6659 0.6652 0.6655 0.6649 0.6647 0.6649 0.6643 0.6649
13 0.6526 0.6516 0.6530 0.6523 0.6526 0.6520 0.6519 0.6520 0.6515 0.6520
14 0.6135 0.6125 0.6139 0.6128 0.6135 0.6128 0.6128 0.6128 0.6131 0.6128

Table 13. Bus loadings in 5 time runs for the IEEE 14-bus system.

Bus No.
Vafter−install−DG

PSO runs HPSO runs
# 1 # 2 # 3 # 4 # 5 # 1 # 2 # 3 # 4 # 5

1 0 0 0 0 0 0 0 0 0 0
2 37.82 37.89 37.73 37.84 37.82 37.85 37.88 37.85 37.90 37.85
3 165.61 165.91 165.21 165.69 165.61 165.73 165.87 165.73 165.95 165.73
4 85.11 85.27 84.91 85.16 85.11 85.18 85.25 85.18 85.29 85.18
5 13.44 13.47 13.41 13.45 13.44 13.45 13.46 13.45 13.47 13.45
6 20.32 20.36 20.27 20.33 20.32 20.34 20.35 20.34 20.36 20.34
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 49.83 49.93 49.72 49.86 49.83 49.87 49.91 49.87 49.94 49.87
10 14.62 14.64 14.58 14.62 14.62 14.63 14.64 14.63 14.65 14.63
11 7.48 7.50 7.46 7.49 7.48 7.49 7.49 7.49 7.50 7.49
12 11.84 11.86 11.81 11.84 11.84 11.85 11.86 11.85 11.86 11.85
13 25.34 25.39 25.28 25.35 25.34 25.36 25.38 25.36 25.40 25.36
14 24.19 24.24 24.14 24.21 24.19 24.21 24.23 24.21 24.25 24.21
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Table 14. Bus voltage in 5 time runs for the IEEE 30-bus system.

Bus No.
Vafter−install−DG

PSO runs HPSO runs
# 1 # 2 # 3 # 4 # 5 # 1 # 2 # 3 # 4 # 5

1 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600
2 1.0254 1.0267 1.0285 1.0294 1.0246 1.0247 1.0237 1.0228 1.0219 1.0229
3 1.0141 1.0159 1.0183 1.0193 1.0130 1.0130 1.0117 1.0103 1.0091 1.0105
4 1.0046 1.0068 1.0097 1.0108 1.0034 1.0033 1.0018 1.0001 0.9988 1.0003
5 0.9746 0.9776 0.9816 0.9839 0.9730 0.9730 0.9711 0.9691 0.9673 0.9692
6 0.9996 1.0020 1.0054 1.0066 0.9981 0.9982 0.9964 0.9946 0.9930 0.9948
7 0.9763 0.9792 0.9830 0.9848 0.9747 0.9747 0.9728 0.9707 0.9689 0.9709
8 1.0114 1.0138 1.0172 1.0183 1.0099 1.0100 1.0083 1.0064 1.0049 1.0067
9 0.9802 0.9835 0.9880 0.9893 0.9778 0.9777 0.9755 0.9732 0.9712 0.9734
10 0.9591 0.9628 0.9680 0.9694 0.9561 0.9562 0.9537 0.9511 0.9488 0.9514
11 1.0221 1.0253 1.0297 1.0309 1.0198 1.0195 1.0174 1.0153 1.0134 1.0155
12 0.9796 0.9829 0.9873 0.9886 0.9775 0.9769 0.9747 0.9725 0.9705 0.9727
13 1.0178 1.0210 1.0252 1.0265 1.0157 1.0152 1.0131 1.0109 1.0090 1.0111
14 0.9496 0.9538 0.9583 0.9598 0.9472 0.9466 0.9442 0.9417 0.9394 0.9419
15 0.9426 0.9465 0.9515 0.9528 0.9399 0.9395 0.9370 0.9345 0.9322 0.9347
16 0.9656 0.9692 0.9740 0.9754 0.9630 0.9628 0.9604 0.9580 0.9558 0.9582
17 0.9542 0.9580 0.9632 0.9646 0.9513 0.9514 0.9488 0.9462 0.9438 0.9464
18 0.9312 0.9353 0.9407 0.9422 0.9286 0.9280 0.9254 0.9226 0.9202 0.9229
19 0.9332 0.9373 0.9427 0.9442 0.9304 0.9301 0.9274 0.9246 0.9221 0.9249
20 0.9383 0.9423 0.9477 0.9492 0.9355 0.9352 0.9326 0.9298 0.9273 0.9301
21 0.9314 0.9354 0.9409 0.9423 0.9280 0.9281 0.9254 0.9227 0.9202 0.9229
22 0.9280 0.9321 0.9376 0.9389 0.9246 0.9247 0.9220 0.9193 0.9169 0.9196
23 0.9024 0.9066 0.9123 0.9133 0.8989 0.8986 0.8960 0.8933 0.8909 0.8936
24 0.8582 0.8628 0.8691 0.8697 0.8536 0.8535 0.8508 0.8481 0.8456 0.8483
25 0.7074 0.7127 0.7204 0.7192 0.7004 0.7003 0.6978 0.6953 0.6930 0.6955
26 0.6387 0.6441 0.6524 0.6509 0.6306 0.6305 0.6280 0.6255 0.6231 0.6257
27 0.6542 0.6597 0.6679 0.6660 0.6465 0.6465 0.6440 0.6416 0.6393 0.6418
28 1.0035 1.0060 1.0093 1.0105 1.0021 1.0021 1.0004 0.9985 0.9970 0.9988
29 0.6005 0.6014 0.6169 0.6131 0.5907 0.5906 0.5883 0.5860 0.5839 0.5862
30 0.5574 0.5613 0.5670 0.5666 0.5532 0.5532 0.5512 0.5492 0.5473 0.5493

6. Conclusion

Distribution sector reforms have made a significant impact on the operation and management of utility systems.
DG sources play a key role in meeting the load demand, reducing power losses, and improving network
management overall. In this study, the applications of the PSO and HPSO algorithms were presented to
find the best location of DGs within a power network, with the objective of improving the voltage stability
index and reducing power losses. Results showed that the proposed approach is a suitable and promising
technique in solving the problem, but the best solutions found by PSO and HPSO and computational time
can be improved by tuning the parameters and improving the mathematical model of the problem. Between
these algorithms, HPSO is faster and its solutions are better in comparison with PSO. Because of the flexibility
of these algorithms, further modeling requirements can be included in the fitness function to further improve
the optimization design. For example, some of the initial simplifications can be removed from the design,
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Table 15. Bus loadings in 5 time runs for the IEEE 30-bus system.

Bus No.
Vafter−install−DG

PSO runs HPSO runs
# 1 # 2 # 3 # 4 # 5 # 1 # 2 # 3 # 4 # 5

1 0 0 0 0 0 0 0 0 0 0
2 23.07 22.87 22.58 22.41 23.22 23.22 23.38 23.53 23.70 23.54
3 6.21 0.06.16 6.08 6.03 6.25 6.25 6.30 6.34 6.38 6.34
4 5.45 5.40 5.34 5.30 5.49 5.49 5.52 5.56 5.60 5.56
5 114.25 113.25 111.84 110.98 115.00 115.01 115.83 116.57 117.39 116.58
6 0 0 0 0 0 0 0 0 0 0
7 34.46 34.16 33.72 33.46 34.69 34.70 34.95 35.17 35.43 35.18
8 22.23 22.04 21.78 21.61 22.37 22.38 22.53 22.67 22.83 22.67
9 0 0 0 0 0 0 0 0 0 0
10 11.68 11.57 11.43 11.34 11.75 11.75 11.84 11.91 12.00 11.91
11 0 0 0 0 0 0 0 0 0 0
12 9.92 9.84 9.71 9.64 9.99 9.99 10.06 10.12 10.19 10.12
13 0 0 0 0 0 0 0 0 0 0
14 11.68 11.57 11.43 11.34 11.75 11.75 11.84 11.91 12.00 11.91
15 6.59 6.54 6.46 6.41 6.64 6.64 6.68 6.73 6.77 6.73
16 0.64 0.63 0.62 0.62 0.64 0.64 0.65 0.65 0.66 0.65
17 10.41 10.32 10.19 10.11 10.48 10.48 10.55 10.62 10.69 10.62
18 8.04 7.97 7.87 7.81 8.09 8.09 8.15 8.20 8.26 8.20
19 6.44 6.38 6.30 6.26 6.48 6.48 6.53 6.57 6.61 6.57
20 3.34 3.32 3.27 3.25 3.37 3.37 3.39 3.41 3.44 3.41
21 19.44 19.27 19.03 18.89 19.57 19.57 19.71 19.84 19.98 19.84
22 0 0 0 0 0 0 0 0 0 0
23 2.82 2.79 2.76 2.74 2.84 2.84 2.86 2.88 2.90 2.88
24 6.71 6.65 6.57 6.52 6.75 6.76 6.80 6.84 6.89 6.85
25 0 0 0 0 0 0 0 0 0 0
26 5.67 5.62 5.55 5.51 5.70 5.71 5.75 5.78 5.82 5.78
27 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0
29 2.84 2.81 2.78 2.76 2.86 2.86 2.88 2.90 2.92 2.90
30 20.82 20.64 20.38 20.23 20.96 20.96 21.11 21.25 21.40 21.25

transforming the problem into a more realistic one. Future work will focus on increasing the number of devices
to be installed, which implies finding a more suitable encoding method for the population.
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