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doi:10.3906/elk-1102-1011

Fractional PID controllers tuned by evolutionary

algorithms for robot trajectory control

Zafer BİNGÜL∗, Oğuzhan KARAHAN
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Abstract

The aim of this paper is to compare the performances of a fractional order proportional integral derivative

(FOPID) controller tuned with evolutionary algorithms for robot trajectory control. In order to make this

comparison, a 2-degrees-of-freedom planar robot was controlled by a FOPID controller tuned with particle

swarm optimization (PSO) and a real coded genetic algorithm (GA). In order to see the effects of the cost

functions on the optimum parameters of the FOPID controller, 3 different cost functions were used: the

root mean squared error (MRSE), mean absolute error (MAE), and mean minimum fuel and absolute error

(MMFAE). In order to compare the performance of PSO and the GA under different conditions and to test

the robustness of the FOPID controller tuned with these algorithms, the parameters of the system model and

the given trajectory were changed and white noise was added to the system. All of the simulation results for

the robot trajectory experiment show that the FOPID controller tuned by PSO has better performance than

the FOPID controller tuned by the GA. Furthermore, the results obtained for the FOPID tuned by both PSO

and the GA indicate the superiority of the proposed tuning approach for robot trajectory control.
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1. Introduction

For linear systems, the proportional integral derivative (PID) controller has been widely used in industrial
control processes because it has a simple structure and robust performance, and it is easily tuned in a wide
range of operating conditions [1]. In spite of the fact that control theory has been developed significantly, PID
controllers are still used for many industrial applications such as process controls, motor drivers, flight control,
and instrumentation.

Fractional order dynamic systems and controllers have been increasing in interest in many areas of science
and engineering in the last few years. Fractional order controllers are described by fractional order differential
equations. Expanding derivatives and integrals to fractional orders can adjust the control system’s frequency
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response directly and continuously. Controllers consisting of fractional order derivatives and integrals have been
used in industrial applications [2] and various fields such as power electronics [3], system identification [4], robotic

manipulators [5], irrigation canal control [6], mechatronics systems [7,8], and heat diffusion systems [9]. It should
be noted that there are a growing number of physical systems whose behavior can be compactly determined using
the fractional order system theory and can be controlled with fractional order proportional-integral-derivative
(FOPID) controllers [10], even if the system has unstable or time delay behaviors [11]. There are many aspects
that should be taken into account when designing these controllers. In the FOPID controller, the 5 parameters
(Kp, Kd, Ki, λ, μ) need to be tuned based on some design specifications. The desired specifications for the

controllers are usually to achieve robust to load disturbances, high frequency noise, and uncertainties of the
plant model. Taking into account all of the constraints in the tuning method of the FOPID controller, the
optimal set of values for Kp, Kd, Ki, λ and μ can be found. The ultimate goal of this paper is to develop a

method to find the optimum parameters of the FOPID controller under given constraints. However, the method
developed should be simple and reliable. Evolutionary algorithms seem to be a good potential tuning method
for these requirements.

It is quite difficult to optimize the parameters of the FOPID controller in linear and nonlinear systems.
There is a need for an effective and efficient global approach to optimize these parameters automatically. Several
evolutionary optimization algorithms such as the genetic algorithm (GA) [12-14], differential evolution algorithm

(DE) [15,16], and particle swarm optimization (PSO) [17-20] have been proposed to optimize the parameters of
the several controllers.

PSO is a relatively new evolutionary algorithm that may be used to find optimal or near optimal solutions
in a large search space. The PSO algorithm is especially useful for parameter optimization in continuous,
multidimensional search spaces. The PSO method can generate a high quality solution within a shorter
calculation time and it tends to converge very fast compared to other stochastic methods. Moreover, it is
implemented easily in most of the programming languages.

There have been many studies related with the evolutionary algorithm-based design of the FOPID and
PID controllers in the literature. Chang et al. [12] proposed a novel adaptive GA for the multiobjective
optimization design of a FOPID controller and applied it to the control of an active magnetic bearing system.
They found that the fractional PID controllers have remarkably reduced the overshoot and settling time
compared with the optimized conventional PID controller. Aldair and Wang [13] designed an optimal FOPID
controller for a full vehicle nonlinear active suspension system. Their results illustrate clearly the effectiveness
and robustness of the proposed controller. Lee et al. [14] developed a design method of a FOPID controller via a
hybrid of an electromagnetism-like algorithm and the GA for a second order system with time delay. Simulation
results showed that the hybrid system has better ability of global optimization and faster convergence. Bingul
[15] employed the differential evolution (DE) algorithm to tune a PID controller for unstable and integrating
processes with time delay. The results showed that a faster settling time, less or no overshoot, and higher
robustness were obtained with the PID tuned DE. Biswas et al. [16] designed FOPID controllers using the DE
algorithm and compared the DE with PSO and the GA in the speed control of a DC motor, second order plant,
and fractional order plant. The DE-based method could find better solutions consuming a lesser amount of
computational time. Cao and Cao [17] demonstrated the parameter optimization of a fractional order controller
based on a modified PSO. In their paper, the improved PSO could achieve faster search speed and better solution
compared to the GA. Maiti et al. [18] employed PSO for designing fractional order PID controllers. They reduced
significantly the percentage of overshoot, rise, and settling times using FOPID controllers compared to a PID
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controller. Majid et al. [19] employed the PSO algorithm to determine 5 parameters of the FOPID controller for
an automatic voltage regulator. The results of the paper showed that PSO could perform an efficient search for
optimal FOPID parameters. Moreover, the proposed FOPID controller has more robust and better performance
characteristics in comparison with the PID controller. Alfi and Modares [20] found optimal system parameters
for an unstable nonlinear system and optimal parameters of the PID controller using a novel adaptive PSO
(APSO). They compared the APSO with a linearly decreasing inertia weight PSO (LDW-PSO) and the GA.
The APSO has a faster convergence speed than the GA and LDW-PSO.

The rest of this article is organized as follows: the FOPID controller used in the robot trajectory control
is presented in Section 2, the dynamic model of the robot arm is described in Section 3, the PSO-tuning method
for the FOPID controller is described in Section 4, and the experimental results and conclusion are given in
Sections 5 and 6, respectively.

2. Fractional order PID controller

One of the possibilities for improvements in the quality and robustness of PID controllers is to use fractional

order controllers with noninteger derivation and integration parts. The PIλDμ controller generalizes the PID
controller involving an integrator of order λ and a differentiator of order μ .

The differential equation of thePIλDμ controller is given as follows:

u(t) = kpe(t) + kiD
−λ
t e(t) + kdD

μ
t e(t). (1)

The continuous transfer function of the FOPID controller is obtained by means of the Laplace transformation,
as given by:

Gc(s) = KP + KIs
−λ + KDsμ. (2)

For designing a FOPID controller, 3 parameters (KP , KI , KD) and 2 orders (λ, μ) with nonintegers should
optimally determined for a given system.

3. Dynamic model of the planar robot

To test the performance of the proposed controllers, the planar robot with 2 degrees of freedom (DOF), shown
in Figure 1, is selected as an example problem.
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Figure 1. Model of a 2-DOF planar robot.
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The dynamic equations of the serial robot are usually represented by the following coupled nonlinear
differential equations:

τ = D(q)q̈ + C(q, q̇) + G(q). (3)

The joint variable q is an n-vector containing the joint angles for the revolute joints. The dynamic
equation of the 2-DOF planar robot was computed in [21] as follows:

[
τ1

τ2

]
=

(
(m1 + m2)l21 + m2l

2
2 + 2m2l1l2 cos θ2 m2l

2
2 + m2l1l2 cos θ2

m2l
2
2 + m2l1l2 cos θ2 m2l

2
2

) (
θ̈1

θ̈2

)

+

(
−m2l1l2(2θ̇1θ̇2 + θ̇2

2) sin θ2

m2l1l2θ̇
2
1 sin θ2

)
+

(
(m1 + m2)gl1 cos θ1 + m2gl2 cos(θ1 + θ2)

m2gl2 cos(θ1 + θ2)

)
.

(4)

4. Particle swarm optimization

In this section, the PSO algorithm is used for the FOPID design in a 2-DOF robot arm.

4.1. PSO algorithm

PSO is an evolutionary computational technique based on the movement and intelligence of swarms looking for
the most fertile feeding location. A “swarm” is an apparently disorganized collection (population) of moving
individuals that tend to cluster together, while each individual seems to be moving in a random direction. PSO
uses a number of agents (particles) that constitute a swarm moving around in the search space looking for the

best solution [22,23].

Each particle is treated as a point in an n-dimensional space and adjusts its “flying” according to its own
flying experience, as well as the flying experience of other particles. Each particle keeps track of its coordinates
in the problem space, which are associated with the best solution (fitness) that has been achieved so far. This
value is called pbest. Another best value called gbest is that obtained so far by any particle in the neighbors of
the particle .

The PSO concept consists of changing the velocity (or acceleration) of each particle toward its pbest and
the gbest position at each time step. Each particle tries to modify its current position and velocity according to
the distance between its current position and pbest, and the distance between its current position and the gbest.
At each step n , by using the individual best position, pbest, and global best position, gbest, a new velocity for
the ith particle is updated by:

Vi(n) = χ (Vi(n − 1) + ϕ1r1 (pbesti − Pi(n − 1)) + ϕ2r2 (gbest − Pi(n − 1))) . (5)

χ is defined below:

χ =
2∣∣∣2 − ϕ −
√

ϕ2 − 4ϕ
∣∣∣ , ϕ = ϕ1 + ϕ2, ϕ > 4 (6)

The velocity is confined within the range of [−vmax, +vmax] . If the velocity violates these limits, it is forced
to its proper values. Changing velocity in this way enables the ith particle to search around its local best
position, pbest, and global best position, gbest. Based on the updated velocity, each particle changes its position
as follows:

Pi(n) = Pi(n − 1) + Vi(n). (7)
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4.2. Optimization of the FOPID controller with PSO

Since each FOPID controller has 5 parameters, there are a total of 10 parameters to be optimized with PSO.
The PSO algorithm searches all of the controller parameters in the 10 dimensional spaces. The particle includes
10 elements assigned real values.

The order of a particle is shown as follows:

Pi = [Kp1 , Kd1 , μ1, Ki1, λ1, Kp2 , Kd2 , μ2, Ki2 , λ2] . (8)

In the above, the parameters Kp1 ..., λ1 and Kp2 ..., λ2 correspond to the elements of the 1st controller and the

2nd controller, respectively.

4.3. Cost functions

The most crucial step in applying PSO is to choose the best cost function, which is used to evaluate the fitness
of each particle. During the tuning process with PSO, 1 of the 3 different cost functions [root mean squared

error (MRSE), mean absolute error (MAE), and mean minimum fuel and absolute error (MMFAE)] is employed.
These cost functions for the ith particle are given below.

EMRSE(k) =
1
N

N∑
i=1

√
(e2

1(i) + e2
2(i)) (9)

EMAE(k) =
1
N

N∑
i=1

|e1(i)|+ |e2(i)| (10)

EMMFAE(k) =
1
N

N∑
i=1

|e1(i)| + |e2(i)| + |u1(i)| + |u2(i)| (11)

4.4. Tuning of the FOPID using PSO

A block diagram of the robot system controlled with the FOPID controllers is shown in Figure 2. All of
the simulations are performed here in MATLAB 7.0.1. Figure 3 illustrates the block structure of the FOPID
controller optimizing process with PSO. All of the parameters of the FOPID controllers are updated at every
simulation time (tf ).

Theata1(t)

Theata2(t)

+- FOPID CONTROLLER-1 Torque-1          Theata-1

Torque-2         Theata-2+
- FOPID CONTROLLER-2

Trajectory Generation
Planar Elbow Manipulator

Limiter

Limiter

Figure 2. Simulink model of the robot and FOPID controllers.
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Figure 3. Tuning process of the FOPID controller parameters with PSO.

In this study, the population size is set to 10 particles for considering the excessive computational load.
As each particle Pi has 10 elements, the swarm size is 10 × 10. It should be noted that the values of an element
in the particle may exceed its reasonable range. In this case, inspired from practical requirements and from
the papers focusing on tuning the parameters of the FOPID in application of the different systems, the lower
bound of the FOPID parameters is 0 and their upper bounds are set to Kpmax = Kimax = 2000, Kdmax = 100,
and λmax = μmax = 2. The initial values of the particles are randomly generated based on the maximum values
in the first generation.

In the PSO block (Figure 3), the cost function is calculated for each particle, and pbest and gbest are

computed for every final time (tf ). A particle velocity [Eq. (5)] is calculated for each particle and the particle

position [Eq. (7)] is updated. This algorithm is run until maximum iteration or minimum cost criteria are

attainable. In the PSO algorithm, the parameters χ , ϕ1 , and ϕ2 are set to 0.76, 2.05, and 2.05 [22,23]. For
the given trajectory, the PSO algorithm with 1 of the 3 different cost functions is processed for 60 generations
and repeated for 10 runs. The training trajectories for the robot joints are given below.

θ1(t) = 0.1524 + 0.24384 cos(
2πt

5
− π

2
) (12)

θ2(t) = 0.39624 + 0.24384 sin(
2πt

5
− π

2
) (13)

Figure 4 shows the movement of 1 particle (Particle 1 ) in the swarm from the 1st generation to the last
generation along the given trajectory.
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Figure 4. One particle movement from the initial generation (a) to the last generation (b) during the tuning process.
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5. Tuning of the FOPID controller using the GA

In order to emphasize the advantages of the proposed design method, the FOPID-GA controller, based on the
real-value GA, is implemented. The parameters of the FOPID controller are also tuned with the GA using the 3
different cost functions defined above. In order to have an accurate comparison, the optimization conditions for
the FOPID-PSO and FOPID-GA should be the same. Therefore, the range of the possible values of the control
signal in the optimization process is restricted to the upper bound of 30 Nm and 20 Nm and the lower bound of
–14 Nm and –16 Nm for the 1st joint and the 2nd joint, respectively. In order to have a better comparison, the
initial range of the parameters for the FOPID controller is selected to be the same as that of PSO. Parameters
of the GA algorithm are chosen as below.

• Selection: normalized geometric select (‘normGeomSelect ’)

• Fitness function: MRSE, MAE, and MMFAE

• Crossover: arithmetic crossover (‘arithXover ’)

• Mutation: uniform method (‘unifMtuation’)

• Number of FOPID parameters : 5

• Population number: 10

• Generation number: 100

In order to compare the search performance of the different evolutionary techniques, PSO algorithm and the
GA are applied to the FOPID controller optimization with 3 different cost functions. Figure 5 shows the fitness
values of both algorithms with the MRSE cost function, and as can be seen, the fitness value of the FOPID-PSO
is decreased to 0.0027 after 55 generations. On the other hand, the fitness value of the FOPID-GA is decreased
to 0.0031 after 82 generations. It is clear from Figure 5 that PSO converges fast initially, but requires more
generations later to reach the optimal point. As can be seen, through about 60 generations, the PSO algorithm
provides better convergence. Furthermore, the results obtained here show that the PSO algorithm can search
optimal FOPID controller parameters more quickly and efficiently than the GA algorithm.
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Figure 5. The convergence behaviours of the FOPID-PSO (a) and FOPID-GA (b) controllers with the MRSE cost

function during the optimization process.
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6. Simulations and discussion

For 3 different cost functions, the parameters of the FOPID controller tuned with 2 different algorithms are
summarized in Tables 1 and 2, respectively.

Table 1. Tuned parameters of the designed FOPIλDμ controller with PSO for the 3 different cost functions.

FOPID PSO-MRSE PSO-MAE PSO-MMFAE
parameters Joint 1 Joint 2 Joint 1 Joint 2 Joint 1 Joint 2

Kp 994 1086 677 1650 241 273
Ki 603 25 582 117 1550 147
Kd 31 8 23 17 27 11
λ 1.014 1.044 0.988 1.018 1.0329 1.1350
μ 1.011 1.1711 0.985 1.009 0.9906 0.8991

Table 2. Tuned parameters of the designed FOPIλDμ controller with the GA for the 3 different cost functions.

FOPID parameters GA-MRSE GA-MAE GA-MMFAE
parameters Joint 1 Joint 2 Joint 1 Joint 2 Joint 1 Joint 2

Kp 1074 329 980 1339 157 317
Ki 628 984 660 75 1030 1157
Kd 21 18 30 19 31 21
λ 1.1423 0.9080 1.15 0.98 0.5427 0.4256
μ 1.0274 0.8333 0.946 0.89 1.0883 0.8739

From Tables 1 and 2, the parameters of the FOPID-PSO controller for the cost function MRSE are
approximately close to that of the FOPID-GA controller for joint 1. However, all of the parameters obtained
from both algorithms for joint 2 are different from each other. The reason is that joint 2 is very sensitive to
parameter changes in the controller. As expected, each cost function produces different optimum controller
parameters based on its priority. Specifically, the MMFAE cost function yields controller parameters that are
very different from those of the other cost functions. Kp , K i , and Kd in the FOPID-PSO controller change
with the different cost functions. However, there is very little change in λ and μ for the different cost functions.
For the MMFAE, λ in the FOPID-GA controller alters dramatically from the values obtained from the other
cost functions for both joints. A comparison in terms of the cost functions is given in Table 3. In the case of
no disturbance, PSO has better fitness values.

Table 3. Cost function values of the 3 different controllers without any disturbance.

Cost functions FOPID-PSO FOPID-GA
MRSE 0.0027 0.0031
MAE 0.0030 0.0032

MMFAE 7.2380 7.2465

The objective of this section is to test the robustness of the FOPID-PSO and FOPID-GA controllers and
to show their performances. In order to study the robustness of the controllers, the mass of the robot arm for
each joint is increased 3-fold. For this case, the controllers’ parameters tuned by PSO and the GA are kept
unchanged. The performances of the controllers are compared to each other for different trajectories. Figure
6 shows the position and control signal of the controllers with the MRSE cost function along the trajectory

1130
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tracking. The simulations are performed by using the MAE and MMFAE as well, and it can be observed that
the same PSO advantages arrived at using the MRSE are still valid. Considering all of the simulation results,
the FOPID-GA controller has a slower response time compared to the FOPID-PSO controller. The FOPID-
PSO controller successfully tracks the trajectory for both arms. It can also be seen that the trajectory tracking
performance obtained with PSO is more robust to the variation of the mass compared to the GA.
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Figure 6. Positions (a and c) and control signal (b and d) of the FOPID-PSO and FOPID-GA controllers with the

MRSE cost function under mass changes.

In the 2nd case for the robustness evaluation of the controllers, external disturbances such as the white
noise with different variances are added to the robot system. The noise is applied to the 1st joint, the 2nd
joint, and then both joints, respectively. For the experiments related to different noise variances, the values
of the MRSE cost function are given in Table 4. Similar results are observed when the MAE and MMFAE
cost functions are used. As can be seen from the results given in Table 4, the FOPID-PSO controller produces
better results than the FOPID-GA controller and provides more robust control performance, ensuring good
disturbance rejection. When the noise variance is increased, it can be seen that the deviations from the given
trajectory occur.

In the 3rd robustness test, the values of the amplitude, A , and phase, φ , in the given trajectory are
changed for joint 1, joint 2, and then both joints, respectively, and the frequency of the given trajectories is
also varied. For these experiments, the FOPID-PSO controller is robust to changes in the given trajectory.
Among these experiments, one is selected to illustrate as an example. Figure 7 shows the desired and actual
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positions and control signals of the joints for controllers with the MRSE under changes in both the amplitude
and the phase. The FOPID-PSO controller has more robust stability and performance characteristics than the
FOPID-GA controller for both joints.

Table 4. MRSE cost function values in the case of adding noise with different variances.

Joint 1 Joint 2 Joints 1 and 2
Noise power FOPID-PSO FOPID-GA FOPID-PSO FOPID-GA FOPID-PSO FOPID-GA

0.1 0.0082 0.0088 0.0085 0.0099 0.0086 0.0103
0.5 0.0090 0.0110 0.0115 0.0140 0.0115 0.0156
0.7 0.0094 0.0122 0.0138 0.0165 0.0136 0.0187
0.8 0.0096 0.0129 0.0151 0.0179 0.0149 0.0203
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Figure 7. Position (a and b) and control signal (c and d) of the FOPID-PSO and FOPID-GA controllers with the

MRSE under changes in both the amplitude and the phase.

In order to see the effects of frequency changes in the given trajectory on tracking performance, different
frequency values (2π and 3π) are applied to the controlled robot system. In this case, the responses of the
controlled system with the FOPID-PSO and FOPID-GA are shown in Figures 8 and 9.
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Hz.
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As can be seen from Figures 8 and 9, the FOPID-PSO controller with the MRSE cost function is more
robust and has better trajectory tracking than the FOPID-GA.
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In order to see the position control performance of the controllers, the unit step is applied to the robot
arm. Figure 10 shows the responses of the FOPID-PSO and FOPID-GA controllers with the MRSE cost
function. Furthermore, the simulations are performed using the MAE and MMFAE, and it is observed that the
same PSO advantages arrived at using the MRSE are still valid.

As can be seen in Figure 10, the dynamic properties (overshoot and settling time) of the controlled system
response obtained from the FOPID-PSO controller are much better than those of the FOPID-GA controller.

7. Conclusion

This paper introduced an intelligent optimization method for FOPID controllers tuned with evolutionary
algorithms. In order to evaluate the performance of the controller, trajectory tracking of a 2-DOF planar
robot was done. The robust design of the FOPID controller is difficult to compare to the PID controller, since
the FOPID controller includes more parameters. All of the parameters related to the FOPID controller were
determined using PSO and the GA. In order to examine the effects of the cost functions on the controller
parameter optimization, 3 different cost functions were used in the algorithms. The performance of PSO and
the GA was compared with several simulation experiments. Moreover, the robustness of the FOPID-PSO and
FOPID-GA controllers was tested in the case of mass changes, the presence of noise with different variances, and
different trajectories (amplitude, phase, and frequency change). Position control performance of the controllers
was studied by applying step input.

Considering all of the results from the simulation experiments, the FOPID-PSO controller can achieve
good performance and robustness, superior to those obtained with the FOPID-GA controller. Moreover, PSO
can achieve faster search speed and better solutions compared to the GA. The FOPID-PSO controller has good
tracking performance in comparison with the FOPID-GA controller. In addition, the FOPID-PSO controller
enhanced the flexibility and stability of the PID controller. Furthermore, the implementation of the controller
tuning with PSO is much easier than with the traditional methods because there is no need for derivative
knowledge or complex mathematical equations. In future studies, fuzzy-FOPID will be developed using these
optimized FOPID controllers.

Nomenclature

Kp Proportional gain
Kd Derivative gain
Ki Integral gain
λ Integrator order
μ Differentiator order
D(q) Inertia matrix
C(q, q̇) Coriolis/centripetal matrix
G(q) Gravity vector
τ Torque
q Joint variable
mi ith link mass
li ith link length
θi ith joint position
θ̇i ith joint velocity

θ̈i ith joint acceleration
Pi ith particle position vector
r1 and r2 Random numbers between 0 and 1
ϕ1 and ϕ2 Positive constant learning rates
χ Constriction factor
e1(i) Trajectory error of the 1st joint for the

ith step
e2(i) Trajectory error of the 2nd joint for the

ith step
N A number of sample
k Iteration number
u1(i) Control signal of the 1st joint
u2(i) Control signal of the 2nd joint
tf Simulation time
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