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1TÜBİTAK BİLGEM, Gebze, Kocaeli, Turkey

2Department of Computer Engineering, Boğaziçi University, Bebek, İstanbul, Turkey
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Abstract: For the formal verification of security in mobile networks, a requirement is that security policies associated

with mobility and location constraints are formally specified and verified. For the formal specification and verification

of security policies, formal methods ensure that a given network configuration that includes certain network elements

satisfies a given security policy. A process calculus based approach is presented, where ambient calculus is used for

formal specification of security policies and ambient logic is used for formal representation of mobility and location

constraints. A spatiotemporal model checking algorithm is presented for the model checking of formal specifications

in ambient calculus with respect to formulas in ambient logic. The presented algorithm allows spatiotemporal model

checking of security policy rules and consists of spatial and temporal model checking algorithms. The spatial model

checking algorithm is implemented in the Java language and the temporal model checking algorithm is implemented

using the NuSMV model checker.
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1. Introduction

Providing security services in multiple administrative domains is an increasing need, as well as a challenge. In

mobile networks with multiple domains, users are allowed to roam among domains. Roaming users may connect

to multiple domains, and they may use resources in these domains. Management of interdomain security policies

should be supported for security management in multiple domain networks. Authorization mechanisms are used

for determining the access rights for a user, with respect to a security policy. The actions of users should be

verified with respect to interdomain policies while they are accessing resources on multiple domains. We can

utilize formal verification in order to ensure that security mechanisms are not bypassed and the security policy

is not violated by the roaming users, which would result in an abuse of the internal trust relationships.

In mobile networks with multiple domains, security policies associated with mobility and location con-

straints should be formally specified and verified. The existence of mobile users in this environment presents

challenges for formal specification and formal verification. Formal methods provide means for ensuring that the

design of a system is consistent with its specification. Formal methods are used within the context of security

policy specification and verification, for the purpose of ensuring that a given configuration of a network satisfies

the security policy.

We are concerned with formal specification of security policy in an environment where users roam within
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a network that contains different administrative domains. A security policy determines the allowed actions for

subjects to conduct on objects and defines the conditions for the access. An administrative domain defines

a set of subjects and objects. Actions related to mobility determine the functions that may be conducted by

a subject in an administrative domain with respect to locations and mobility within the network. Following

these definitions, we formalize our problem definition as follows: “Given a model of a network that includes

mobile users roaming different administrative domains, to determine formally whether the actions related to

mobility are compliant with the security policy”. Our purpose is to verify compliance formally, in terms of a

formal specification of security policy with respect to a formal representation of location constraints together

with mobility constraints.

In this study, the formal security policy model is based on ambient calculus and the formal representation

of mobility and location constraints is based on ambient logic. Multidomain mobile networks have multiple

locations and mobile users. Therefore, the mobility and location of users are considered as a part of the security

policy in our proposed method. Our method is based on process calculus and modal logic. Ambient calculus is

a process calculus aimed at mobility and location of processes. Ambient logic is a type of modal logic, which

is used for reasoning about spatiotemporal properties related to ambient calculus processes. The satisfaction

relation is evaluated through spatiotemporal model checking, for verification of mobility and location constraints

with respect to security policies in a given mobile network configuration.

In this paper, a spatiotemporal model checking algorithm is presented for the model checking of ambient

calculus specifications with respect to ambient logic formulas. The presented algorithm allows spatiotemporal

model checking of security policy rules. The spatiotemporal model checking algorithm includes 2 phases, namely

spatial model checking and temporal model checking.

The model checking algorithm that we propose introduces heuristics for spatial model checking in order

to reduce the time and space complexity. We presented a preliminary version of this algorithm in [1]. In this

paper, we present the complete algorithm and provide an extended analysis of performance and complexity

based on a case study. The spatiotemporal model checking algorithm has been implemented as a tool called the

ambient calculus model checker. The spatial model checking phase is implemented in the Java language. For

the temporal model checking phase, the NuSMV model checking tool has been used.

We present related work and background information on ambient calculus and ambient logic in Section

2. We present a formal model for security policies with mobility and location aspects in Section 3. We propose

a novel spatiotemporal model checking algorithm for ambient calculus in Section 4. We present a complexity

and performance analysis of the proposed algorithm based on a case study in Section 5. We conclude with

Section 6.

2. Background and related work

2.1. Formal methods and languages for the specification and verification of security policies

Logic based models for security policies have been used as a general framework for formal specification of

security policies. SECPAL [2] is a logic based policy language suitable for security of grid computing. A

logic programming based method named Flexible Authorization Framework (FAF) [3, 4] provides a framework

for authorization policies that supports formal specification, derivation, and conflict resolution. Another logic

based model [5] supports explicit denial rules, policy hierarchies, derivation of new policies, and resolution of

conflicts. Ponder [6] is a policy language for Java, which is suitable for network services security management.

Woo and Lam [7] proposed a formal language where authorizations are specified in a declarative manner, based
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on the concept of policy bases. Deontic logic was used in [8] for modeling organizational security policies. A

set-and-function formalism based security policy language was presented in [9]. A formal model of security in

mobile ad hoc networks based on cryptography was studied in [10].

Model checking and theorem proving are 2 popular formal methods used for verification of security

policies. The first-order logic based Acpeg tool [11] supports access control policy evaluation and generation.

In our previous study [12], we presented a theorem proving based approach where the calculus of inductive

constructions is used as a formal basis for specification of a formal security policy model that supports automated

conflict detection. RBAC authorization constraints are formalized and verified based on first-order linear
temporal logic using the Isabelle theorem prover in [13]. Nontemporal and history based constraints were

formalized in [14] based on first-order linear temporal logic (LTL) and the Object Constraint Language (OCL),

and some RBAC policies were verified using a theorem prover.

Ambient calculus [15] is a process calculus with mobility and location primitives. Regarding mobile

systems, ambient calculus is also used for formal representation and reasoning of security issues. Spatial modeling

of security policies in the application layer, based on a version of ambient calculus, was investigated in the PhD

thesis of Scott [16]. BACIR is a version of boxed ambient calculus applied to RBAC mechanisms for the purpose

of defining access control policies for ambients in [17].

In our study, the ambient calculus process calculus specification language [18] and the ambient logic

[19] modal logic are also used. Process calculus specifications with ambient calculus are used for modeling the

mobile network and the associated security policies. Ambient logic is used for formal specification of mobility

and location constraints within security policies. Predicate logic is used for modeling the relational aspects.

In our model, locations denote logical boundaries of domains and hosts. In contrast to our approach, BACIR

deals with policies embedded within ambient calculus formulas, and Scott focused on application level policies

in which locations denote physical location boundaries.

Charatonik et al. [20, 21] proposed an exhaustive search based model checking algorithm for ambient

calculus. Mardare et al. [22] proposed an algorithm based on time and space decomposition. Our proposed

algorithm includes 2 main contributions that complement and enhance existing model checking algorithms for

ambient calculus. First, we propose a novel data structure called capability trees. This data structure is used

in the state space generation operation in order to reduce the complexity. The matching operation of ambient

logic spatiotemporal formulas to the state space is also improved. Second, we offer heuristics for checking spatial

modalities in order to reduce the search space.

2.2. Ambient calculus and ambient logic

Ambient calculus was proposed by Cardelli and Gordon [15]. It is a process calculus for concurrent systems that

includes mobility and location primitives. We use ambient calculus to model the mobility and location aspects

of mobile networks and their associated security policies. We use a version of the ambient calculus language,

which is decidable for model checking. The fragment that we use in this study is listed in Table 1.

Like all process algebras, ambient calculus relies on the notion of process. Processes are the counterparts

of real world system elements. Properties of ambient calculus processes can be analyzed as spatial properties

and temporal properties. The notion of ambient is the basic spatial element. Ambients are bounded places

identified by a name where processes reside inside or outside. Ambients can be nested in other ambients. This

provides hierarchical organization of locations.

All process algebras have constructs that resemble the changes of the real world systems over time,
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Table 1. Mobility and location primitives within ambient calculus.

P,Q ::= process M ::= capability

0 inactivity x variable

P |Q composition n name

M [P ] ambient in M can enter M

M.P capability out M can exit M

(x).P input open M can open M

〈M〉 output ε null

M.M path

called temporal constructs. Most of the calculi provide temporal constructs as communication primitives.

Because the main aspect of ambient calculus is modeling mobility, it provides temporal constructs in addition

to communication primitives. There are 3 main temporal constructs in ambient calculus: in n, out n, and open

n. Capabilities can represent sequential execution as well as parallelism. Their effect on ambients is regulated

by the name references they contain. Capabilities are ordered as sequences called paths. They must be attached

to an ambient or inactivity (0 ). While the ability of change of ambient hierarchy represents mobility, it can be

used to represent any kind of computation. There are also communication primitives for exchanging messages

between processes within the same ambient.

Names are used for identifying ambients as well as for accessing ambients; capabilities can affect or use

ambients whose names are known by them. Two distinct ambients can have the same name, but in the fragment

of ambient calculus in this paper, names are restricted to be unique. They become an identifier in the scope of

this paper. This restriction reduces the implementation complexity by eliminating renaming and bookkeeping

tasks for ambients, which are not core model checking tasks.

The inactive process, 0, specifies the empty process, which does nothing. It is not reducible. Parallel

execution of the processes is represented by the parallel composition operator. It is a commutative and

associative operator. In ambient calculus, communication constructs are asynchronous. Communication is

local to an ambient. Ambient calculus does not support channel names for communication. Both names and

capabilities may be communicated in the full fragment of the calculus. However, in this paper communication

of capabilities is excluded.

Variables are place holders for names when an input operation is included in a capability path. When

an output operation provides a name to an input operation, every instance of variables in the scope of input

capability is replaced with the incoming name. The semantics are defined based on the structural congruence

relation. Structural congruence defines processes by elementary spatial rearrangements. The dynamic properties

of ambient calculus originate from capabilities and communication primitives. This set of constructs is called

temporal constructs. The semantics of these constructs are identified by reduction relations.

As mentioned before, modal logics are used for expressing properties of models that cannot be expressed

by the constructs of calculi. Ambient logic expresses spatiotemporal constructs of ambient calculus processes.

The main differences of ambient logic from latter logics are more expressive space modalities and simpler

temporal connectives [23, 24].

For the purposes of this study, a fragment of ambient logic has been used and the syntax of this fragment
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Table 2. Syntax of ambient logic.

η a name n

A ,B,C ::= T true A |B composition

¬A negation n[A ] location

A ∨B disjunction ♦A sometime modality

0 void �A somewhere modality

is given in Table 2. Spatiotemporal modalities as well as propositional logic constructs are included in the

ambient logic. The semantics are defined by satisfaction relations. The satisfaction relation, denoted by |=, is

defined with respect to structural congruence of processes. P |= A denotes that P satisfies A , where P is a

process and A is a formula. Π is the set of processes, Φ is the set of formulas, ϑ is the set of variables, and

Λ is the set of names.

Ambient logic provides 2 main spatiotemporal constructs. The Somewhere connective, � , is used for

specifying nesting properties of processes. The formula �A is satisfied by processes that satisfy A in some inner

location. The Sometime connective, ♦ , is used for specifying temporal behavior of the processes on the basis

provided by reduction relations (→).

3. The formal model of security policies with mobility and location constraints

The formal security policy model consists of 2 formal models related to mobility and locations. First, a formal

model of mobility and location constraint is required. Second, a formal model of actions and the location

configuration of the system are required. Because of the dynamic nature of mobility, in mobile networks the

location (spatial) configuration of the system changes with actions. This necessitates the use of time in the

policy model. Ambient calculus is used for representation of actions and the location configuration. Time and

location aspects of security policy rules are modeled as mobility and location constraints. We utilize ambient

logic for specification of mobility and location constraints.

3.1. The access control model

The access control model is defined by a formal specification of an extension of the role based access control

(RBAC) [25] model. The predicate calculus and first order set theory formalisms are the basis of the formal

specification. In order to introduce mobility and location constraints into security policies, we propose an

extension to the RBAC model, which consists of the set of domains, the set of hosts, the set of object types, and

a formal authorization term structure including conditions and location constraints.

• Constants in the model:

d : Number of domains,n : number of hosts,m : number of users, o : number of roles, t : number of objects,

and v : number of object types.

• Sets in the model:

– ∆ = {D1, D2, ...Dd} : Domains , H = {H1, H2, ...Hn} : Hosts.

– U = {U1, U2, ...Um} : Users , R = {R1, R2, ...Ro} : Roles.
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– O = {O1, O2, ..., Ot} : Objects , OT = {OT1, OT2, ...OTv} : Object types.

– AS = U ∪R : Authorization subjects, the set of active entities that are the subjects of an action.

– AO = O ∪ OT ∪ H ∪D : Authorization objects, the set of passive entities that are the objects of

an action.

– A : Set of actions. A ={Enroll, Login, Logout, Execute, Read, Write, Send, Receive, Delete, Create}
.

– Signs: S = {+,−} . A signed action sa ∈ S ×A denotes permission (+) or denial (-) for an action.

• Relations in the model:

HOD : H ×∆ : Mapping for hosts to domains. HOD(Hi, Da) denotes enrollment of host Hi to domain

Da .

UOD : U ×∆: Mapping for users to domains. UOD(Uj , Da) denotes enrollment of Uj to domain Da .

OOT : O → OT :A function returning the object type. OOT (Ok) is the type of the object Ok .

UA : U ×R : User-role assignment relation.

PA : R×AO ×A : Role permission association relation.

• Conditions in the model are first order predicate logic sentences, and the following predicates are prede-

fined:

1. EDR (Di, uj ), where Di ∈ ∆, uj ∈ U specifies whether a user uj has been enrolled (registered) to

domain Di .

2. EDH (Di, hk ), where Di ∈ ∆, hk ∈ H specifies whether a host hk has been enrolled (registered) to

domain Di .

3. ADU (Di, uj ), where Di ∈ ∆, uj ∈ U specifies whether user uj has been logged into domain Di .

4. RSG (uj , rl ), where uj ∈ U, rl ∈ R specifies whether user uj has rights to assume role rl .

5. RAS (uj , rl ), where uj ∈ U, rl ∈ R specifies whether user uj has actively assumed role rl .

6. REN (rl,Sm ), where Sm ⊂ AO, rl ∈ R specifies whether role rl is enabled for a subset of

authorization objects Sm .

7. DR (rl, rk ), where rl, rk ∈ R specifies whether a given role rl is descendant (or specialization) of

another given role rk .

8. OIT (on, tm ) specifies whether an object on ∈ O identified by its object name is of a given object

type tm ∈ OT .

9. ADM (uj ,Di ), where uj ∈ U,Di ∈ ∆ specifies whether user uj has administrative rights over

domain Di .

• Spatial formula is an ambient logic formula including domains, authorization subjects, and authorization

objects.
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at = (as, ao, sa, fo, co) is an authorization term, where as∈AS, ao ∈ AO, sa∈ S × A , fo (formula) is

a formal specification in ambient logic, and co (condition) is a formal specification in predicate logic. A set of

authorization terms defines a security policy.

3.2. Mobility and location model

The mobility and location formal model provides a spatiotemporal model for security policies. Mobility and

location constraints are represented by this formal model. There are 2 main uses of the mobility and location

model. First, a formal specification in ambient calculus represents the current location state of the system.

Second, a location formula specified as an ambient logic formula represents the mobility and location constraints.

Spatiotemporal model checking is used to evaluate the satisfaction of mobility and location constraints with

respect to the current state of the system. Spatiotemporal model checking is based on evaluation of the

satisfaction relation, which has been defined in Section 2.2.

LCONF, the location configuration of the system, is a formal representation of the current system state.

The initial state LCONF0 is generated from the network configuration and the security policies. Whenever

a user requests to execute an action, that action is translated into a formal specification. The action may be

executed only if the action is allowed by the security policy. The location configuration is regenerated according

to the new system state. An example location configuration is as follows:

LCONF = D1[U1[in H1.0|out H1.0|in F1.0|out F1.0]|H1[F1[Data1[in U1.0|out U1.0]]]].

This example includes a single domain, D1 . The user U1 has a read permission to the file F1 . U1 logs into

the host H1 in order to read Data1 from the file F1 . The formalization of actions is handled by translating

them to ambient calculus capabilities. The parallel (|) operator is used to combine multiple actions. Any of

the combined actions may be exercised in an independent fashion. Spatiotemporal model checking is applied

to determine whether a location constraint fo is satisfied in the current location configuration LCONF , i.e.

LCONF |= fo .

The authorization term is defined as a 5-tuple at = (as, ao, sa, co, fo). An authorization term formally

represents a security policy rule. Here, as is an authorization subject, ao is an authorization object, sa is a

signed action, co is a generic constraint, and fo is a mobility and location formula. A generic constraint is

specified as a predicate calculus formula, whereas the mobility and location formula is specified as an ambient

logic formula.

We now present an example of formal specification of policy rules with mobility and interdomain ac-

cess constraints. In this example, {UniA,UniB} ⊂ Γ, u ∈ U, Student ∈ R, p ∈ O,Portable ∈ T . In

this specification, UniA represents the domain belonging to University A, and UniB represents the domain

belonging to University B. The corresponding formal specification for the example policy rule, “The stu-

dents of University B are permitted to connect portable computers to the network of University A”, is as

follows: at = (as = Student, ao = p, sa = +connect, fo = ”World[UniB[T ]|p[u[T ]|T ]|UniA[T ]|T ]”, co =

”(EDR(u, UniB) ∧ RAS(u, Student) ∧ OIT (p, Portable)”). In order to derive a formal specification from the

written security policy rule, one may first provide a more detailed interpretation of the written policy rule,

such as the following. There exists a user who has enrolled in UniB domain and who has assumed the Student

role, and is logged into a computer named p , which has the object type Portable . The user has not connected

the Portable computer to either the UniA or UniB domain. The user is currently in a location that gives the

possibility to connect to either the UniA or UniB domain. In this case the user may connect the Portable

computer.
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Table 3. Ambient calculus encoding for actions in security policy rules.

Action Ambient calculus specification Action Ambient calculus specification
Enrollz,d new z.z[in d] | d[] Loginu,l u[in l] | l[]

Logoutu,l l[u[out l]] Sendu1,m
d[h1[u1[m[M |out u1.out h1.in h2.
in u2]]]|[h2[u2[]]]]

Receiveu,m u[open m.(m)|m[M ]] Executeu,prog d[h[u[open prog] | prog [in u.P ]]]
Readu,f h[f [data[in u]] | u[in f ]] Writeu,f h[f [T ] | u[in f.data[out u.0]]]
Deleteu,file h[file[in u] | u[open file.0]]] Createu,file h[u[new file.file[out u]]]

3.3. Formal specification of rules in the security policy

Each domain, host, user, and object is modeled as an ambient. Actions are formalized as ambient calculus

capabilities. A set of ambient calculus process specifications represents the current state of the mobile network.

The process specifications, which include capabilities, objects, and ambients, are checked with respect to the

security policy. An ambient may input or output resources. There are various types of ambients such as world,

domain, host, and user. We now present some examples for formal specification of object, host, and user

mobility.

The following notation conventions are used: n[] denotes n[0], → denotes process reduction, and →∗

denotes a series of process reductions.

• File1 is moved to Portable1 :

World[DomainA[Server1[folder[out folder.out Server1.in Portable1.in folder.F ile1[]]]|
Portable1[folder[]]]]→∗ World[DomainA[Server1[folder[]|Portable1[folder[File1[]]]]]

• A message M is sent from User1 to User3 :

World[DomainA[Server1[User1[message[M |out User1.out Server1.out DomainA.in DomainB .

in Client2.in User3.0]]]]|DomainB [Client2[User3[open message.(m).0]]]]→∗ World[DomainA

[Server1[User1[]]]|DomainB [Client2[User3[M ]]]]

We now present a formal mapping of security policy actions into ambient calculus specifications. There

are template mappings for each kind of action. For a specific security policy and network configuration, a formal

specification in ambient calculus is generated as an input to the ambient calculus model checker. In order to

generate this specification, the names for subjects and objects in the system are derived from the security policy

and network configuration. The method for generating ambient calculus specifications will be explained in the

next section.

Ambient calculus encoding for actions in security policy rules are specified in Table 3. In this encoding,

αas,ao represents an action with authorization subject as and authorization object ao, and z ∈ U∪H,u, u1, u2 ∈
U, d, d1, d2 ∈ ∆, h, h1, h2 ∈ H, l ∈ H ∪∆,m, prog, file, data ∈ O, and M,P are process specifications.

Ambient logic is used to specify the spatial formula in the authorization term. There is a possibility

of modal conflicts when actions that have opposite modalities (i.e. permission and denial) but have the same

subject and object are defined within the same policy. These conflicts are detected and resolved by theorem

proving, as presented in our previous work. Rules are presented to the model checker after conflicts are resolved.

An authorization term defines a security policy rule including mobility and location constraints. The process
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of formalizing authorization terms and spatial formulas has been described in this section. Examples of formal

security policy rules, which are derived by the formalization process, are presented below.

• All users are permitted to read the files in the folder named Projects, provided that they are within a

location that contains the Projects folder: (as = user, ao = Projects, sa = + read, fo = �(as[] | ao[]), co

= user ∈ U ∧OIT (ao, Projects)).

• All users are permitted to send E-mail messages among the UniA and UniB domains: (as = user,

ao = E-mail, sa = + send, fo = UniA [�as[]] | UniB [�ao[]] ∨ UniB [�as[]] | UniA[�ao[]], co =

user ∈ U ∧OIT (ao,E −mail)).

The model checker inputs the formal specification of security policy rules, which consists of an ambient

calculus specification and ambient logic formulas. The model checker implements the spatiotemporal model

checking algorithm. The security policies are specified by the ambient calculus and ambient logic formal

specifications. The location configuration of the system is specified using ambient calculus. The mobility

and location constraints within security policy rules are specified using ambient logic. We present an example

network configuration and a security policy rule, which includes a location configuration and mobility and

location constraints. Two domains exist in this example: Domain1 and Domain2 . User2 is a mobile user

of Domain2 . User2 reads data from File1 after logging into host Host1 in domain Domain1 . The ambient

logic formula states that Data1 and Data2 may not reside together within Host2 . This security policy rule

indicates that Domain2 data should not be copied to Domain1 .

• Ambient calculus specification: Domain1[User1[]|Host1[File1[Data1[in User2.0|out User2.0]]]]

|Domain2[Host2[User2[out Host2.0|out Domain2.0|in Domain1.in Host1.0|out Host1.out Domain1.0

|in Domain2.in Host2.0|in F ile1.0|in F ile2.0|out F ile1.0|out F ile2.0]|File2[Data2[]]]] .

• Ambient logic formula: 2{¬ � {�Host2[�{Data1[T ]|Data2[T ]}]|T} .

3.4. Translation of security policies into formal specifications

Formal specifications are automatically extracted from security policies using the method that is presented in

this section. The translation process is carried out by formalization of the actions within security policy rules.

Multiple domain and interdomain security policies are processed and a single formal specification is generated.

In this context, our method includes 2 steps:

1 – The domain and interdomain security policies are translated to formal ambient calculus specifications.

2 – The mobility and location constraints are translated to formal ambient logic specifications.

The security policies and the domain configurations are specified in XML. A domain configuration consists

of data sets in addition to relations of a domain, as presented in Section 3.1. In the first step, XML Schema

Translation (XSLT) is utilized for translation of security policies and domain configurations to ambient calculus

specifications. The resulting ambient calculus specification is called the location configuration (LCONF). The

location configuration represents the current state of the mobile network and the associated security policy. The

state information consists of location hierarchies and actions within the security policy rules. Multiple XML

files representing the network configuration and security policies are used to generate LCONF. The domain

and interdomain configurations together with security policies are processed and transformed into an ambient

calculus specification using the XSLT processing language. Another XSLT transformation is further applied to
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this specification and the location configuration LCONF is generated. This transformation is based on BNF.

The overall process is depicted in Figure 1.

In the second step, the location formulas are translated into ambient logic specifications. This translation

is achieved by applying XSLT transformations to XML definitions of security policy rules. An XML element

is defined for each construct in ambient logic. The BNF notation for ambient logic is taken as a basis for the

definition of XML elements within an XML schema.

An XML specification corresponding to the XML schema describing the ambient calculus and ambient

logic syntax is translated to a formal specification corresponding to the respective BNF notations. The XSLT

template structure is used for this purpose. In this template, there is a for each construct corresponding to each

of the elements in the XML schema. The details of the transformation process, including the XML specifications

and XSLT transformations, may be found in our related work [26].

Security Policy Formalizer

XSLT 

Transformation

Ambient 

Calculus 

Specification 

in XML

XSLT 

Transformation

Security 

Policy 

Specification

Domain

Configurations

Formal 

Ambient 

Calculus 

Specification 

LCONF

Figure 1. Generating ambient calculus specifications from security policy.

4. Model checking of security policies with ambient calculus

The main idea in model checking is to define an automated mechanism that explores all possible states of a

system and tests these states based on a set of desired properties. For a specific system, the set of all possible

states must be finite for such an exploration to be performed. There are 3 main processes in model checking,

namely modeling, specification, and verification. The abstract system description, which is called a model,

represents the system with an acceptable size of state space. The specification process of model checking

consists of describing the model and its properties by a formal language. Verification process of model checking

can be defined as exploring all states in a model and checking whether a certain set of properties is valid for

these states. The process is an exhaustive search, where all reachable states must be visited.

4.1. Model checking for security policies

We apply model checking for verification of security policies. This methodology involves representation of the

network state as process calculus specifications. The representation includes the future evolution of the network

state in terms of events. The specification is called the location configuration (LCONF). The mobility and

location constraints within the rules of the security policy are formalized as modal logic statements, which are

expressed as location formulas. Model checking of process calculus specifications with respect to the modal

logic statements is used to determine whether the mobility and location constraints are satisfied by the current

network state.

4.1.1. State based representation of security policy

Events are the means of changing the process state by use of actions in the process specifications associated by

ambients. In Figure 2, ambient c does an in and ambient b does an out action. The state of the system changes
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in reaction to these actions. Each of them is called an event. In our model, an event represents an action in

ambient calculus, which is formally mapped to actions in the security policy.

S0 S2S1
b

a

b

c

c

a
b

c

a

c[out b] b[out a]

Figure 2. Events as a means to change the state of process specification.

An ambient calculus specification such as d[in c.(R).P ] may be represented by a trace, which can be

described as a sequence of events: in c, (R), P . A Trace is a set of statements T where {P}T{Q} consists of

precondition P, which holds in the initial state, and postcondition Q, which holds in the final state.

A set of preconditions and postconditions may represent a security policy rule. For example, for the rule

”Project files in Serverc cannot be read by the students”, the precondition is P = �Serverc[data1] and the

postcondition is Q = �Student[data1]. If the model checker finds a sequence of events T such that {P}S{Q} ,

then the policy rule is applicable. Since the rule indicates denial of access, the access request for a student to

read project files in Serverc should be denied in this state.

4.1.2. Finding compliance to security policy by model checking

The formal specification of compliance of a system configuration to security policy is as follows: Find T such

that {P}T{Q} . For this purpose, a trace is to be found such that when P holds, trace T is executed and Q

holds. The model checker can generate a counterexample T that satisfies {P}T{Q} . This will result in a trace

that represents a match of a mobility and location constraint in a security policy rule.

Si Sf

u f

A B

W

Trace T

u f

A B

W

Intermediate

States

Figure 3. Finding a trace T that leads to a final state from an initial state.

An initial state shows the current execution state of a mobile process specification. After a sequence of

events, if a final state is reached where a security policy rule is matched, the security policy rule is applicable in

that state. For example, the rule in Figure 3 can be such that ”Files in Domain B cannot be copied to Domain

A”. As a result of the trace T, the file is copied to Domain A. In this case, the security policy rule is applicable

and the system should deny the access request. The problem now is to find such a trace T. The model checking

algorithm is used for this purpose.
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In this paper, an algorithm is proposed for model checking of ambient calculus specifications with respect

to ambient logic formulas. The ambient calculus model checking can be decomposed into 2 major search

problems. The first problem is to search future evolutions of a given model. A logic formula can include

constructs quantifying the rest of the formula over future states. When evaluating the truth of a formula with

respect to an ambient calculus specification, analysis of reachable future states is needed. The second problem

is to search for spatial congruence of the model and the logic formula. Both ambient calculus specifications and

ambient logic formulas have spatial patterns. The model checker must match these patterns in the calculus

specifications in order to evaluate the satisfaction relation.

4.2. Formal semantic definitions of ambient logic formulas

Modal logics are used for expressing properties of models that cannot be expressed by the constructs of calculi.

Ambient logic is a kind of modal logic, in which spatiotemporal properties of ambient calculus specifications

are represented. Here, we provide formal semantic definitions for ambient logic formulas.

Definition 1 The atomic formula T of ambient logic is satisfied by all processes of ambient calculus.

∀P ∈ Π.P |= T

Definition 2 Negation of a formula is satisfied by any process that does not satisfy the original formula.

∀P ∈ ΠA ∈ Φ.P |= ¬A
4
= ¬P |= A

Definition 3 A process satisfies the formula A ∨B if it satisfies either A or B .

∀P ∈ Π,A ,B ∈ Φ.P |= A ∨B
4
= P |= A ∨ P |= B

Definition 4 The formula 0 is satisfied by only processes structurally congruent to inactivity process.

∀P ∈ Π.P |= 0
4
= P ≡ 0

Definition 5 The formula n[A ] is satisfied by processes within ambients structurally congruent to n[P ′] for

any P’ where A is satisfied by P ′ .

∀P ∈ Π, n ∈ Λ,A ∈ Φ.P |= n[A ]
4
= ∃P ′ ∈ Π. P ′ |= A ∧ P ≡ n[P ′]

Definition 6 The formula A |B is satisfied by decomposable processes that may be represented as P ′|P ′′ , with

the condition that P ′ is a process that satisfies A and P ′′ is a process that satisfies B .

∀P ∈ Π,A ,B ∈ Φ.P |= A |B 4
= ∃P ′, P ′′ ∈ Π. P ≡ P ′|P ′′ ∧ P ′ |= A ∧ P ′′ |= B

Definition 7 The nesting relation, denoted by ↓ , is defined over 2 processes as P ↓ Q and implies that Q is

nested 1 level down in any ambient that exists at the top of the topology of P.

P ↓ P ′ iff ∃ n, P ′′.P ≡ n[P ′]|P ′′
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Definition 8 Relation ↓∗ is reflexive transitive closure of ↓ . P ↓∗ Q implies that P contains Q somewhere in

its topology.

↓∗ is the reflexive and transitive closure of ↓

Definition 9 The somewhere connective, � , is used for specifying nesting properties of processes on the basis

provided by Definition 8. The formula �A is satisfied by processes that satisfy A in some inner location.

∀P ∈ Π,A ∈ Φ.P |= �A 4
= ∃P ′ ∈ Π. P ′ |= A ∧ P ↓∗ P ′

Definition 10 The sometime connective, ♦ , is used for specifying temporal behavior of the processes on the

basis provided by the reduction relation (→). The relation →∗ is reflexive transitive closure of the reduction

relation. ♦A is satisfied by processes that can evolve into a future process holding A .

∀P ∈ Π,A ∈ Φ.P |= ♦A
4
= ∃P ′ ∈ Π. P ′ |= A ∧ P →∗ P ′

4.3. The model checking algorithm for ambient calculus

The block diagram of the model checker for ambient calculus is depicted in Figure 4. The model checking

process is divided into 2 phases. Temporal model checking is the first phase and spatial model checking is the

second phase. The purpose of this decomposition is to benefit from existing methodologies. The evaluation of

the satisfaction relation for evaluating the ambient logic temporal connectives Sometime (♦) and Everytime

(2) are carried out in the first phase. In the second phase all the reachable future states are generated and the

state transition system (STS) is constructed by spatial model checking. The spatial model checking algorithm

evaluates ambient logic formulas in each state. A Kripke structure (Definition 14) is generated by this algorithm.

Ambient 
Logic 

Formula

Ambient
Calculus

Specification

Ambient Calculus Model Checker

Ambient Calculus 
Parser

Ambient Logic 
Parser

State Generator State Transition 
System

Atomic Propositions 
with Spatial 
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Spatial Model 
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Kripke Structure
Temporal Model 

Checker
CTL Formula

Results
and 

Counter-
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a

b
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d

e
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g

A

B

C

D

E

Figure 4. Structure of the model checker for ambient calculus.
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The temporal model checking algorithm, which is implemented using the NuSMV [27] model checker, inputs the

Kripke structure. The main flow of the model checking algorithm is explained below, based on the components,

inputs and outputs within the block diagram in Figure 4.

1. The ambient calculus parser (A) inputs the ambient calculus specification (a) and outputs the parsed

specification to the state generator (C ).

2. The ambient logic parser (B) inputs the ambient logic formula (b), defines atomic propositions based on

spatial ambient logic formula properties, and generates atomic propositions with spatial formulas (d). The

association between atomic propositions and spatial modalities is established.

3. The ambient logic parser (B) replaces spatial modalities with atomic propositions and transforms the

ambient logic formulas to temporal logic formulas in CTL (c).

4. The state generator (C ) generates a state transition system (f ) corresponding to the ambient calculus

specification (a). The initial state is derived from a given ambient calculus specification. Reduction

relations are applied to available capabilities to generate future states. The new states are then added to

the STS and the transition relation is calculated.

5. The spatial model checker (D) generates the Kripke structure (e) from the state transition system (f )

and atomic propositions with spatial formulas (d). Kripke structure calculation involves the state labeling

operation. A state label reflects the values of atomic propositions in that state. Each state is associated

with an ambient topology. Spatial model checking is applied to the spatial formula with respect to the

current ambient topology. New states are added into the Kripke structure together with their labels (i.e.

values of atomic propositions).

6. The temporal model checker (E ) generates NuSMV code. The NuSMV code is derived from the CTL

formula (c) and the Kripke structure (e). The NuSMV model checker is then executed and results and

counter-examples (g) are generated.

4.4. Graphs for representing process specifications and logic formulas

In our proposed method, graphs are used to represent process specifications and logic formulas. A process

specification is associated with state information, which includes the static and dynamic properties of a process.

Ambient topology represents the locations and the hierarchical organization of ambients. Ambient

topology defines the static aspects of a state. Ambient calculus capabilities and their interdependence define

the dynamic aspects of a state. Distinct data structures are used to keep the static and dynamic aspects of a

state. In contrast to our approach, Mardare et al. [22] represent the state information using sets; Charatonik

et al. [20, 21] represent calculus and logic information as strings and their model checking algorithm is a series

of operations on strings.

Definition 11 Ambient topology is defined as an acyclic digraph GAT = (NAT , AAT ) . v ∈ NAT is the set of

nodes in which the elements denote ambients. The set of ambients within an ambient calculus specification is

denoted by Λ . Arcs in the ambient topology are defined as a ∈ AAT , a = {xy | x, y ∈ NAT }. The arcs denote

parent-child relations of ambients. For a node v, the indegree is defined as deg−(v) = 1 and the outdegree is

defined as deg+(v) ∈ N .
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The capability tree is a novel data structure defined in the proposed algorithm. The definition is as

follows.

Definition 12 A capability tree is defined as an acyclic digraph GCT = (NCT , ACT ) . The set of nodes in the

capability tree v ∈ NCT denotes ambient calculus capabilities. The set of arcs in the capability tree a ∈ ACT ,

a = {xy | x, y ∈ NCT } determines the priority among ambient calculus capabilities. The association of

capabilities to ambients as well as their effected ambients are determined by the information within the nodes.

For any node v the incoming degree is equal to 1, i.e. deg−(v) = 1. The outgoing degree is calculated as

deg+(v) ∈ N .

The acyclic digraph GF represents an ambient logic formula, in which the nodes represent logical

connectives as well as locations. The arcs represent the relation between the operator and the operand. Ambient

logic connectives may have different structures. Because of this property, a formula graph may contain nodes

and arcs of various types.

Definition 13 An ambient logic formula is defined as an acyclic digraph GF = (NF , AF ) , where:

• NF = (NL ∪ NBinary ∪ NUnary ∪ NPC ) is the set of nodes. The set of nodes NL represents ambients.

The labels of NL are defined by the set Λ. Unary connectives (¬ , � , ♦) are represented by NUnary .

The binary connective (∨) is represented by NBinary . Parallel compositions are represented by NPC .

• The set of arcs is defined as AF = (APC ∪ ABinary ∪ AUnary ). Parallel compositions are represented by

the set APC . Binary connectives are represented by the set ABinary . Unary connectives are represented

by the set AUnary .

• apc ∈ APC = x, y|x ∈ NPC , y ∈ (NL ∪ NBinary ∪ NUnary), au ∈ AUnary = (x, y | x ∈ (NL ∪
NUnary), y ∈ NPC) , ab ∈ ABinary = (x, y|x ∈ NBinary, y ∈ NPC).

• ∀v ∈ NF , deg
−(v) = 1, ∀v ∈ NPC , deg

+(v) ∈ N , ∀v ∈ NUnary,∀v ∈ NL, deg
+(v) = 1, ∀v ∈

NBinary, deg
+(v) = 2.

• A special attribute is used to model the T construct of ambient logic. If a node in the set NPC has a T

attribute with true value, this indicates that the parallel composition includes the constant T.

An example ambient topology and capability tree are presented in Figure 5. These structures make up

the state information.

4.5. Formula reduction

To be able to use an existing temporal model checker, the ambient logic formulas have to be reduced to temporal

logic formulas. Temporal operators of ambient logic are Sometime (♦) and Everytime (2) connectives. These

operators are equivalent to EF and AG operators of CTL, respectively. For reducing ambient logic formulas into

a CTL equivalent form, the spatial modalities of ambient logic formulas are converted to atomic propositions.

Since we utilize an existing temporal model checker, some of the ambient logic formulas should be

restricted, such as n[♦A ] , n[2A ] , ♦A |♦B , 2A |2B , �2A , and �♦A . Such ambient logic formulas are not

reducible to CTL formulas because they have temporal operators as subformulas of spatial operators. In the

158
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Figure 5. Internal representation of state information. Graph (a) is the ambient topology of state and graph (b) is

capability tree.

proposed algorithm, ambient logic formulas must be restricted to temporal operators at higher levels compared

to spatial operators. The restriction also brings the advantage that other CTL operators like AF or EG may

be used in a more straightforward way.

4.6. STS generation

The initial specification of the model is used to generate the STS. In order to generate states, the capabilities

within the ambient calculus specification are executed. The specifications may not include the replication

construct. As a result of this property, an acyclic digraph can represent a STS. In this graph, states are

represented by nodes and capability executions are represented by edges. There may be parallel capabilities

that are possible to be executed at one node. As a result the transitions within the STS are branching and not

linear.

A capability is selected at each step for execution. At this step, some condition tests are required whenever

a capability will be executed. An object ambient is an ambient upon which a capability is executed. A subject

ambient is an ambient that executes a capability. The test conditions depend on the object ambient location

and whether a subject ambient is available. If the object ambient does not reside in the current location, a

capability with the name of this ambient may not be executed. Similarly, a capability may not be executed if the

subject ambient, or its parent, has a prefix capability path (a capability path that prefixes other capabilities).

In Figure 6, an example STS is presented for the ambient calculus process specification

P = m[in k.open l.n[]|k[out m.in j.r[]]]|l[in m.in k.j[]] . The edges represent ambient calculus capabilities that

cause a transition.

A novel data structure called a capability tree is proposed for representing temporal aspects. The avail-

ability of a subject ambient does not need to be checked when using this data structure. The interdependence of

capabilities are represented by acyclic digraphs, which denote capability paths. Capability paths are sequences

of capabilities. Capability trees are constructed at the parsing step, which eliminates the need for preprocessing.

A capability is selected starting from the root node. The algorithm guarantees that execution of capabilities

for parent processes takes place before those of child processes.

4.7. Evaluation of spatial connectives

The satisfaction relation needs to be formally expressed and evaluated in order to build a model checker for

ambient calculus and ambient logic. At each generated state the satisfaction relation is evaluated. Formula

reduction is applied to ambient logic formulas in order to decompose them into a set of temporal and spatial
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Figure 6. An example STS corresponding to an ambient calculus process.

formulas. The spatial model checking algorithm inputs graphs representing the ambient topology and spatial

formulas. Before generation of Kripke structures, the spatial model checking algorithm is applied.

Each node in the ambient topology graph is assigned to a node in the spatial formula graph. This is a

recursive procedure for matching ambients to the spatial formula. In this procedure, first the root node in the

graph corresponding to an ambient topology is assigned to the root node in the graph corresponding to a spatial

formula. The assigned nodes may be forwarded as a partial or complete formula to the children nodes. The

matching process continues in a recursive manner until all the nodes within the ambient topology are matched

to nodes within the spatial formula. For each type of spatial connective, a different match process is applied.

Auxiliary heuristic functions are used for reducing the number of trials for applying the match process. Below,

these functions and the match process are explained in detail.

4.7.1. Heuristic functions

The spatial connectives of Parallel Composition (|) and Somewhere (�) require a search procedure for matching

them to ambients in the ambient topology. We introduce heuristic functions in order to increase the performance

of this search procedure. In former studies, this search procedure was based on brute force, and every alternative

was evaluated within the match process. We propose to reduce the number of trials by using auxiliary heuristic

functions. We also introduce the concept of wildcard connectives. These connectives may match different

types of ambients representing various logical constructs. The true connective T matches any assigned ambient

topology. Matching the Negation connective to an ambient topology requires that none of its subformulas

match that ambient topology. Somewhere is another wildcard connective. When matching this connective, the

parallel processes of the parent ambient are not processed. Consecutive applications of the ↓ operator generate

a wildcard property for the associated Somewhere connective. The wildcard function determines whether a

formula graph node has the wildcard property. Below we present the pseudocode for this function.
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Listing 1. Pseudocode of wildcard heuristic function.

PROCEDURE wi ldcard

BEGIN

input : NODE i s a formula graph node

output : boolean constant

IF NODE i s a l o c a t i o n return f a l s e

IF NODE i s a d i s j u n c t i o n

return wi ldcard ( node . f i r s t c h i l d ) V wi ldcard ( node . f i r s t c h i l d )

IF NODE i s a somewhere re turn true

IF NODE i s a negat ion return true

IF NODE i s a p a r a l l e l c o m p o s i t i o n

BEGIN

IF NODE has a T property

re turn true

FOR EACH c h i l d o f NODE

BEGIN

IF wi ldcard ( c h i l d ) = true

re turn true ;

END

END

return f a l s e

END

When matching the Disjunction and Somewhere connectives, the expected ambients in the subformulas

are not directly derivable. We define a function named guessExpectedAmbients at this step. The set of expected

ambients corresponding to a formula graph node is returned by this recursive function. The set that is returned

by this function includes all possible ambient combinations, which are expected to be reachable from the children

nodes. The pseudocode of the guessExpectedAmbients function is given below.

Listing 2. Pseudocode of guessExpectedAmbients heuristic function.

PROCEDURE guessExpectedAmbients

BEGIN

input : NODE i s s p a t i a l formula node

output : s e t o f s e t o f s t r i n g

IF NODE i s a l o c a t i o n return { {NODE. name }}
IF NODE i s a d i s j u n c t i o n return guessExpectedAmbients ( node . f i r s t c h i l d )

IF NODE i s a somewhere re turn guessExpectedAmbients ( node . c h i l d )

IF NODE i s a negat ion return {{}}
IF NODE i s a p a r a l l e l c o m p o s i t i o n return c a r t e s i a n products o f the e lements o f

returned va lue s o f guessExpectedAmbients f o r each c h i l d

END

The parent of an ambient within the ambient topology is given by the recursive function findSublocation.

The pseducode of the findSublocation function is shown below.
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Listing 3. Pseudocode of findSublocation heuristic function.

PROCEDURE f indSub l o ca t i on

BEGIN

input : WANTED i s s t r i ng , ROOT i s ambient topology node

output : RESPONSE i s ambient topology node

FOREACH c h i l d o f ROOT

BEGIN

IF c h i l d . name = WANTED return ROOT

END

FOREACH c h i l d o f ROOT

BEGIN

RESPONSE = f indSub l o ca t i on (WANTED, c h i l d )

IF RESPONSE .NOT. == n u l l r e turn RESPONSE

END

return n u l l

END

4.7.2. Matching of spatial formula

In the next step, the nodes in the ambient topology are matched with nodes in the spatial formula graph. In

this procedure, some ambient topology nodes are matched directly with spatial formula graph nodes. Others

are forwarded to children nodes in the spatial formula graph. Alternative assignments are tried for nodes in an

ambient topology with respect to a spatial formula. In spatial model checking, the matching operation begins

from the root node in the graph and progresses recursively down toward the leaf nodes. If a part of a formula is

matched to a node, its children are searched for a match to the remaining part of the formula. The semantics of

the ambient calculus connectives corresponding to the spatial graph nodes determine the flow of the matching

operation.

The matching process at the nodes representing locations is according to Definition 5. The location nodes

can be assigned to only one ambient topology node. If the ambient topology node does not have the same name

as the location node, the match process for the location node fails. If the ambient topology node has the same

name as the location node, the location node assigns the children of the ambient topology node to its parallel

composition child. The result of the match is successful if the parallel composition child of the location node

succeeds in finding a match between its children and the children of the assigned ambient topology node.

The matching process at the nodes representing the Negation connective is according to Definition 2.

These nodes can be assigned to a collection of ambient topology nodes. Negation assigns the whole set of the

assigned ambient topology nodes directly to its child parallel composition node. If the parallel composition child

of the negation node succeeds in finding a match, the match process for the negation node fails. If no match

between ambient topology nodes and children of the parallel composition is found, the match process for the

negation node is successful.

The matching process at the nodes representing the Disjunction connective is according to Definition

3. These nodes can be assigned to a collection of ambient topology nodes. Nodes of type disjunction have 2

parallel composition children. Disjunction assigns the whole set of the ambient topology nodes directly to its

child parallel composition nodes. If at least one of the parallel composition nodes succeeds in finding a match,

the match process for the disjunction node is successful.

The matching process at the nodes representing the Somewhere connective is according to Definition 9.

These nodes can be assigned to a collection of ambient topology nodes. A node of the Somewhere connective can

start matching its parallel composition node from any level of assigned ambient topology node collection. The
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match process of nodes for somewhere connectives tries all possible levels of the ambient topology nodes until

there is a successful match. We have presented a heuristic to expedite the matching of nodes for somewhere

connectives. Searching a single node in the ambient topology is cheaper than trying a full match at every level.

The findSublocation function finds the level of ambient topology for which the match process should start for

the somewhere connective. This technique eliminates the searches of the levels that do not have any possibility

of matching.

The matching process at the nodes representing the Parallel Composition connective is according to

Definition 6. These nodes can be assigned to a collection of ambient nodes. The match process for parallel

composition decomposes the assigned ambient topology node collection into subsets that will be forwarded to

the children of the parallel composition node. While there are exponentially many alternative decompositions,

the number of alternatives is reduced by applying the guessExpectedAmbients and wildcard functions.

Decompositions are carried out in 2 phases. In the first phase, the expected ambient topology nodes are

assigned to child nodes of the node for the parallel composition connective. By the help of the guessExpectedAm-

bients function, the sets of expected ambient topology nodes, called guess sets, are found for each child of the

node for the parallel composition connective. Then, every expected ambient topology node, in the collection

assigned to the node for parallel composition, is forwarded to the related child.

Because there are ambient topology nodes that are not expected by any child node, these nodes should

be assigned to a child of the parallel composition node with the wildcard property or neglected if the parallel

composition node has the T (true) property. In the second phase, children of the parallel composition are

evaluated for the wildcard property by the wildcard function. After determining the set of children with the

wildcard property, unexpected nodes of the ambient topology collection are assigned to the elements of this set.

After assignment of all ambient topology nodes, new matching processes are started for all assigned

children. If one of the children fails, the match process for the parallel composition node tries to find another

decomposition. The match process succeeds if the match processes of all children succeed for a decomposition.

In Figure 7, an example of the match process is shown.

4.8. Kripke structure generation

A STS, in which each state has a label consisting of atomic propositions that are valid in that state, is named

as a Kripke structure. The system properties are modeled using atomic propositions.

Definition 14 A Kripke structure is a 4-tuple; M = (S, S0, R, L) . S is a finite set of states, S0 ⊆ S is the

set of initial states, R ⊆ S × S is the transition relation, and L : S → 2AP is the labeling function that defines

the labels of each state. The labels are atomic propositions that are true in this state. The labels are elements

of a nonempty set of atomic propositions, AP .

The data structure that implements the Kripke structure includes the sets S , S0 and the relation R . Formula

reduction is applied to generate the set of atomic propositions. During the formula reduction phase, the spatial

formulas are exchanged with atomic propositions. For each state, spatial model checking is applied to generate

the labeling function. The Kripke structure results from the attachment of labels resulting from spatial model

checking of the states.

4.9. NuSMV code generation

NuSMV is a symbolic model checker based on CTL (computational tree logic) and BDD (binary decision

diagrams). The temporal model checking algorithm is implemented using NuSMV. At the previous step, the
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Figure 7. A match example for process P = n1[] | n3[] | n4[] | n7[n5[] | n6[]] | n8[] and formula F = n1[] | {n2[] ∨
{n3[] | n4[]}} | � {n5[] | n6[]} | ¬n8[] . Graphs consisting of rectanglular nodes are ambient topologies assigned to spatial

formula graph nodes. Graphs consisting of circular nodes are spatial formula graphs.

164
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formula reduction phase resulted in a Kripke structure associated with a set of CTL formulas. In this step,

the Kripke structure and the associated CTL formulas are translated into NuSMV code. A string is generated

according to the CTL formula graph. Sometime (♦) in ambient logic is represented in CTL as the EF operator

and Everytime (�) in ambient logic is represented in CTL as the AG operator. Atomic propositions are

represented by their names.

In NuSMV, states are defined over state variables with the name state. Atomic propositions are repre-

sented by boolean variables. A variable is defined in NuSMV for each atomic proposition resulting from the

formula reduction. The value of this variable is defined for each state in the Kripke structure. The transitions

within the Kripke structure are defined by assignment to the variable next.

5. Complexity and performance analysis

In the proposed methodology, the model checking process is decomposed into 2 independent processes as

generating STS and checking spatial modalities for states. Time and space complexities for these processes

are examined separately.

5.1. Time complexity

Regarding the phase of STS generation, the time complexity is determined by the number of capabilities. When

a capability is executed, a single future state is generated. The worst case is that all capabilities are independent.

Two capabilities are independent if they exist as a sequence or if their subject ambients are different. In this

case, the execution order of the capabilities does not change the set of applicable capabilities. If there are n

capabilities, then n capabilities may be executed independently in the first step, (n − 1) capabilities may be

executed in the second step, and so on until the last capability will be executed in the nth step. The worst case

time complexity of generating STS is O(n!) . n is the total number of capabilities. The exact formula for the

time complexity is given as follows.

n∑
k=0

n!

k!
(1)

The type and count of connectives within spatial formulas determine the time complexity for checking

spatial modalities. There is a different cost of matching processes for different types of spatial connectives. For

the Location, Disjunction, Negation, and Inactivity connectives, the search for satisfaction is completed with at

most 2 comparisons, while for the Parallel Composition (|) and Somewhere (�) connectives, the search requires

an arbitrary number of alternatives.

The overall time cost of � connectives, which has child | connectives, is a linear function of the time cost

of | connectives. This is calculated as follows. Let ane be the number of ambients that are at the top level of the

specification and are not expected, dw the number of disjunctions in the | connective with the wildcard property,

not the number of negation operands associated with the | connective, sww the number of � connectives in

the | connective with the wildcard property, G the cost of calculating the guessExpectedAmbients function, and

W the cost of calculating the wildcard function.

The match process for | connective consists of 2 phases. The first phase is assignment of expected nodes

and the second phase is assignment of unexpected nodes. The cost of the first phase is dependent on the number

of disjunction connectives, because each disjunction may cause 2 different expected node combinations. The

number of different assignments of expected nodes is given by the following formula.
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2dw+d (2)

Unexpected nodes of ambient topology can be assigned only to the formula nodes that have a wildcard property.

The number of different assignments of unexpected nodes are:

a(sww+not+dw)
ne . (3)

Regarding the match process, the time cost is defined by Eq. (4), which is equal to the product of Eq. (2) and

Eq. (3) with addition of the costs of the auxiliary functions:

2dw+d × a(sww+not+dw)
ne +G+W. (4)

The time complexity of the match process, corresponding to the calculated time cost in Eq. (4), is given

according to the O notation in Eq. (5). The time complexity is exponential. The exponent is proportional to

the number of ambients.

O(a(sww+not+dw)
ne ) (5)

In contrast, if the the method of brute force search is used, the time complexity becomes as seen in

Eq. (6), where a = ane + ae represents the total number of ambients at the top level of the ambient topology

specification, l represents the number of locations connected by the | connective, sw represents the number of

� connectives associated with a | connective without the wildcard property, and d represents the number of

disjunctions associated with a | connective without the wildcard property.

O((a)(sww+sw+l+not+d+dw)) (6)

The time cost of guessExpectedAmbients and wildcard functions are linear with the number of connectives

in the spatial formula because they are called recursively for each connective in the formula. The time cost of

finding a match for the � connective is the sum of the cost of the function findSublocation and the cost for the |
connective. Let PC be the cost of the | connective, which is a child for the � connective; F be the cost of the

findSublocation function; and a be the total number of ambients. The time cost of the � connective is given

with Eq. (7):

F + PC. (7)

The time cost of brute force search for finding a match for the � connective is given with Eq. (8):

a× PC. (8)

In this case, the complexity of the match process and the brute force search is O(n). The time cost of the

findSublocation function is linear with a because it only looks for an ambient with a specific name in an

ambient topology.

The costs of the match processes for the | and � connectives dominate the cost of the spatial model

checking process. The overall complexity is reduced by the proposed algorithm. The proposed algorithm and

brute force search for match process for the | connective both have exponential complexity, given respectively

in Eqs. (5) and (6). Since (ane + ae)
(sww+sw+l+not+d+dw) > a

(sww+not+dw)
ne , the use of heuristics significantly

reduces the cost of the match process. The complexity for the � connective for both the proposed algorithm

and brute force search is linear. However, the actual cost is reduced from Eq. (8) to Eq. (7).
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5.2. Space complexity

The depth-first calculation method is used to construct the STS. After calculation of its successor states, a state

can be discarded from memory. The depth of the STS is limited by the number of capabilities. Regarding the

state space generation phase, the space complexity is given by O(n), where n denotes the number of capabilities.

During the overall process in which the spatial modalities are checked, only one copy of a formula is used.

The space requirement of this process is equal to the formula size. The formula size depends on the number of

logical connectives within the formula. For spatial modalities, the space complexity is given by O(c), where c

denotes the number of the connectives within the formula.

5.3. Case study for performance analysis

The case study includes 3 ambient calculus and 2 ambient logic specifications. Ambient calculus specifications are

presented in Appendix A and ambient logic specifications are presented in Appendix B. Each ambient calculus

specification models a multidomain network where domains, host, user, and files are modeled as ambients.

Ambient logic formulas represent different properties of these models.

The case study represents a scenario involving mobility among multiple domains. The case study includes

3 domains, DomainA , DomainB , and DomainC ; 4 hosts, Host1 , Host2 , Host3 , and Host4; 3 users, User1 ,

User2 , and User4 ; and 4 files, File1 , File2 , File3 , and File4 . This scenario has been captured as ambient

calculus specifications Spec1, Spec2, and Spec3. In Spec1, User1 does not conduct any action. In Spec2, User1

has the rights to login to/logout from DomainA and DomainB , and to read File1 . In Spec3, User1 has

the rights to logout from Host1 , logout from DomainA , and login to DomainB . In all the specifications,

User2 has the rights to read and write the files File1 , File2 , File3 , and File4 . User4 has the rights to login

to/logout from DomainB and DomainC , login to/logout from Host3 , and read File3 and File4 . The hosts

Host2 and Host3 are accessible to and readable by users of DomainC . Host1 in DomainA is accessible to

DomainB hosts. Initially, Host1 contains File1 , Host2 contains File2 , Host3 contains File3 , and Host4
contains File4 . Initially, User1 is logged in Host1 , User2 is logged in Host2 , and User4 is logged in Host4 .

According to the security policy rule in the case study, DomainA objects should not be read by DomainC
subjects. The security policy rule has been formalized as Formula1 and Formula2 according to detail of

specification. Formula1 states that ”The World contains DomainA , DomainB , and DomainC . In DomainA ,

Host1 is connected with any other host; in DomainB , Host2, and Host3 are connected with any other host;

in DomainC , Host4 is connected with any other host and after some time, Host4 contains data1 somewhere

inside the host”. Formula2 states: ”After some time, Host4 contains data1 somewhere inside the host”. Both

of the formalizations state the result of an unintended information flow where data1 , which was originally

in DomainA within Host1 , ends up in Host4 , which is in DomainC . If one of these formulas is shown to

be satisfied by the ambient calculus specifications by the model checker, the meaning is that the unintended

information flow takes place and the security policy rule is not satisfied.

The following sequence of actions leads to an unintended information flow: User2 can read File1 and

copy or write File1 to Host2 or Host3 . This information can be read by User4 of DomainC by movement

into DomainB and reading from Host2 or Host3 . For all the specifications and formulas, the model checker

successfully finds the corresponding action sequences where the security policy rule is not satisfied. However,

the time and memory cost of the model checking process depends on the properties of alternative formal

specifications. This issue is discussed in the next section.
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5.4. Performance analysis

A software, which implements the proposed model checking algorithm in the Java language, has been developed.

In this section, the implementation is tested with formal specifications of a case study, which is presented in

Appendix A and B. The tests were run on a single node of a cluster. The cluster itself has 8 nodes. A node has

a CPU of 2.93 GHz speed and 9.76 GB memory. Only one node of the cluster has been utilized since the current

version of NuSMV does not support parallel and distributed computations. The model checker application has

been deployed as a .jar file and Java 1.6 64-bit edition on a Linux operating system has been used to run the

model checker application. NuSMV version 2.5.0 has been used as a temporal model checker.

Table 4. Properties of ambient calculus specifications.

Specification Number of Ambients Number of Capabilities Number of States

Spec1 16 32 560
Spec2 16 39 33,123
Spec3 16 37 628,527

The properties of ambient calculus specifications are shown in Table 4. All the specifications consist of

the same set of ambients, where their starting ambient topology is the same. The type of capabilities and the

number of capabilities are different between these specifications. Because of this property, the future evolution

of the models vary dramatically. Three ambient calculus specifications are evaluated with respect to 2 ambient

logic formulas. The time and memory cost for STS is shown in Table 5, for 8 MB and 1 GB heap sizes of the

Java Virtual Machine. Since memory management of the Java Virtual Machine includes a garbage collector,

the heap size affects performance of Java applications. For this reason, the model checker process has been

executed with various heap sizes. The default heap size of the Java Virtual Machine on the cluster was 8 MB.

The heap size has been increased to evaluate the effect of heap size on performance. The best performance has

been achieved at 1 GB. For the case study, the heap sizes over 1 GB did not result in an increase in performance.

Table 5. STS generation cost.

Specifications Heap Size Time (s) Memory (KB)

Spec1 1 GB 1.039 246,478
8 MB 1.234 6228

Spec2 1 GB 12.453 350,504
8 MB 18.120 7734

Spec3 1 GB 154.897 362,384
8 MB 241.592 7911

In Table 6, the performance results are shown for spatial model checking with a 1 GB heap size of the

Java Virtual Machine. The time cost and the space cost for generating the STS is bigger than the cost of

spatial model checking. The proposed algorithm provides more significant performance gain for formulas as the

number of logical operators increase. In relation to our case study, the proposed model checker was capable of

handling a specification with 628,527 states with memory consumption under 8 MB.

We take the following approach for assessing the performance of the proposed algorithm for spatial model

checking and comparison to existing work. In order to compare the performance for checking specifications

against formulas with different properties, we measure the properties of the 2 given formulas in the case study.

The branching factor property is related to the number of connectives in the formula. It gives the average

number of branches in the syntax tree, which represents a formula. The depth property gives the maximum

168
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Table 6. Performance results for spatial model checking.

Formulas
Formula1 Formula2

Specifications Time (s) Memory (KB) Time (s) Memory (KB)

Spec1 1.265 262,208 1.520 262,208
Spec2 15.474 350,872 17.134 351,080
Spec3 172.289 362,304 199.815 375,352

depth of the syntax tree, which represents a formula. The properties of given ambient logic formulas in the case

study are presented in Table 7.

Table 7. Properties of formulas.

Formula Branching factor Depth
Formula1 1 4
Formula2 2.6 3

We compare the use of heuristics against brute force search for exploration of spatial modalities. Since

the former studies of Charatonik et al. [20, 21], which use brute force search, do not include an implementation

and detailed definitions for procedures, we implemented a variant of our algorithm, which employs brute force

search. The results are presented in Table 8. As seen from these results, the proposed algorithm produces better

performance results when the branching factor of the formula increases.

Table 8. Performance results for spatial model checking with brute force search.

Formulas
Formula1 Formula2

Specifications Time (s) Memory (KB) Time (s) Memory (KB)

Spec1 1.634 262,208 1.829 262,208
Spec2 15.334 350,672 18.405 353,392
Spec3 171.812 364,696 201.765 375,160

The time cost of NuSMV temporal model checking is shown in Table 9. Time cost of NuSMV model

checking increases with the number of states. The size of generated NuSMV code grows linearly with the

number of states. The specification with 628,527 states could not be processed by NuSMV since it terminated

with segmentation fault because of the size of the generated NuSMV code.

Table 9. Performance results of NuSMV with generated code.

Specifications Formulas
Time for Formula1 (s) Time for Formula2 (s)

Spec1 0.126 0.135
Spec2 463.918 615.361
Spec3 Segmentation fault Segmentation fault
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6. Conclusions and future work

In this study, formal specification of security policies and formal representation of mobility and location

constraints have been presented. Our presented approach is built on the formal languages of ambient calculus

and ambient logic. The main focus of the specification approach is security policies with mobility and location

constraints.

Model checking is applied to verification of security policies with mobility and location constraints. We

presented a spatiotemporal model checking algorithm for ambient calculus. We introduced heuristics and novel

data structures for reducing the complexity of model checking. An ambient calculus model checker has been

implemented and the performance results for the model checker are presented along with a case study.

The results of the performance test showed that the proposed heuristics for checking spatial modalities

become faster as the branching factor for the formula increases. A shortcoming of the current implementation of

the model checker is the invocation of auxiliary functions. The auxiliary functions are invoked for each spatial

model checking process within each state. A more efficient implementation may be developed in which auxiliary

functions are invoked only once throughout the spatial model checking process for all states.

The time and space complexity of model checking is largely dependent on the size of the STS. When the

number of capabilities increases linearly, the number of states increases exponentially. We aim to apply partial

order reduction in order to decrease the number of the states of the STS. This will result in a reduction of
time and space cost. We aim to investigate partial order reduction in order to reduce the number of possible

orderings derivable from a temporal logic formula. In partial order reduction, parallel interleavings of action

sequences are replaced by a single path fragment, which respects the orderings in these sequences. Use of partial

order reduction in our algorithm will reduce the number of states corresponding to ambient calculus process

specifications that need to be analyzed with respect to ambient logic formulas. Another interesting area for

further research is support for parallel and distributed computations for model checking. The current version

of the NuSMV temporal model checker does not support parallelism. Utilization of a temporal model checker

that supports parallel model checking could provide an increase in performance.

In the current stage, the proposed method is useful for offline verification of security policies with rules

of reasonable complexity, which is determined by the number of logical connectives. We have found that the

security policy rules in the case study were efficiently handled by the algorithm. However, for very complex

policies that have rules with many logical connectives, the analysis will take a long time, which will not be

efficient for real-time analysis of actions in the network. For spatial model checking, the number of generated

states increases exponentially based on the number of active ambients. Therefore, the proposed algorithm is

more suitable for testing of policies in the form of a ”what-if” analysis, where the actions and security policy

rules for the active elements in the network are introduced to the formal specification in an incremental manner,

rather than attempting to represent the entire network with all the security policy rules at one time.
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ÜNAL and ÇAĞLAYAN/Turk J Elec Eng & Comp Sci

Appendix

A. Ambient calculus specifications for case study

Spec1 ::= World[DomainA[Host1[User1[]|File1[data1[out F ile1.0|out Host1.0|out DomainA.0

|in DomainB .0|in DomainC .0|in Host4.0|in Host2.0|out Host2.0|in F ile3.0|in User2.0

|out User2.0|in User4.0|out User4.0|in Host3.0]]]]|DomainB [Host3[File3[]]|Host2[User2

[in F ile1.0|in F ile2.0|out F ile1.0|out F ile2.0|in F ile3.0|in F ile4.0|out F ile3.0|out F ile4.0]

|File2[]]]|DomainC [Host4[User4[out DomainC .0|in DomainB .0|in Host3.0|in F ile3.0|

out F ile3.0|out Host3.0|out DomainB .0|in DomainC .in Host4.in F ile4.0]|File4[]]]]

Spec2 ::= World[DomainA[Host1[User1[out DomainA.0|in DomainA.0|in DomainB .0|out DomainB .0

|in F ile1.0|out F ile1.0]|File1[data1[out F ile1.0|out Host1.0|out DomainA.0|in DomainB .0

|in DomainC .0|in Host4.0|in Host2.0|out Host2.0|in F ile3.0|in User1.0|in User2.0|

out User2.0|in User4.0|out User4.0|in Host3.0]]]]|DomainB [Host3[File3[]]|Host2[

User2[in F ile1.0|in F ile2.0|out F ile1.0|out F ile2.0|in F ile3.0|in F ile4.0|out F ile3.0|

out F ile4.0]|File2[]]]|DomainC [Host4[User4[out DomainC .0|in DomainB .0|in Host3.0

|in F ile3.0|out F ile3.0|out Host3.0|out DomainB .0|in DomainC .in Host4.in F ile4.0]|File4[]]]]

Spec3 ::= World[DomainA[Host1[User1[out Host1.0|out DomainA.0|in DomainB .0]|File1[data1[

out F ile1.0|out Host1.0|out DomainA.0|in DomainB .0|in DomainC .0|in Host4.0|in Host2.0|

out Host2.0|in F ile3.0|in User1.0|out User1.0|in User2.0|out User2.0|in User4.0|out User4.0|

in Host3.0]]]]|DomainB [Host3[File3[]]|Host2[User2[in F ile1.0|in F ile2.0|out F ile1.0|out F ile2.0

|in F ile3.0|in F ile4.0|out F ile3.0|out F ile4.0]|File2[]]]|DomainC [Host4[User4[out DomainC .0

|in DomainB .0|in Host3.0|in F ile3.0|out F ile3.0|out Host3.0|out DomainB .0|in DomainC .

in Host4.in F ile4.0]|File4[]]]]

B. Ambient logic formulas for case study

Formula1 ::= 2{¬♦{�{Host4[�{data1[T ]|T}]}}}

Formula2 ::= 2{World[DomainA[Host1[T ]|T ]|DomainB [Host2[T ]|Host3[T ]|T ]

|DomainC [Host4[T ]|T ]]} ∨ ♦{�{Host4[�{data1[T ]}]|T}}
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