
Turk J Elec Eng & Comp Sci

(2013) 21: 174 – 185

c© TÜBİTAK

doi:10.3906/elk-1105-27

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Orthogonal array based performance improvement in the gravitational search

algorithm

Ökkeş Tolga ALTINÖZ1,∗, Asım Egemen YILMAZ2, Gerhard Wilhelm WEBER3

1Department of Electronic Technologies, Bala Vocational School, Hacettepe University,
Ankara, Turkey

2Department of Electrical and Electronics Engineering, Ankara University, Ankara, Turkey
3Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey

Received: 16.05.2011 • Accepted: 01.10.2011 • Published Online: 27.12.2012 • Printed: 28.01.2013

Abstract: The gravitational search algorithm (GSA) is a novel heuristic method inspired by Newton’s gravity and

velocity equations. In addition, it is a population-based algorithm, in which each member (called an agent) in the

population has a mass, velocity, and acceleration. Beginning with the first population state, agents influence each other

via mass and velocity relations. This mutual effect causes agents to reach the optimum. Hence, the performance of the

GSA to attain the optimum is related to the initial population formation, like other population-based algorithms. In

this study, the orthogonal array (OA) concept is applied and injected to the GSA algorithm in the initialization phase.

Hence, the GSA benefits from the homogenized agent distribution tendency of the OA. The implementation results are

utilized to compare the conventional and proposed methods (i.e. conventional GSA and the so-called “OA-GSA”), and

the efficiency of the proposed method is demonstrated.

Key words: Benchmark functions, gravity based search, gravitational search algorithm, orthogonal array, Taguchi

method

1. Introduction

In the last decade, heuristic approaches have received increased attention from researchers dealing with engineer-
ing problems. Numerous algorithms have been proposed and applied for various problems in control systems,
communications, robotics, electromagnetics, etc. These algorithms can be grouped according to their origins.
The main groups can be listed as: general heuristics (Hill Climbing, Tabu Search etc.), evolutionary heuristics

[genetic algorithm (GA), genetic strategy, differential evolution (DE)], and nature inspired heuristics [simulated

annealing, ant colony optimization, particle swarm optimization (PSO)]. In spite of their common and efficient
usage, these methods do not always guarantee to achieve the global optimum; there is always great possibility
for these algorithms to get stuck at the local optima. Hence, researchers have thus far proposed alternative
approaches and heuristic algorithms in order to prevent the premature convergence. Nowadays, new algorithms
are still being proposed and implemented by researchers.

The gravitational search algorithm (GSA) [1], which is a novel population-based nature-inspired heuristic
algorithm, was proposed by Rashedi et al. in 2009. The motivation of this algorithm is based on physical
relations between objects. In the literature, there exist the continuous domain GSA and discrete domain

∗Correspondence: taltinoz@hacettepe.edu.tr

174

ALTINÖZ et al./Turk J Elec Eng & Comp Sci

binary-GSA [2], introduced by the same authors, for the solution of continuous and combinatorial optimization
problems, respectively. More recently, various multiobjective extensions of the GSA have also been proposed
by different researchers [3–5].

The performance of the GSA is related to the initial population formation, like other population-based
algorithms. If the initial population consists of closely related particles, they start to dominate early in the
process and prevent any improvements yielding premature convergence. Moreover, if the population consists of
distinct particles, the algorithm may lead to a poor search process, causing slow convergence. For that reason,
embedding the orthogonal array (OA) in the initialization phase seems to be an ideal catalysor for convergence.

For other population-based algorithms such as the GA [6], PSO [7], and DE [8] encountering the same problem,
it has been observed that using the OA increases the convergence performance. On the other hand, to the
best of our knowledge, the effect of the OA on the performance of the GSA has not been investigated yet. In
this study, the OA is applied to the GSA for the solution of various benchmark functions, and the results are
compared to demonstrate the effectiveness of the proposed method.

In Section 2, we will revisit the original GSA formulation. In Section 3, we will formulize the OA. Sections
3 and 4 will include the implementation results, conclusions, and the relevant future work.

2. Gravitational search algorithm

The GSA is a novel nature-inspired heuristic method [1] based on the nature interaction. According to what
we know so far, there are 4 fundamental interactions existing in nature: gravitation, electromagnetic force, and
weak and strong nuclear forces. The GSA method was developed by taking gravitation into account.

Objects attract each other by means of a force called the gravitation force. This force causes acceleration
in each object. All of the objects in space attract each other, and that causes an interaction force. Thus, for
every object, there are position, velocity, acceleration, and mass. The GSA was developed by utilizing these
relations between the objects.

2.1. Physical background

Two fundamental laws are valid among objects. These are the law of gravity and the law of motion. The law
of gravity addresses the force influencing an object in a 2-object system, which is directly proportional to the
masses of the objects and inversely proportional to square of the distance between them. Eq. (1) shows the
force between matters.

F = G
M1M2

R2
, (1)

where M1 and M2 are the masses of the objects and R is the distance between them. Newton’s second law
gives the relation between the force and acceleration a , which is given in Eq. (2) for an object with mass M :

a =
F

M
. (2)

When mass M increases, acceleration a decreases, and vice versa. In other words, the smaller masses approach
the bigger ones; they gravitate toward them.

In theoretical physics, 3 kinds of mass were introduced: active gravitational mass, passive gravitational
mass, and inertial mass. Inertia mass (Mi) could be defined as the resistance of mass against acceleration.
Inertia mass is measured by applying force to the matter and the acceleration is observed. Inertia mass is

175

ALTINÖZ et al./Turk J Elec Eng & Comp Sci

calculated from Eq. (2). The active and passive gravitational masses (Ma and Mp) are determined from the
strength of the gravitational force due to a particular object or the strength of a matter’s interaction with the
gravitational force. When the force applied from the matter is known, the mass of other matter(s) can be

calculated from Eq. (1), and vice versa. The new equations based on these mass definitions can be defined as

in Eqs. (3) and (4). However, according to what we know so far, there has been no experiment detecting any

difference among these mass definitions; hence, the assumption given in Eq. (5) is accepted in the GSA [1].

Fij = G
MpjMpi

R2
, (3)

a =
Fij

Mii
, (4)

Ma = Mp = Mi. (5)

Here Fij is the force applied to the j th mass by the ith mass and G is the gravitational constant.

A very common belief about the evolution of the universe is that it is continuously broadening. If the
universe expands, the distance between any object-pair also increases in time. In an object-pair, if the distance
in-between increases, then the mutual force will decrease. Thus, G will decrease over time, as given in Eq. (6)

[1]. Moreover, Eq. (1) becomes more complicated, as in Eq. (7):

G(t) = G(t0)
(

t0
t

)β

, (6)

Fij = G(t)
MajMpi

R2
, (7)

where β <1. At this point, it should be noted that even though G is referred to as the “gravitational constant”,
it will no longer be a constant, as seen in Eq. (7), under these assumptions. Nevertheless, throughout this paper,
we will continue referring to G as the “gravitational constant” in the conventional manner.

The physical relations among force, velocity and mass cause the gravity alternation with time. In the
mean time, the masses and acceleration of each object, calculated from the law of motion and the law of velocity,
undergo a change. Hence, that is the motivation source of the GSA algorithm, which is proposed by using these
equations and relations.

2.2. The algorithm

The fundamental nature of the GSA algorithm is composed of 4 basic steps [1,2,9]:

1. Initialization of the population of agents (objects)

2. Fitness evaluation for each agent

3. Updates and calculations

4. Repeating the 2nd and the 3rd steps until the termination condition is met

176

ALTINÖZ et al./Turk J Elec Eng & Comp Sci

Step 1: Initialization of the population of agents (objects)

The positions of the N number of agents (objects) for the d dimensional search space are randomly
initialized with a pseudo-random number generator between the boundaries of the search space at the initial
iteration t = 0, where t = {1,2,...,tmax}. The initial position (X) and initial velocity (V) of the ith agent are
defined as follows:

Xi(t) =
{
x1

i (t), x
2
i (t), ..., x

d
i (t)

}
, (8)

Vi(t) =
{
v1

i (t), v2
i (t), ..., vd

i (t)
}

. (9)

Step 2: Fitness evaluation for each agent

The fitness function (fit(t)) is evaluated for each agent at each iteration. The best and worst fitnesses

are obtained from Eqs. (10) and (11), respectively:

best(t) = min
j

(fitj(t)), (10)

worst(t) = max
j

(fitj(t)). (11)

Step 3: Updates and calculations
The gravitational constant G , velocity v , and position x are updated; the mass M and acceleration of

the agents a are computed. The gravitational constant G is computed from Eq. (12):

G(t) = G(G0, t) = G0e
−at/tmax (12)

The mass of each agent is constructed according to its fitness. Thus, the mass is calculated from the fit(t) value

of each agent and then normalized, as given in Eqs. (13) and (14):

mi(t) =
fiti(t) − worst(t)
best(t) − worst(t)

, (13)

Mi(t) =
mi(t)∑

j

mj(t)
. (14)

The acceleration of the ith agent is computed directly using Eq. (4). On the other hand, the acceleration
depends on the force applied to an agent. Thus, as a first step, the force Fij applied by ithe mass to the j th

one at the dimension d is calculated from Eq. (15):

F d
ij = G(t)

m2
i (t)

Rij(t) + ε
(xd

j (t) − xd
i (t)), (15)

where ε is a small constant and Rij(t) is the Euclidian distance between the 2 agents i and j defined in Eq.

(16):

Rij = ‖Xi(t), Xj(t)‖2 . (16)

In the GSA, the total force applied on agent i is calculated as the randomly weighted sum of the fitness values
of all of the agents [Eq. (17)]:

F d
i =

∑
j

(randjF
d
ij(t)). (17)

177

ALTINÖZ et al./Turk J Elec Eng & Comp Sci

The acceleration of agent i is calculated from Eq. (4) and defined as Eq. (18):

ad
i (t) =

F d
i (t)

Mi(t)
. (18)

The velocity and the position of each agent are updated using Eqs. (19) and (20):

vd
i (t + 1) = randiv

d
i (t) + ad

i (t)Δt, (19)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1)Δt. (20)

Step 4: Repeat

If the end criterion, such as reaching the maximum number of iterations, is met, then the solution is
picked from the position of the best agent and the program is terminated; otherwise, Step 2 is reexecuted,
and the process is repeated by taking the last population as the initial population of the new iteration, by
incrementing the iteration index.

3. Orthogonal arrays

Let S be a set consisting of s symbols (or levels). In that case, an N × k matrix A with entries from S is said

to be an OA with s levels and strength t (0 ≤ t ≤ k), if in every N × t subarray of A , each t-tuple based on

S appears exactly the same times as a row [10]. The notation for such an OA is OA(N, k ,s ,t).

In order to have a better understanding about this definition, let us consider the OA(27,10,3,2) with

entries selected from S ={1,2,3}. Hence, the number of levels is 3. In the case where any 2 columns are selected

(i.e. t = 2), 9 possible combinations can be observed as a row: (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3,

1), (3, 2), and (3, 3). It can be verified that each combination has the same number of occurrences as a row: 3

times (Table 1). This is the main idea of orthogonality: ensuring a balanced and fair selection of parameters in

all possible combinations [11].

The OA concept is the main idea underlying the Taguchi method, which is one of the most efficient,
and hence popular approaches for lowering the number of trials, while satisfying a reasonable search-coverage
percent. The method was developed by Dr. Genichi Taguchi, who was a quality engineer. Especially for
quality engineering applications, there are cases in which numerous test or experiment cases will be executed
for the coverage of all possible input combinations, where the cost of each test or experiment might be quite
high. Taguchi’s main aim was to find a way to lower/minimize the number of these tests or experiments, while
achieving an acceptable test coverage rate, hence lowering the costs without much compromise in quality. Since
he made use of the features of OAs, the Taguchi method provides a cost effective test or experiment setup for
quality engineers.

Since heuristic optimization approaches are nothing but systematical trial-and-error methods, and since
the “test or experiment execution” in quality engineering corresponds to the “fitness function evaluation” in
optimization; Taguchi’s ideas have also found many applications in optimization problems.

3.1. OA-GSA

In general, if the initial information about the region of the solution is provided, it is essential to assign the
position of the members of the initial population around or near the optimal solution. However, in reality,

178

ALTINÖZ et al./Turk J Elec Eng & Comp Sci

Table 1. The orthogonal array OA(27,10,3,2).

Experiments Elements
1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1
2 2 1 2 2 2 3 3 1 2 3
3 3 1 3 3 3 2 2 1 3 2
4 1 2 1 2 2 2 3 3 1 2
5 2 2 2 3 3 1 2 3 2 1
6 3 2 3 1 1 3 1 3 3 3
7 1 3 1 3 3 3 2 2 1 3
8 2 3 2 1 1 2 1 2 2 2
9 3 3 3 2 2 1 3 2 3 1
10 1 1 2 1 2 2 2 3 3 1
11 2 1 3 2 3 1 1 3 1 3
12 3 1 1 3 1 3 3 3 2 2
13 1 2 2 2 3 3 1 2 3 2
14 2 2 3 3 1 2 3 2 1 1
15 3 2 1 1 2 1 2 2 2 3
16 1 3 2 3 1 1 3 1 3 3
17 2 3 3 1 2 3 2 1 1 2
18 3 3 1 2 3 2 1 1 2 1
19 1 1 3 1 3 3 3 2 2 1
20 2 1 1 2 1 2 2 2 3 3
21 3 1 2 3 2 1 1 2 1 2
22 1 2 3 2 1 1 2 1 2 2
23 2 2 1 3 2 3 1 1 3 1
24 3 2 2 1 3 2 3 1 1 3
25 1 3 3 3 2 2 1 3 2 3
26 2 3 1 1 3 1 3 3 3 2
27 3 3 2 2 1 3 2 3 1 1

it is not always possible to obtain that information. Therefore, the initial population is taken as a random
formation, as given for the 2-dimensional example in Figure 1, where D−1 and D−2 are the labels of each
dimension; D−1min , D−1max , D−2min , and D−2max are the boundaries of the search space; and R1 and
R2 are the distances between each candidate solution. It is desired to distribute the initial population in such
a manner that the distance between at least one of the members of the population and the optimal solution
in the solution space is minimal. Therefore, in order to ensure this, the OA concept might be preferred at the
population initialization phase of the algorithm.

In this study, the OA design is applied to scatter the initial population so that equally distributed
members of the population span the whole solution space, based on the size of the population, as illustrated
in Figure 2a. However, for problems with high dimension, the numbers of the possible solutions calculated
from OA approach exceed the population size, unfortunately. This means that all of the solution candidates
addressed by the OA concept cannot be represented by means of a feasible population size. For instance, for a
problem with 24 unknowns (i.e. k = 24, or a 24-dimensional problem), in order to represent all of the solution

candidates addressed by the OA approach, literally 224 points (i.e. a population size of 224) are required, which
obviously would not be feasible. Instead, the population is constructed in such a manner that the members are
scattered at each row and the column of the search space [3], as demonstrated in Figure 2b.

179

ALTINÖZ et al./Turk J Elec Eng & Comp Sci

D-1

D-2

Initial position of a particle

(D-1
min

, D-2
max

)

(D-1
max

, D-2
min

)

Figure 1. A 2-dimensional example of the initial formation of the population obtained from the OA approach.

D-1

D -2

D-1

D-2

R1 R1 R1

R2

R2

R2

(a) (b)

(D-1
max

, D-2
min

)

(D-1
min

, D-2
max

)

Figure 2. A 2-dimensional example of the random formation of the population, which is selected from the OA matrix

as 1 solution per column.

4. Implementation results

The performance of the proposed OA-GSA is evaluated by comparing it with that of the conventional GSA.
In order to perform a fair and complete comparison, similar to the methodology followed in [12], the tests

are executed via the benchmark functions existing in the literature. In [12], only 6 benchmark functions were
included for evaluation of the continuous optimization performances of various algorithms. However, in our
study, we extend this number to 17 in order to have better test coverage. The 17 benchmark functions used in
this study are presented in Tables 2 to 4. These benchmark functions are categorized into 3 sections, namely
as: unimodal benchmark functions (Table 2), multimodal benchmark functions with many local minima (Table

3), and multimodal benchmark functions with few local minima (Table 4).

180

ALTINÖZ et al./Turk J Elec Eng & Comp Sci

Table 2. The 7 unimodal benchmark functions used in our experimental study, where n is the dimension of the function,

S is the feasible search space, and fmin is the minimum value of the function.

Test function n S fmin

f1 (x) =
n∑

i=1
x2

i 30 [−100, 100]n 0

f2 (x) =
n∑

i=1

|xi| +
n∏

i=1

|xi| 30 [−10, 10]n 0

f3 (x) =
n∑

i=1

(
i∑

j=1
xj

)2

30 [−100, 100]n 0

f4 (x) = maxi {|xi| , 1 ≤ i ≤ n} 30 [−100, 100]n 0

f5 (x) =
n−1∑
i=1

(
100

(
xi+1 − x2

i

)2 + (xi − 1)
)2

30 [−30, 30]n 0

f6 (x) =
n∑

i=1
(�xi + 0.5�)2 30 [−100, 100]n 0

f7 (x) =
n∑

i=1
ix4

i + random [0, 1) 30 [−1.28, 1.28]n 0

Table 3. The 6 multimodal benchmark functions with many local minima used in our experimental study, where n is

the dimension of the function, S is the feasible search space, and fmin is the minimum value of the function.

Test function n S fmin

f8 (x) = −
n∑

i=1

(
xi sin

(√
|xi|

))
30 [−500, 500]n –12569.5

f9 (x) =
n∑

i=1

(
x2

i − 10 cos (2πxi) + 10
)2 30 [−5.12, 5.12]n 0

f10 (x) = −20 exp

(
−0.2

√
1
30

n∑
i=1

x2
i

)
− exp

(
1
30

n∑
i=1

cos (2πxi)
)

+ 20 + e

30 [−32, 32]n 0

f11 (x) = 1
4000

n∑
i=1

(xi − 100)2 −
n∏

i=1
cos

(
xi−100√

i

)
+ 1 30 [−600, 600]n 0

f12 (x) = π
30

{
10 sin2 (πy1) +

n−1∑
i=1

(yi − 1)2
[
1 + 10 sin2 (πyi+1)

]
+ (y30 − 1)2

}
+

30∑
i=1

u (xi, 10, 100, 4)

yi = 1 + 1
4 (xi + 1)

u (xi, a, k, m) =

⎧⎪⎪⎨
⎪⎪⎩

k (xi − a)m
, xi > a

0, −a ≤ xi ≤ a

k (−xi − a)m
, xi < −a

30 [−50, 50]n 0

f13 (x) = 0.1
{

10 sin2 (π3x1) +
n−1∑
i=1

(xi − 1)2
[
1 + sin2 (3πxi+1)

]
+ (x30 − 1)2

[
1 + sin2 (2πx30)

]}
+

30∑
i=1

u (xi, 5, 100, 4)

u (xi, a, k, m) =

⎧⎪⎪⎨
⎪⎪⎩

k (xi − a)m , xi > a

0, −a ≤ xi ≤ a

k (−xi − a)m
, xi < −a

30 [−50, 50]n 0

181

ALTINÖZ et al./Turk J Elec Eng & Comp Sci

Table 4. The 4 multimodal benchmark functions with few local minima used in our experimental study, where n is the

dimension of the function, S is the feasible search space, and fmin is the minimum value of the function.

Test function n S fmin

f14 (x) =

⎡
⎣ 1

500 +
35∑

i=1

1

j+
2�

i=1
(xi−aij)6

⎤
⎦
−1

2 [−65.536, 65.536]n 1

f15 (x) = 4x2
1 − 2.1x4

1 + 1
3x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]n -1.0316285

f16 (x) =
(
x2 − 5.1

4π2 x2
1 + 5

π
x1 − 6

)2 + 10
(
1 − 1

8π

)
cos x1 + 10 2 [−5, 10]x [0, 15] 0.398

f17 (x) =
[
1 + (x1 + x2 + 1)2

(
19 − 14x1 + 3x2

1 − 14x2 + 6x1x2

+ 3x2
2

)]
x

[
30 + (2x1 − 3x2)

2 (
18 − 32x1 + 12x2

1 + 48x2

− 36x1x2 + 27x2
2

)] 2 [−2, 2]n 3

Table 5. Implementation results for the unimodal functions.

GSA
Function Best Mean S.D. Worst

f1 1.25e–17 2.04e–17 5.54e–18 3.7e–17
f2 1.76e–8 2.39e–8 3.01e–9 2.96e–8
f3 1.33e+2 2.48e+2 7.2e+1 3.97e+2
f4 2.34e–9 3.3e–9 5.69e–10 4.71e–9
f5 2.57e+1 3.02e+1 1.58e+1 8.86e+1
f6 1.3e–17 2.29e–17 7.19e–18 4.6e–17
f7 7.9e–3 6.55e–2 2.1e–1 1.1758

OA-GSA
f1 0 0 0 0
f2 1.29e–13 1.29e–13 1.29e–13 1.29e–13
f3 0 0 0 0
f4 0 0 0 0
f5 2.56e+1 2.56e+1 2.56e+1 2.56e+1
f6 1.17e–17 1.17e–17 1.17e–17 1.17e–17
f7 6.4e–3 6.4e–3 6.4e–3 6.4e–3

The properties of each method are kept the same: the population size is 50, the number of iterations
is 1000, and 30 independent runs are executed. Other parameters are set as follows: G0 = 100 and α = 20.
Comparison between the 2 methods are based on 4 criteria: the best and the worst solutions obtained throughout
the 30 independent executions (best and worst, respectively); the mean or average of all of the solutions

obtained throughout the 30 independent executions (mean); and the standard deviation of the distribution of

the solutions obtained throughout the 30 independent executions (S.D.). The best and worst results present the
solution quality of an algorithm; meanwhile, the mean and standard deviation values give an indication about
the robustness of an algorithm. Table 6 presents the results for the unimodal function obtained via the GSA
and the OA-GSA. Tables 6 and 7 summarize the results for the multimodal benchmark functions with many

182

ALTINÖZ et al./Turk J Elec Eng & Comp Sci

local minima (given in Table 3) and the multimodal benchmark functions with few local minima (given in Table

4), respectively.

Tables 5–7 demonstrate the performance of the OA-GSA against the GSA. The results indicate that
applying the OA to the GSA enhances the performance of the GSA in terms of the solution quality. Similarly, the
proposed algorithm has a smaller S.D., which indicates the robustness of the novel approach for all benchmark
functions.

Table 6. Implementation results for the multimodal benchmark functions with many local minima.

GSA

Function Best Mean S.D. Worst

f8 –3.35e+3 –2.66e+3 3.86e+2 –2.02e+3

f9 8.9546 1.7e+1 5.2067 3.08e+1

f10 2.44e–9 3.62e–9 5.7e–10 5.07e–9

f11 1.1296 4.0471 2.1389 13.4277

f12 7.11e–20 0.0199 0.0594 0.2860

f13 3.65e–107 3.75e–32 4.01e–32 1.49e–31

OA-GSA

f8 –1.25e+4 –1.25e+4 5.55e–12 –1.25e+4

f9 0 0 0 0

f10 4.35e–14 4.35e–14 0 4.35e–14

f11 0 0 0 0

f12 5.09e–20 1.04e–2 3.16e–2 1.037e–1

f13 2.82e–108 1.37e–32 2.04e–32 7.34e–32

Table 7. Implementation results for the multimodal benchmark functions with few local minima.

GSA

Function Best Mean S.D. Worst

f14 0.9989 3.8998 2.5520 9.7971

f15 –1.0316 –1.0316 5.21e–16 –1.0316

f16 0.3979 0.3979 0 0.3979

f17 3.0000 3.0000 2.18e–15 3.0000

OA-GSA

f14 0.9981 1.0434 0.0154 1.0489

f15 –1.0316 –1.0316 5.37e–16 –1.0316

f16 0.3979 0.3979 0 0.3979

f17 3.0000 3.0000 2.22e–15 3.0000

183

ALTINÖZ et al./Turk J Elec Eng & Comp Sci

The convergence performance also increases in the case of OA-based initialization [6,7,10]. For each
benchmark function category mentioned above, only 1 example convergence curve is presented due to space
considerations. Figures 3, 4, and 5 show the convergence for one of the unimodal, multimodal with many local
optimum, and multimodal with few local optimum functions, respectively.

f3

Iteration
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 f
itn

es
s

va
lu

e

1e+1

1e+2

1e+3

1e+4

1e+5

GSA
OA-GSA

f11

Iteration
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 f
itn

es
s

va
lu

e

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

GSA
OA-GSA

Figure 3. Convergence curve for function f3 . The curve

is obtained via averaging the results of 30 independent

executions.

Figure 4. Convergence curve for function f11 . The curve

is obtained via averaging the results of 30 independent

executions.

1e+5

GSA
OA-GSA

1e+4

1e+3

1e+2

1e+1

A
ve

ra
ge

 f
itn

es
s

va
lu

e

1e+0
0 100 200 300 400 900 1000500 600 700

Iteration

f
14

800

Figure 5. Convergence curve for function f14 . The curve is obtained via averaging the results of 30 independent

executions.

5. Conclusion

In this study, a novel nature-inspired continuous domain heuristic method, GSA, is investigated and modified by
means of the OA concept. The proposed approach is tested on various benchmark functions, and a performance
comparison is done via the independent simulation results. From the results, it is observed that the proposed
algorithm is more reliable and it produces better results compared to the conventional GSA. From the results,
the usage of the GSA together with the OA is suggested for efficiency and accuracy. It is also noted that the
OA can be easily combined with other methods and applied to various problems.

184

ALTINÖZ et al./Turk J Elec Eng & Comp Sci

Acknowledgments

The authors would like to express their gratitude to the anonymous reviewers for their valuable comments for
the improvement of the paper.

References

[1] E. Rashedi, H. Nezamabadi, S. Saryazdi, “GSA: a gravitational search algorithm”, Information Sciences, Vol. 178,

pp. 2232–2248, 2009.

[2] E. Rashedi, H. Nezamabadi, S. Saryazdi, “BGSA: binary gravitational search algorithm”, Natural Computing, Vol.

9, pp. 727–745, 2010.

[3] H.R. Hassanzadeh, M. Rouhani, “A multi-objective gravitational search algorithm”, Proceedings of the 2nd Inter-

national Conference on Computational Intelligence, Communication Systems and Networks, pp. 7–12, 2010.

[4] H. Nobahari, M. Nikusokhan, P. Siarry, “Non-dominated sorting gravitational search algorithm”, Proceedings of

the International Conference on Swarm Intelligence, pp. id1–id10, 2011.

[5] Á. Rubio-Largo, M.A. Vega-Rodŕıguez, J.A. Gómez-Pulido, J.M. Sánchez-Pérez, “A multiobjective gravitational

search algorithm applied to the static routing and wavelength assignment problem”, Proceedings of the International

Conference on Applications of Evolutionary Computation, Vol. 2, pp. 41–50, 2011.

[6] Y.W. Leung, Y.P. Wang, “An orthogonal genetic algorithm with quantization for global numerical optimization”,

IEEE Transactions on Evolutionary Computation, Vol. 5, pp. 41–53, 2001.

[7] C.N. Ko, Y.P. Chang, C.J. Wu, “An orthogonal-array-based particle swarm optimizer with nonlinear time-varying

evolution”, Applied Mathematics and Computation, Vol. 191, pp. 272–279, 2007.

[8] J.T. Tsai, W.H. Ho, J.H. Chou, C.Y. Guo, “Optimal approximation of linear systems using Taguchi-sliding-based

differential evolution algorithm”, Applied Soft Computing, Vol. 11, pp. 2007-2016, 2011.

[9] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, “Filter modeling using gravitational search algorithm”, Engineering

Applications of Artificial Intelligence, Vol. 24, pp. 117–122, 2011.

[10] A.S. Hedayat, N.J.A. Sloane, J. Stufken, Orthogonal Arrays: Theory and Applications, New York, Springer-Verlag,

1999.

[11] W.C. Weng, F. Yang, A. Elsherbeni, Electromagnetics and Antenna Optimization Using Taguchi Method, San

Rafael, CA, Morgan & Claypool, 2007.

[12] A.Z. Şevkli, F.E. Sevilgen, “StPSO: strengthened particle swarm optimization”, Turkish Journal of Electrical

Engineering and Computer Sciences, Vol. 18, pp. 1095–1114, 2010.

185

