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Abstract: We propose a memory-based method for the solution of a specific type of nonlinear equation systems. We

observe that when the equations in a system can be separated into 2 parts, where each subset contains fewer parameters

than the whole set of equations, the system can be solved faster with a preprocessing phase. We show that reduced

rounds of AES produce such a system under a chosen plaintext scenario. This observation enables us to solve that

system within a practically applicable complexity of 237 operations where a brute force approach requires 272 trials.

The method can be used for the solution of other equation systems of the same structure. In the optimal case where we

can divide the equations into 2, a problem that contains n binary variables can be solved at time O(n
2
· 2n/2) operations

and using O(2n/2) units of memory rather than O(2n) trials of the equation system.
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1. Introduction

The solution of nonlinear equation systems is a fundamental question in mathematics, not only in cryptography.
There exists yet no general solution algorithm for nonlinear systems as opposed to the situation for linear
systems, where one can perform, e.g., Gaussian elimination to reduce the number of unknown variables step by
step.

Methods such as Groebner basis finding algorithms can be used as a tool in some cases. We have also
methods concentrating on converting a nonlinear system into a linear system. Such linearization/relinearization,

XL, and XSL [1, 2, 3] techniques have been proposed for the solution of nonlinear equation systems arising from
cryptographic systems. These techniques express the input nonlinear system of n parameters with a linear
system having far more parameters, and then deploy the rich set of linear case techniques on the converted
system. As it is easier to deal with linear equations, they pay the penalty of enlarging the parameter space to
make use of those linear case methods.

The use of time–memory trade-off is well known by the cryptology community for the key search
problem both in block ciphers and in stream ciphers. It has also improved variants such as rainbow tables
and distinguished points approach [4, 5, 6, 7, 8, 9, 10]. In this work, we suggest the use of a special type of
time–memory trade-off for a specific type of equations. Similar approaches have been used in the cryptanalysis
of block ciphers DES [11] and FEAL [12, 13], and hash functions [14].

This technique requires the input system to hold the separable (definition is given in section 2) property.
Since we have fewer parameters to consider in the converted subsystems, we gain the ability to perform a time–
memory trade-off, where it is more difficult to apply on the original parameter set. In the optimal case, where
∗Correspondence: huseyin.demirci@tubitak.gov.tr
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each subsystem would have n/2 parameters, we are able to solve the input system in O(n
2 · 2n/2) operations

with O(2n/2) units of memory rather than O(2n) trials of the original equation system with O(1) memory.
Thus, the technique can be considered a divide-and-conquer approach combined with time–memory trade-off.
The difference between the proposed method and classical time–memory trade-off is the deterministic structure.
The separability property enables us to find a solution without using the birthday approach. We also show that
the condition of separability can be relaxed for some cases.

We apply the proposed technique to solve the equation system of AES observed by Gilbert and Minier.
This enables us to distinguish 3 rounds of AES from a random permutation with only 10−11 chosen plaintexts.
This constitutes a marginal advantage over the classical square attack in terms of data complexity. Previously,
Gilbert and Minier equations over 256 chosen plaintexts have been used as a distinguisher for AES [15, 16] (see

section 3.2 for details). Having the ability to solve these equations in much less time by our new technique,
previous Gilbert-Minier related time–memory trade-off attacks are improved.

This paper proceeds as follows. In Section 2, we discuss the mechanism behind the proposed solution
system. Section 3 is dedicated to AES. In Section 3.1 we recall the AES encryption system and previous work.
Section 3.2 introduces the nonlinear equation system of AES that we deal with. We apply the solution technique
to this equation system in Section 3.3. Section 4 discusses the possible extensions of the method. We discuss
future applications and conclude the paper in Section 5.

2. The general idea

The naive solution for a given nonlinear equation system is to verify all possible settings of its variable set.
In general, solutions proposed to date concentrate on finding heuristics to speed up this checking mechanism.
We propose a new technique that makes use of memory combined with a divide-and-conquer approach. Our
method requires the given equation system to be separable according to Definition 1.

Definition 1 Let S̆ denote a system of equations over a set V = {x1, x2, . . . , xn} of n discrete variables as

E1(x1, x2, . . . , xn) = h1

E2(x1, x2, . . . , xn) = h2

...
Ez(x1, x2, . . . , xn) = hz

We call S̆ separable, if there exist 2 disjoint nonempty subsets A = {a1, a2, . . . , a�} and B = {b1, b2, . . . , bn−�}
of V such that each equation Ei, 1 ≤ i ≤ z, can be expressed as a sum of 2 other equations over the variable
sets A and B respectively, i.e.

E1(x1, x2, . . . , xn) = F1(a1, a2, . . . , a�) + G1(b1, b2, . . . , bn−�) = h1

...
Ez(x1, x2, . . . , xn) = Fz(a1, a2, . . . , a�) + Gz(b1, b2, . . . , bn−�) = hz

Without loss of generality, assume that a separable equation system is defined over GF (2). We compute
the values of Fi and Gi , 1 ≤ i ≤ z , for all possible settings of their corresponding variable sets, and store
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these values in matrices denoted by F and G . Each column denotes a unique setting over the corresponding

variable set. The matrix F has 2� columns since there exist 2� possible distinct settings for its � variables

(a1, a2, . . . , a� ) in GF (2), and G has 2n−� columns accordingly. The entry Fi,j corresponds to the value

of the Fi(a1, a2, . . . , a�) computed for the jth distinct setting of (a1, a2, . . . , a�). Define the matrix G
′

as

G
′
i,j = hi − Gi,j for all 1 ≤ i ≤ z and 1 ≤ j ≤ 2n−�. Figure 1 demonstrates the matrices F and G′.1

F =

⎡
⎢⎢⎣

F1,1 F1,2 ... F1,2�

F2,1 F2,2 ... F2,2�

... ... ... ...
Fz,1 Fz,2 ... Fz,2�

⎤
⎥⎥⎦ G

′
=

⎡
⎢⎢⎣

(h1 − G1,1) (h1 − G1,2) ... (h1 − G1,2n−�)
(h2 − G2,1) (h2 − G2,2) ... (h2 − G2,2n−�)

... ... ... ...
(hz − Gz,1) (hz − Gz,2) ... (hz − Gz,2n−�)

⎤
⎥⎥⎦

Figure 1. The sketch of F and G
′

matrices.

The equation system S̆ has a solution if and only if the matrices F and G
′

have an equal column. Thus,

we need to search for the equal columns among F and G
′

matrices. To achieve this goal, we first make a

column-wise sort of F and G
′

matrices. This will take O(2� · log 2� +2n−� · log 2n−�) = O(� · 2� + (n− �) · 2n−�)
time complexity with quick sort. Note that, for a fixed equation system, the matrix F is independent of the
solution. Therefore, F can be calculated and sorted in a preprocessing step. As a result, the run time complexity

of the algorithm is O((n − �) · 2n−�).

The last step is to search between these sorted lists to find the equal items. If we consider the naive
process to achieve this goal, we will traverse all the items over the matrices and search for an equal column. The

complexity of this process is O(2(n−�)+2�). An alternative approach may be to sort only the smaller matrix. In

this case, instead of sorting the second matrix with complexity O(2(n−�) + log2n−�), a binary search of values

of this matrix in the first (sorted) matrix requires time complexity O(2(n−�) + log2�).

The run time complexity is independent of the calculations for the matrix F . If the complexity is O(z)

for each column of G′ , the total computation time complexity for the matrix G′ is O(z2n−�). The total run

time complexity is O(z · 2n−� + (n − �) · 2n−� + 2(n−�) + 2�) = O((n − � + z + 1) · 2n−� + 2�). If we exclude

the number of equations z (as it is a constant factor and not a major term in complexity) and constants, the

proposed technique’s time complexity is O((n− �) · 2n−�). The dominant time consuming process is the sorting

operation. The space requirement is mainly storing the F matrix, which is O(z2�). In the case where � = n
2 ,

time complexity becomes O(n
2 · 2n/2), and space complexity is approximately O(2n/2).

Note that there might be more than one possible candidate at the end of the last step. The method is
capable of finding each solution. A verification step may be required to eliminate wrong candidates.

We would like to explain the new idea with the following example.

1Note that subtracting H from F is also possible, and in practice the matrix having fewer columns will be selected for
subtraction.
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Table 1. The F and G
′

matrices computed for the sample equation system.

x3 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x1 0 1 0 1 0 1 0 1

0 1 0 0 1 0 1 1
F = 0 1 0 0 0 1 0 1

0 0 1 1 1 0 0 1
0 0 0 0 0 0 0 1

x6 0 0 0 0 1 1 1 1
x5 0 0 1 1 0 0 1 1
x4 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 1
G

′
= 0 1 0 1 0 1 1 0

1 1 0 0 1 0 0 1
0 0 0 1 1 1 1 0

Example 1 Let S̆ be given as:

x1 + x1x2 + x3 + x4 + x4x5x6 = 1

x1 + x2 + x2x3 + x4 + x5x6 = 0

x1x3 + x2 + x3 + x4x6 + x5 = 1

x1x2x3 + x4x5 + x6 = 0

This system is separable according to Definition 1, since each equation can be expressed as the sum of 2 distinct
variable sets A = {x1, x2, x3} and B = {x4, x5, x6} . The corresponding Fi and Gi , 1 ≤ i ≤ 3 , functions are

F1(x1, x2, x3) = x1 + x1x2 + x3,

F2(x1, x2, x3) = x1 + x2 + x2x3,

F3(x1, x2, x3) = x1x3 + x2 + x3,

F4(x1, x2, x3) = x1x2x3,

G1(x4, x5, x6) = x4 + x4x5x6,

G2(x4, x5, x6) = x4 + x5x6,

G3(x4, x5, x6) = x4x6 + x5,

G4(x4, x5, x6) = x4x5 + x6

Table 1 shows the F and G
′

matrices computed with h1 = 1 , h2 = 0 ,h3 = 1 , and h4 = 0 values as given

in S̆ . We observe that the equal columns from F and G
′

indicate a solution, e.g., the fifth column of F

and the first column of G
′

are equal to < 1, 0, 1, 0 > with variable settings < x1, x2, x3 >=< 0, 0, 1 >,
< x4, x5, x6 >=< 0, 0, 0 >, which is a valid solution of the system.

3. The solution of AES equations

3.1. The AES encryption algorithm

In this paper we will focus on the Rijndael with block and key size 128. The 128-bit plaintext can be considered

as a 4 × 4 matrix in GF (28), and the entries of the matrix are represented as 1-byte values. There is a key
whitening layer at the very beginning. Then each round function, except the final one, consists of 4 inner
functions: the S-box substitution (SB ), shift row (SR), mix column (MC ), and add round key (ARK )
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operations, respectively. The single S-box substitution is used for all entries in the table, and it is based on

the inverse mapping in GF (28), and affine mapping, which is strong against differential and linear attacks [17].
In the SR operation, rows are shifted to the left by 0, 1, 2, and 3 bytes, from the first row to the last. MC

operation provides efficient confusion on columns of the matrix, since it is an MDS matrix multiplication. In the
ARK , the state is simply XORed with the 128-bit round key. This design of AES round function guarantees full
diffusion after 2 round function calls. For details of the encryption, decryption, and key scheduling algorithms,
we refer to [18].

Being the new encryption standard, AES is probably one of the most attractive targets for cryptanalysis.
There have been many attempts to analyze AES. First, the designers of AES break the 6 round version of

AES-128 by the square attack using 232 chosen plaintexts with complexity of about 272 encryptions [19]. This

attack has been improved and the workload has been reduced to 244 in [20]. For AES-192 and AES-256, with

the help of the key schedule, the attack of [21] can be successful for 7 rounds. In [15], Gilbert and Minier found
an attack based on a collision property after 3 rounds of encryption. Seven rounds of AES-192 and AES-256

are broken using 232 chosen plaintexts with a complexity of 2140 encryptions. Moreover, the attack is faster
than an exhaustive search for AES-128. In [22, 23, 24, 25, 26], the impossible differential attack is applied to 7
rounds of AES, but it has higher complexity than the square attack. There are some new impossible differential
attacks [27, 28, 29, 30] on AES that reduce the time complexities of the previous attacks. A boomerang attack

is applied by Biryukov [31] for the 5 and 6 rounds of the cipher. It breaks 5 rounds of AES-128 using 246

adaptive chosen plaintexts in 246 steps of analysis, whereas the 6-round attack needs 278 chosen plaintexts,

278 steps of analysis, and 236 bytes of memory. A class of algebraic attacks on AES is examined in [3]. In this
paper, the AES S-box is written as a system of implicit quadratic equations, resulting in the conversion of the
cryptanalysis to solving a huge system of quadratic equations. The XSL method is suggested if the system of
equations is overdefined and sparse, which is the case for AES.

There have been recent developments in the cryptanalysis of AES. In [32] there is a related key attack

on 10 rounds of AES-192 and AES-256 with practical complexity. Biryukov et al. [33, 34] have constructed
related key attacks on the full AES-192 and AES-256. Moreover, chosen plaintext attacks work up to 7 rounds
of AES-128 and 8 rounds of AES-192 and AES-256 [19, 15, 16, 28, 27, 29, 30]. Timing cache attacks are also

an important threat against AES [35].

Throughout this section, we use K(r) and C(r) to denote the round key and the ciphertext of the r -th

round; K
(r)
ij and C

(r)
ij denote the byte values at row i , column j . The arithmetic operations among table

entries are in GF (28), where addition is the same as bit-wise XOR. By a one round AES encryption, we mean
an inner round without whitening or exclusion of the mix column operation unless otherwise stated.

3.2. The Gilbert-Minier equation

In [15], Gilbert and Minier showed an interesting distinguishing property for 3 rounds of AES: Consider the
evolution of the plaintext over 3 full rounds including the whitening layer. Let aij denote the i-th row, j -th

column of the plaintext. Assume that all the entries are fixed except the first one a11. After the first S-box

transformation, define tij = S(aij + K
(0)
ij ), where K

(0)
ij is the i-th row, j -th column of the whitening key. The

add round key and S-box operations map fixed entries to fixed entries. After the mixed column operation, the
elements of the first column are variable, where the other entries are still fixed to other variables depending
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Table 2. The state matrix of AES after one round of encryption.

2t11 + c1 m12 m13 m14

t11 + c2 m22 m23 m24

t11 + c3 m32 m33 m34

3t11 + c4 m42 m43 m44

on previous values. Therefore, at the end of round 1, the state matrix is as given in Table 2 where mij and

ci , 1 ≤ i ≤ 4, 2 ≤ j ≤ 4, are fixed values that depend on the fixed entries and subkey values. Applying the
round operations S-box, shift row, mix column, and key addition, at the end of the second round, the first main

diagonal entry C
(2)
11 can be determined by the following equation:

C
(2)
11 = 2S(2t11 + c1) + 3S(m22) + S(m33) + S(m44) + K

(2)
11

= 2S(2t11 + c1) + c5,

for some fixed value c5 = 3S(m22) + S(m33) + S(m44) + K
(2)
11 . Applying the round function, similar equations

can be written for the other main diagonal entries. At the end of the second round, the main diagonal entries
are of the form:

C
(2)
11 = 2S(2t11 + c1) + c5

C
(2)
22 = S(3t11 + c4) + c6

C
(2)
33 = 2S(t11 + c3) + c7

C
(2)
44 = S(t11 + c2) + c8

for some fixed values c5, c6, c7, c8 . These values are determined by the fixed entries and the related subkey
values. Since

C
(3)
11 = 2S(C(2)

11 ) + 3S(C(2)
22 ) + S(C(2)

33 ) + S(C(2)
44 ) + K

(3)
11 ,

we can summarize the above observations with the following proposition:

Proposition 1 ([15]) Consider a set of 256 plaintexts where the entry a11 is variable and all the other entries

are fixed. Encrypt this set with 3 rounds of AES. Then the function that maps a11 to C
(3)
11 is entirely determined

by 10 fixed 1-byte parameters.

Consider the following equation formed by 3 rounds of AES encryption:

C
(3)
11 = 2S(2S(2t11 + c1) + c5) + 3S(S(3t11 + c4) + c6)

+S(2S(t11 + c3) + c7) + S(S(t11 + c2) + c8) + K
(3)
11 . (1)

For the value of t11 we also need the value of K
(0)
11 . Therefore, the values of the variables c1, ..., c8, K

(0)
11 and

K
(3)
11 define the function from a11 to C

(3)
11 .
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We call the equation (1) the Gilbert-Minier equation.

At this point, we assume that the value of t11 is known. Note that this assumption is equivalent to 28

trials of the key value K
(0)
11 . We would like to answer the following question:

Question 1 Assume that we are given the values of the equation (1) for m ≤ 256 different values of t11, is it

possible to find the values of c1, c2, c3, c4, c5, c6, c7, c8 and K
(3)
11 from this information?

Whether this system has a solution can be used as a distinguisher. We know that 3 rounds of AES has
such a property, but for instance if we make partial decryption with wrong subkey values, the property will not

hold. It is possible to search the possible byte combinations exhaustively and find the value of ci and K
(3)
11

values or decide there is no solution. On the other hand, it is also possible to precompute a table containing all
the possible values of the equation (1) for all possible combinations and ask from the table when a query for the
solution is required. Alternatively, one can use a classical time–memory trade-off between these 2 edges. We
propose a different time–memory trade-off with the help of the special structure of this equation. ¿From the
classical time–memory approach we have some differences. The method works for any query, not for a subset of
the values. Therefore there is no coverage concept. As a result, there is no probabilistic approach; we have an
exact solution. This approach is similar to the analysis conducted by Matsui et al. for the FEAL cipher [13].

The basic square attack on AES uses the same chosen plaintext scenario. It exploits the fact that the
sum of any entry is 0 after 3 rounds of encryption. Therefore the square attack does not need to find internal
parameters of the system, but requires 256 chosen plaintexts for a 3-round distinguisher. In our model, we are
able to distinguish 3 rounds of AES with about 10 chosen plaintexts.

3.3. Solution of the Gilbert-Minier equation system

In this section, we give the algorithm to find the solution of the equation system in Question 1.

Consider the equation (1):

C
(3)
11 = 2S(2S(2t11 + c1) + c5) + 3S(S(3t11 + c4) + c6)

+S(2S(t11 + c3) + c7) + S(S(t11 + c2) + c8) + K
(3)
11 .

Let
F = 2S(2S(2t11 + c1) + c5) + 3S(S(3t11 + c4) + c6)

and
G = S(2S(t11 + c3) + c7) + S(S(t11 + c2) + c8).

Then the Gilbert-Minier equation can be written as:

F (c1, c4, c5, c6)(t11) + G(c2, c3, c7, c8)(t11) + K
(3)
11 .

Assume that we are given 10 − 11 ciphertexts after 3 rounds of AES encryption. Let the vector yi be

the value of C
(3)
11 at the point t11 = 0, ..., 8. Form the vector y = (y0, y2, ..., y8). We can eliminate the linear

constant K
(3)
11 and solve the system as follows:
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1. Prepare a table of size 8 × 232 that contains values of the function

F (c1, c4, c5, c6)(t11) + F (c1, c4, c5, c6)(0)

for every c1, c4, c5, c6 and for t11 = 1, ..., 8. Call this table A .

2. Similarly, prepare another table of size 8 × 232 for every value of the function

G(c2, c3, c7, c8)(t11) + G(c2, c3, c7, c8)(0)

for the possible values of c2, c3, c7, c8 at t11 = 1, ..., 8. Call this set B .

3. Sort the matrix A according to its columns. Call the sorted matrix A′ .

4. Form a table of size 8 × 232 as follows:

C =

⎡
⎢⎢⎣

y1 + y0 y1 + y0 ... y1 + y0

y2 + y0 y2 + y0 ... y2 + y0

... ... ... ...
y8 + y0 y8 + y0 ... y8 + y0

⎤
⎥⎥⎦

5. Obtain the matrix D = (C −B). Sort this matrix with respect to its columns. Call the sorted matrix D′ .

6. Compare the matrices A′ and D′ . Check if one column of A1′ is equal to one column of D′ . Return the
equal columns as a candidate solution for c1, c2, c3, c4, c5, c6, c7, c8 . If no columns are equal, there is no
solution.

7. Using other 1–2 plaintexts, check if the derived ci values are correct.

8. Put the ci values in one of the equations and obtain the value of K
(3)
11 .

Note that steps 1–3 can be done in a precomputation step since the AES equation system is fixed. Then,
in the run time, we need to consider only the sort of the matrix D′ .

To actually observe the behavior of the algorithm, we have implemented it on a server having 2.4 GHz
Intel Xeon 64-bit CPU running Linux Gentoo. To shrink the memory to a practical size, we have used a
banking approach. Our implementation requires 256 × 2 files, each of which occupies 192 MB storage area.
256 × 192 MB are required to store the sorted matrix A′ and 256 × 192 MB are required to store matrix B .
We have run the algorithm for each bank. The algorithm uses 400 MB of RAM, and spends 25 s on average
where the user time is measured with the getrusage() command to find the ci values or decide there is no
solution. Therefore, in 25 × 256 s total time, the algorithm finds all candidate solutions. Since the banking
approach is advantageous, we have parallelized our algorithm using all 16 CPUs available. Then the response
time decreased to 25 × 16 s. Running 256 parallel algorithms for each bank is even possible. In this situation,
the response time will be only 25 s. The best banking value depends on the practical implementation limits.
Finally we would like to note that the information of t11 can either be satisfied with a search on the online

complexity. This requires the search for K
(0)
11 , which brings a factor of 256 in time complexity. Another solution

may be to include the search for K
(0)
11 in the precomputation step and prepare the tables A and B accordingly.

This will increase the size of each of the tables A and B 256 times, whereas the online complexity does not
change.
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This distinguisher can be used to attack on reduced rounds of AES. For 5 and 6 rounds of AES, the

basic square attack makes the key elimination after partial decryption with the 240 and 272 candidate keys of
256 ciphertexts. In our method, we are able to eliminate the keys after conducting partial decryption with the
same number of keys, but we need to perform a partial decryption for only 10–12 ciphertexts. We have also a
sorting complexity of these ciphertexts. Therefore our method has an advantage over the basic square attack

with a ratio of about 28

(4×24) = 4 (if K
(0)
11 is calculated and stored in the preprocessing step). On the other

hand, the improved square attack [20] performs better than this attack. The main advantage of our method is

the possibility to distinguish AES with very few plaintext-ciphertext pairs (10–11 pairs, instead of 256).

4. Possible extensions of the system

There are some possible improvements that loosen the conditions to apply the algorithm. The basic assumption
of the proposed method is that each equation of the system should be separable. Again, without loss from
generality, assume that we work on GF (2) and the equation system H contains n variables. Let each function
Hi in the system be written as a sum of 2 nonlinear functions Fi and Gi , each containing n1 and n2 parameters,
and the sets F and G contain r common variables. If we have 2r + 2n1 << 2n and 2r + 2n2 << 2n , we may
follow the same steps as in Section 3.3 to produce 2 tables containing all the possible evaluations of the functions
Fi and Gi and decide whether there is a candidate solution. The final additional step here is to check that the
obtained solutions are consistent, regarding the common variables. In this case, we will also have an advantage
over searching 2n values.

A second improvement comes if the number of equations is large. In this case, it may be possible to
choose 2 subsets, which makes some of the equations separable. Using the separated equations, we may reduce
the complexity and then return to the original system and solve it. A naive approach is to take arbitrary
sets and try to observe if the equations are separable. Assume that we have an arbitrary quadratic binary
nonlinear equation system containing 2n variables, and assume that the equation is sparse. We arbitrarily
divide the set of variables X = {x1, ..., xn, xn+1, ..., x2n} variables into 2 separate parts containing the elements

X1 = {x1, ..., xn} and X2 = {xn+1, ..., x2n}. Then define 3 sets of monomials A1, A2, and A3 as

A1 = {xixj |xi, xj ∈ X1},

A2 = {xixj |xi, xj ∈ X2},

A3 = {xixj|xi ∈ X1, xj ∈ X2}.

Note that the sets A1 and A2 have cardinality n(n − 1)/2, and A3 has n2 elements, and the sets are
disjoint. Suppose that we have a sparse equation system where there are at most m monomials in each

equation. The probability that one equation does not contain an element from the set A3 is: ( n−1
2n−1)m.

Hence, if the number of equations is k , we expect to have k × ( n−1
2n−1)m equations, which are separable.

On the other hand, the linearization technique requires 2n × (2n − 1) (the number of monomials) many
linearly independent equations. Table 3 summarizes the number of equations required to get a solution for
the linearization and the proposed method. Here we have considered 64-, 80-, and 128-bit variables, which are
the common key lengths in cryptographic applications. For instance let 2n = 128 and m = 3. Then we need

approximately 128× ( 63
127)−3 = 1048 equations to obtain a solution, whereas the linearization method requires

about 128×127 = 16256 linearly independent equations. This observation demonstrates that finding separable
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Table 3. Number of required equations.

2n m = 2 m = 3 m = 4 m = 5 Linearization
64 264 537 1091 2218 4032
80 328 664 1346 2728 6320
128 520 1048 2113 4261 16256

equations can be easier in some special cases (such as equation systems that are very sparse.) It also indicates
that this method may require significantly fewer equations corresponding to linearization. We note that the
complexity of the linearization technique may be less than that of the proposed algorithm, but if we have only
a limited number of equations, the method can be helpful. Finally, we would like to note that finding the best
decomposition in general is related to other computational problems.

5. Discussions and conclusion

In this paper, we propose a memory-based method for the solution of nonlinear equation systems of specific
type, called separable. We provide an example in which 3 rounds of AES encryption forms such a system of
equations. Hence, we are able to solve this nonlinear system practically using very few plaintexts.

If the equation system has a separable structure, the proposed solution algorithm can have a significance
advantage over a direct exhaustive search or a precomputation method. As an example, the complexities of the
proposed method are compared in Table 4 for some values. We have again considered equation systems with
60, 80, and 128 variables in the binary case and assumed that the nonlinear systems can be separated into 2
equal parts. It is interesting to observe that the precomputation has helped to build a trade-off between time
and memory. Therefore, for some cases it becomes practical to divide the complexity into memory and time
where a direct search is infeasible.

Table 4. Complexity comparison of the proposed method.

Number of variables Method Run time Memory Preprocessing time
64 Exhaustive search 264 - -

Precomputation - 264 264

Proposed method 233 232 232

80 Exhaustive search 280 - -
Precomputation - 280 280

Proposed method 241 240 240

128 Exhaustive search 2128 - -
Precomputation - 2128 2128

Proposed method 265 264 264

There are some extensions of the proposed system. First, we show that the idea of the method can still
be used for the solution of other equation systems that are not exactly separable. Therefore the separability
condition can be relaxed. Moreover, we observe that the method provides advantage in terms of the number of
required equations to get a solution with respect to linearization. This could be advantageous in sparse equation
systems where we have only a limited number of equations.

This approach could be used in other areas where discrete nonlinear equations are involved. The minimum
cut problem, the Boolean satisfiability problem, and nonlinear systems control could be listed as examples of
these areas.
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In the mincut problem from graph theory one tries to find the cut with the smallest edge weights. For
instance, [36] is a paper that introduces mincut ideals of 2-terminal networks that arise in the algebraic analysis
of system reliability. It is interesting to observe that in this field there are network structures that have a
separable structure.

The Boolean satisfiability problem (SAT) involves determining if the variables of a given Boolean formula
can be assigned in such a way as to make the formula evaluate to TRUE or to determine whether no such
assignments exist. SAT is known to be an NP-complete problem. We think that the proposed solution method
can be advantageous in some instances of the SAT problem.

Nonlinear systems control is an important area where discrete nonlinear variables are used to express
the behavior of dynamic systems like robotics and the aerospace industry. If the underlying systems cause a
separable equation system where each separated block has a searchable complexity, then the proposed method
could be helpful for the solution of these systems.
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