
Turk J Elec Eng & Comp Sci

(2013) 21: 274 – 299

c© TÜBİTAK

doi:10.3906/elk-1105-11

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

A temporal XML data model in anaesthesia information systems

Oya ÜNLÜ DUYGULU, Taflan İmre GÜNDEM∗

Department of Computer Engineering, Boğaziçi University,

Bebek 34342, İstanbul, Turkey

Received: 06.05.2011 • Accepted: 24.10.2011 • Published Online: 27.12.2012 • Printed: 28.01.2013

Abstract: Time information is an important aspect of a health information system. Health information cannot be

represented and queried correctly without time in medical research, auditing, and medicolegal cases. Extensible Markup

Language (XML) is being used in health information systems and has been formerly proposed as a data model for

anaesthesia information systems. In this paper, we propose incorporating time into an XML model for anaesthesia

information systems. A new storage structure and a temporal index structure are proposed in order to store temporal

XML data and process time queries efficiently. In our proposed model, time has 4 dimensions: valid time, transaction

time, event time, and availability time. We discuss the advantages of attaching the time information to the data in

anaesthesia records. We implemented and tested the proposed model and the storage structures.

Key words: Anaesthesia information systems, electronic medical records, time information, XML, multidimensional

indices, AR* tree, Double R (2R) tree

1. Introduction
Anaesthesia documentation systems have been around for a long time. Computerised anaesthesia systems
have become inevitable for various reasons such as accuracy and ease of use. The importance and advantages of
computerised anaesthesia information systems over paper-based anaesthesia records have been stated by Parmar
[1].

Gardner and Peachey [2] proposed an Extensible Markup Language (XML) schema for computerised

anaesthesia records. In [2], it was claimed that in the near future, a nationally or internationally standard XML

schema will be adapted to anaesthesia records. Additionally, a Health Level Seven (HL7) Special Interest Group

(SIGGAS) was formed to create HL7 clinical document architecture (CDA)-compliant schemas from preexisting

anaesthetic XML schema resources [3].

Health systems such as electronic medical records, hospital information systems, decision support systems,
and anaesthesia information systems contain a significant amount of time-related data [4]. Storing time-related
anaesthesia information is useful in academic research, anaesthesia audits, and medicolegal courts. Recording
time information helps with detecting illegal modifications and malpractices in anaesthesia audits [5].

Time-related anaesthesia information helps to answer some legal questions in critical situations. For
example, a system that stores time-related data will be able to accurately answer the question: “When the
doctor prescribed penicillin on 14 August 2007, did the doctor know or did the software system contain the
information (at the time of prescribing) that the patient had an allergic reaction to penicillin?” Such a question
∗Correspondence: gundem@boun.edu.tr

274

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

may arise in the case of a doctor being accused of malpractice. Moreover, illegal modifications to the records
can be easily detected if a specific type of time information (transaction time, to be explained later) is attached
to the data.

In this paper, combining the requirements of XML and time, we propose a temporal XML (TXML) data
model for anaesthesia data with 4 different temporal dimensions: valid time, transaction time, event time, and
availability time. We also propose efficient physical storage structures to support the model. The proposed
data model supports the time information and the specially designed data structures provide efficient query
evaluation for various types of temporal queries. The proposed system and 2 different alternative systems are
implemented and compared for performance.

In the next section, we provide preliminary information. In Section 3, we present our model. In Section
4, we provide the performance study of the proposed system. In the last section, we present our conclusions.

2. Background

2.1. Temporal dimensions

There are several kinds of temporal dimensions defined in the literature [6]: valid time, transaction time, event
time, and availability time. The following imaginary scenario will be used in explaining the meaning of the 4
time dimensions.

On 10 June 2007, at 1300 hours, before the intraoperative period, the anaesthetist prescribed an
ephedrine-based therapy to be applied from 1500 to 1900 hours, during the surgery. Therapy records were
entered into the anaesthesia information system at 1400 hours. However, a change in the preoperative labo-
ratory results occurred at 1555 hours. The new preoperative laboratory results were entered into the system
at 1600 hours by the laboratory assistant. The anaesthetist had been notified of this change at 1600 hours.
Consequently, the anaesthetist decided to make a change in the patient’s therapy. The ephedrine infusion was
stopped at 1615 hours and replaced by a diazepam-based therapy, to be applied from 1625 to 1900 hours. The
new facts are entered into the anaesthesia system at 1700 hours.

2.1.1. Valid time
“The valid time of a fact is the time when the fact is true in the modelled reality” [6]. Valid time information
helps identify the validity period of anaesthesia data. The validity of a fact cannot be expressed by a single
timestamp. The valid time includes the start time and the end time of the validity period and is denoted by
an interval V = [Vs, Ve]. The end point of the valid time interval of a fact is sometimes unknown during data
insertion, i.e. the end point follows the current time. Current time is denoted by “Now”. When a fact’s validity
ends in the real world, the end point of the validity interval is set to the end date in the database. Temporal
databases can support current time in a number of different ways [8]. Maximum approach represents the current
time as unrealistically large dates such as ‘31-December-9999’.

In our scenario, the anaesthetist prescribes an ephedrine-based therapy to be applied between 1500 and
1900 hours. This drug information, ephedrine therapy, has to be stored in the information system with the
validity period of 1500–1900 hours. With the help of valid time, the question “When was the ephedrine therapy
applied to the patient?” can be answered.

2.1.2. Transaction time
Transaction time is used for recording all actions, including insertion, deletion, and update operations in the
information system. “The transaction time of a fact is the time when the fact is current in the database

275

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

system and may be retrieved” [6]. As a consequence, transaction times are generally not time instants but are
durations. When an object is stored in the database, the end point of its transaction time interval is set to
“until changed” (UC), and then when the object is deleted, the system sets the transaction time end point to
the deletion date. Hence, the deletion is purely logical and the object is not physically removed but ceases to
be part of the database’s current state.

In the preceding scenario, the drug information, ephedrine therapy with the validity period of 1500–1900
hours, is inserted into the system at 1400 hours. Thus, its transaction time period is 1400-UC. UC stands for
“until change” and means that the data are current in the system. If the transaction time associated with a
data item is available, the data item is never physically deleted, but instead “ceases to represent the systems’
current state” [7]. At 1700 hours, when the new facts associated with the ephedrine therapy are entered into

the anaesthesia system, the UC value of ephedrine therapy (i.e. the transaction time end point) becomes 1700
hours, but the ephedrine therapy record is not deleted from the database system. Thus, the question “When
did the anaesthetist change the ephedrine-based therapy in the information system?” can be answered with the
transaction time information. In the above scenario, if the information system supports only the transaction
time (but not the valid time), then there will be 1 record for the ephedrine therapy and 1 for the diazepam
therapy. Since the validity intervals of the drugs are not recorded, the question “When was the diazepam or
ephedrine therapy applied to the patient?” will not be answered. With the transaction time, one can only
know that ephedrine and diazepam therapies are applied to the patient; one cannot know when. Although the
anaesthetist changes his/her therapy decision during the intraoperative period, a system that supports only
the transaction time cannot show this change. On the other hand, if a system supports only valid time, then
again there will be 1 record for the ephedrine therapy and 1 for the diazepam therapy. Until 1700 hours, the
ephedrine therapy record shows that the therapy is to be applied from 1500 to 1900 hours. However, because
of the therapy change, the validity period of this record is not true after 1615 hours. Then, at 1700 hours, the
validity period of the ephedrine therapy is modified as 1500–1615 hours. If the current valid drug therapy is
queried at 1630 hours, the system will return ephedrine (since the new therapy information is recorded at 1700

hours), even though the correct answer is diazepam. Moreover, one cannot know when the records are entered
into the information system.

For this reason, in order to retrieve accurate results for specific queries, both the valid time and the
transaction time of anaesthesia data have to be stored in the system. In a system that supports the valid
and transaction times, there will be 2 records for the ephedrine and 1 record for the diazepam therapy in our
example. Until 1700 hours, there is only 1 record for the ephedrine therapy, with the validity period of 1500–
1900 hours and the transaction time period of 1400-UC. However, at 1700 hours, the new therapy decision is
inserted into the system, and the first record is no longer valid and should be deleted. However, in a system
that supports the transaction time, no record is deleted from the system, but instead its transaction time is
updated. Because of this, the first record’s transaction time period is set to 1400–1700 hours. This means
that the record was current in the system until 1700 hours. At the same time, a new record for the ephedrine
therapy is inserted into the system. The new ephedrine record’s validity period is set to 1400–1615 hours and its
transaction time period is set to 1700-UC (UC shows that this record is current). In this system, a question that
asks “What were the prescriptions of the anaesthetist?” will return “ephedrine therapy 1500–1900, ephedrine
therapy 1500–1615, and diazepam therapy 1625–1900” prescriptions, whereas a valid time system will return
only “ephedrine therapy 1500–1615 and diazepam therapy 1625–1900” prescriptions. Moreover, a transaction
time system would return ephedrine and diazepam therapy without their validity periods.

276

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

Although valid and transaction times are the most commonly used temporal dimensions in the literature,
they are insufficient in distinguishing retroactive updates from delayed updates. Event and availability times
are also needed in order to be able to analyse anaesthesia information under some circumstances.

2.1.3. Event time

Valid and transaction times are insufficient in distinguishing retroactive and delayed updates. “Event time of
a fact is the occurrence time of a real-world event that either initiates or terminates the validity interval of the
fact” [9]. A fact can be initiated by an event and can be terminated by another event. Consequently, the end
point of the event time of a fact can be null if the fact is not terminated by an event or can be a point in time
if the fact is terminated.

In our scenario, the anaesthetist decided to apply the ephedrine therapy at 1300 hours. The initiating
event of the ephedrine therapy is the decision of the anaesthetist. Attaching a valid time and a transaction
time to the therapy data causes 2 records for the ephedrine therapy. In the first ephedrine record, the start
point of the event time (i.e. the initiating event time) is set to 1300 hours. At that time, since there is no

terminating event for the ephedrine therapy, the end point of the event time (i.e. terminating event time) is also
set to 1300 hours. However in our scenario, the ephedrine infusion is stopped and the therapy is continued with
diazepam because of the change in the preoperative laboratory results. The terminating event of the ephedrine
therapy then becomes the therapy change decision of the anaesthetist. The anaesthetist decided to continue
with a diazepam-based therapy instead of the ephedrine therapy at 1600 hours. Thus, in the second ephedrine
record, which contains the current validity interval, the event time start point is set to 1600 hours. Since there
is no terminating event for this therapy, the event time end point is also set to 1600 hours. In a system that
supports the event time, a question that asks “When did the anaesthetist change his/her decision about the
ephedrine therapy?” will return 1600 hours, whereas in a valid or transaction time system, this question cannot
be answered.

However, using only the event, valid, and transaction times, it is impossible to express the time when the
doctor became aware of the change in the laboratory results.

2.1.4. Availability time

The last time dimension is the “availability time, which is the time interval during which the fact is known and
believed correct by the information system” [10]. It is the time when someone or something associated with the
information system becomes aware of a fact. The end point of the interval is the time at which the information
system realises that the fact is not correct. As for the transaction time, the end point UC means that the fact
is currently believed correct. In the anaesthesia documents, information may not be entered into the system
as soon as it appears. Because of this, the time that an information system (the anaesthesia system or the

anaesthetists) becomes aware of a fact does not always coincide with the transaction time or the event time of
a fact.

In our scenario, the question “Why did the anaesthetist apply the ephedrine-based therapy between 1555
and 1600 hours, although the preoperative laboratory results had been corrected at 1555 hours?” can only be
answered by the availability time.

According to the scenario, the availability time period of the new preoperative laboratory results is 1555-
UC. The end point is UC because the data on laboratory results are currently available. In addition to this,
the transaction time period of the new preoperative laboratory results is 1600-UC. With this information, it is
obvious that the new results were entered into the system 5 min later than the time at which they had been

277

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

available. Thus, the anaesthetist had been notified of the new results at 1600 hours. With the help of the
availability and transaction time, the anaesthetist cannot be accused of the therapy between 1555 and 1600
hours.

Figure 1 represents a part (the drugs applied to the patient) of our scenario as an anaesthesia record in
XML format using time dimensions. The 4 different time dimensions in XML format are present in it. In Figure
1, the time information of the data is contained in the elements of TimeElement type. The elements VT, TT,
ET, and AT stand for valid time, transaction time, event time, and availability time, respectively. The start
point of a time interval is represented by a Low attribute and the end point is represented by a High attribute.

<Drugs>
<Drug>

<DrugName>Ephedrine</DrugName>
<TimeElement>
 <VT Low="10.06.2007 15:00" High="10.06.2007 19:00"/>
 <TT Low ="10.06.2007 14:00" High ="10.06.2007 17:00"/>
 <ET Low ="10.06.2007 13:00" High ="10.06.2007 13:00"/>
 <AT Low ="10.06.2007 13:00" High ="10.06.2007 16:00"/>
 </TimeElement>
<TimeElement>
 <VT Low="10.06.2007 15:00" High="10.06.2007 16:15"/>
 <TT Low ="10.06.2007 17:00" High ="UC"/>
 <ET Low ="10.06.2007 13:00" High ="10.06.2007 16:00"/>
 <AT Low ="10.06.2007 16:00" High ="UC"/>
 </TimeElement>

</Drug>
<Drug>

<DrugName>Diazepam</DrugName>
<TimeElement>
 <VT Low="10.06.2007 16:25" High="10.06.2007 19:00"/>
 <TT Low ="10.06.2007 17:00" High ="UC"/>
 <ET Low ="10.06.2007 16:00" High ="10.06.2007 16:00"/>
 <AT Low ="10.06.2007 16:00" High ="UC"/>
 </TimeElement>

</Drug>
</Drugs>

Figure 1. XML representation of the drugs applied and their time dimensions in the given anaesthesia scenario.

The ephedrine therapy in the scenario is related to the first 2 drug records in Figure 1. The first record
of the ephedrine is current until 1700 hours. After 1700 hours, the second ephedrine record becomes current.
The diazepam therapy record is related to the third record.

In the literature, there is some research on creating a common XML schema for anaesthesia documents
[2,10]. However, none of them consider the time information of the data. HL7 provides time data types for
representing temporal data. It also supports timestamps, time intervals, and periodic time intervals as time data
types. With the existing technologies, time information can be attached to anaesthesia data as a user-defined
data type. For example, the start and end times of the surgery can be defined in the surgery information part
of the anaesthesia document. However, using the user-defined temporal attributes has 2 disadvantages: 1) the

users have to define all of the temporal attributes beforehand, and 2) the users are responsible for maintaining
the time relations in the anaesthesia data model. In our proposed system, all of the time elements are present
in the schema and do not have to be defined by the user. Additionally, queries on the time information are
processed automatically by the system.

2.2. Index structures for multidimensional temporal data

Conventional databases capture the current information. They cannot reflect the previous information because
update operations overwrite the previous data. Storing only the current data will result in the loss of information

278

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

as times goes by. What is needed is a database that efficiently supports the storing and querying of time-varying
information.

Temporal database systems support efficient storage and retrieval of time-related data with the help
of data structures that are specially designed for time. Since both temporal and spatial data have multiple
dimensions, spatial indices can be adapted to indexing temporal data. Multidimensional index structures used
for spatial data indexing are also good candidates for indexing temporal dimensions. In the literature, index
structures such as R tree, R* tree, Double R(2R) tree, Multiversion B tree, Bitemporal R tree, Bitemporal

Interval tree, and Adaptive R* tree are proposed for multidimensional data.

R* tree is one of the basic index structures that is frequently used in multidimensional indices. Although
the R* tree can index time dimensions, it has the major disadvantages of overlapping and dead space that result
from the maximum timestamp approach. When many intervals end at now (i.e. for the transaction time when

the data are alive), keeping the now-relative data in a separate structure is a better solution.

Double-tree methodology [11] avoids the problem of overlapping while retaining the advantage of using

off-the-shelf access methods. Although it is implemented by 2 R* trees, various other multidimensional access
methods could be facilitated. When an object with valid-time interval I is inserted into the database at
transaction-time t, it is inserted at the front R tree. The front R tree keeps the live objects for which the
transaction endpoint is unknown. If a bitemporal object is later “deleted” at some transaction time te (te >t),
it is physically deleted from the front R tree and inserted into the back R tree. The back R tree keeps the
logically deleted objects with known transaction-time intervals.

As mentioned in [12], the multidimensional index structures, such as R* tree [13], X tree, and Kd tree

[14], are designed for all-dimensional range queries in which a query range is given for each dimension. If the

mentioned indices are used for partially dimensional (PD) range queries, then the information related to the
irrelevant dimensions has to be accessed from the disk, also.

The AR* tree [12] is proposed for evaluating partially dimensional range queries efficiently. N-dimensional
indices are often used for n-dimensional queries. However, queries do not always contain all of the dimensions.
Although the index is built on an n-dimensional space, the range queries may use only d of the n dimensions
(where d is smaller than n). The key concept behind an AR* tree [11] is to divide each of the n-dimensional

R* tree nodes into n 1-dimensional nodes. Each node of an R* tree holds the information in all of the index
dimensions. As stated in [11], the Adaptive R* tree has a clearly better performance for PD range queries than

the naive methods, R* tree and Multi-B tree.

2.3. Related work in the literature

2.3.1. Anaesthesia documents

There exist various anaesthesia information systems (AIMSs). In [15], it was argued that AIMSs improve
standardising care in surgery and facilitate computerised decision support and systematic decision support.

In [2], the need for an international standardised XML schema for computerised anaesthetic records was
emphasised. The requirements for such an XML anaesthesia schema were proposed.

In [16], the need for an international anaesthetic XML-standard and its adoption to AIMSs was also
emphasised. There was also a proposal for a postoperative report using Extensible Stylesheet Language
Transformation (XSLT).

The important work that is being carried out by the HL7 SIGGAS includes the following, as reported in
[3]:

279

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

• Identifying standards specific to anaesthesiology necessary for standardised quality and outcomes report-
ing, and measuring outcomes.

• Identifying required terminology for reporting and measurements.

• Identify requirements for standardised anaesthesia records to facilitate the exchange and aggregation of
perioperative data.

• Identifying anaesthesia constraints against existing HL7 artefacts.

The work done in [4] was not specific to anaesthesia but was intended for general medical documents. It
emphasises the importance of time in medical information systems and proposes an architecture called the
temporal mediator to integrate temporal reasoning and temporal maintenance. For the temporal maintenance
bitemporal model (also mentioned in the proceeding section), the structured query language (SQL) is utilised.

2.3.2. Time in XML

The important time-related work in the literature may be summarised as follows. Bitemporal data model XBIT
[17] basically shows that the valid time, transaction time, and bitemporal databases can be naturally viewed in
XML using temporally grouped data models that are compatible with the hierarchical structure of the XML.
Although the XBIT data model is general and can be applied to historical representations of relational data
and XML documents in native XML databases, it is a logical data model and no physical storage structures
or any indexing structures that support efficient temporal management exist for the model. Moreover, XBIT
supports only the valid-time and transaction-time dimensions.

In [18], a temporal XML data model for normative documents is proposed. The model is based on a

hierarchical organisation of normative texts. There are 4 different temporal dimensions (valid time, transaction

time, publication time, and efficacy time) in the model in order to represent the evolution of norms in time and
their resulting versioning correctly. The model represents the norms in an XML-based data model, which is also
enriched with timestamping to make versioning possible. The model is implemented on an XML-enabled system.
Although the model in [18] supports multiple temporal dimensions, there are no special storage structures or
indices for the temporal dimensions. Moreover, the temporal dimensions of “publication” and “efficacy” time
are related to norms and do not have a general use.

In [19], a temporal XML data model is proposed for tracking the historical information in an XML
document and for recovering the state of the document at any given time. Valid time is supported by the model,
but the authors claim that the transaction time can also be applied in the model as the valid time. Although
the model supports efficient implementations of temporal data models, only the valid time and transaction time
dimensions are mentioned in the paper.

3. Proposed system

The system that we propose has 3 main objectives. These can be summarised as: 1) attaching the time infor-

mation to the anaesthesia data, 2) efficiently storing the mentioned 4 different time dimensions for anaesthesia

documents, and 3) efficiently processing the partially dimensional temporal queries.

In our system, we have different components for supporting the temporal data and indexing the XML
documents. Figure 2 shows the overall architecture of our proposed system.

280

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

Figure 2. Overall architecture of the proposed system.

We propose a logical data model (TXML) to support the 4 time dimensions in the XML anaesthesia
documents. In the logical data model, we use XPath without any modifications. In our system, we utilise a
numbering scheme for labelling the document trees. To store the anaesthesia documents in TXML, we have 2
basic physical structures: storage and index structures. In the storage part, we extend the well-known storage
structures for native XML database systems to support the time dimensions defined in our logical model.

To expedite the query evaluation, we have 3 different index structures in our proposed system. The basic
idea behind our proposed index structures is similar to that in [20], which is to take advantage of the indexing

paths rather than the nodes. We also have an index structure (TAR* tree) that supports both the PD range
queries and the now-relative temporal dimensions.

In our proposed system, when a new temporal XML document is inserted, a tree is constructed and
labelled using a specific numbering scheme. After the construction of the temporal XML tree, the other storage
structures are created. The temporal and path indices are also created while the nodes of the tree are created.
During a query evaluation, the mentioned storage structures and indices are accessed to expedite the retrieval
of the temporal anaesthesia data that are stored using our system.

3.1. Logical data model

In the literature, temporal XML data models use 2 different approaches to attach the time information. The
first is to attach the time information to the edges and the second is to define the time elements as subelements.
In order to implement the former, the XPath model has to be modified. In our proposed temporal XML data
model, TXML, we define a time element as consisting of 4 different time dimensions as subelements. Each of
the subelements contains “low” and “high” attributes to represent the start and end points of its time interval.
Updates on the time information of the elements cause multiple time elements to be created in an element. If
one of the time values of an element is updated, the record is deleted and inserted into the database again.
Although the element is the same, there are 2 timestamp elements associated with it. One is logically deleted
and the other is alive.

Figure 3 shows the time elements in a temporal XML document and Figure 4 shows a tree representation
of the document in Figure 3.

281

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

3.2. The numbering scheme used

A unique label (which shows the relationship between any 2 nodes and eliminates the need to access the actual

documents) is assigned to each node in the tree representation of an XML document. As mentioned in [21],

several node labelling techniques have been proposed in the literature [22,23]. A numbering scheme that requires
relabelling will be inefficient for temporal XML documents because of the updates on the time elements. A new
labelling scheme for dynamic XML data (LSDX) is defined in [21]. The LSDX supports the representation of
ancestor, descendant, and sibling relationships between the nodes. Moreover, it provides updating of the XML
data without having to modify the existing labels. Since it eliminates the need for relabelling, we used the
LSDX in our system.

<Element id=1>
<TimeElement id=1>

<VT Low=10.00 High=13.00></VT>
<TT Low=11.00 High=12.00></TT>
<AT Low=10.00 High=12.00></AT>
<ET Low=09.00 High=12.00></ET>

</TimeElement>
<TimeElement id=2>

<VT Low=10.00 High=12.00></VT>
<TT Low=12.00 High=UC></TT>
<AT Low=12.00 High=UC></AT>
<ET Low=12.00 High=12.00></ET>

</TimeElement>
</Element>

Figure 3. Time dimensions of an element.

Element 1

Time Element 2

TT VT

High

High

AT

Low

Low

ET

Time Element 1

TT VT

High

High

AT

Low

Low

ET

High

High Low

High Low

High Low

Low

10.00 13.00

11.00 12.00

10.00 12.00

09.00 12.00

10.00 12.00

12.00 UC

12.00 UC

12.00 12.00

Figure 4. Tree representation of the document in Figure 3.

The LSDX uses both numbers and letters for labels. The root has level 0 and the next level is incremented
by 1. Given a node with n child nodes u1 , u2 . . . un , the label for u1 is a combination in the order of its level

282

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

plus its parent’s label plus “.” plus “b”. The label for u2 is the same as that for u1 , except that the last symbol
is “c” and not “b”. The next one has the last symbol in alphabetical order, which is “d”. For example, the
root node with 3 children has the label 0a. The first child of the root has the label 1a.b. The next child has
the label 1a.c, and the last one has the label 1a.d. The first child of the node labelled 1a.b has the label 2ab.b.
If there is no node before the place where a new node, u i , will be inserted, the label of u i will be the label of
the node standing after it (assume node uj) with “a” inserted after “.”. Let us assume that uj has the label

2ac.b., and then u i will have the label 2ac.ab. For details, please refer to [21].

3.3. Storage structures: node types

In native XML database implementations [24–28], we usually have path indices and storage structures for the

node types (nodes of an XML tree). The node types are basically categorised as internal nodes (elements) and

external nodes (values). The TXML consists of 3 different types of nodes: internal nodes (elements), external

nodes (contents), and timestamp nodes (time elements).

The structure of the internal and external nodes in the TXML is an extended version of the node types
in the efficient native XML storage system [28]. Since the time dimensions are represented with a timestamp
element in the TXML, a new node type, which efficiently stores the time dimensions, is proposed in our system.

3.3.1. Internal nodes

All of the nodes, except for the timestamp and the value nodes in the XML document tree, are stored in the
internal node format (Figure 5). A unique document identifier is assigned to each document and a node identifier

is assigned to each node, except for the external node, so that a node can be identified by the pair (document

identifier, node identifier). The PathInfo field gives the path from the root to the node in question. The path
info is computed by concatenating the node identifiers of the ancestor nodes, starting from the document id
and its root to the parent of the current node. A node identifier is unique and is assigned to a newly inserted
node according to the numbering scheme (Section 3.2). The Element Type field indicates the element type
of the node. The Value Pointer points to the external node of the node, if the node has content. If not, the
Value Pointer is null. The Timestamp Block Pointer field is a pointer to a timestamp block since the number
of timestamp elements of a node can be more than one. The Timestamp Block Pointer of a node points to the
live element in a block that consists of all of the timestamp elements of that node. The Child Block Pointer
field is similar to the Timestamp Block Pointer in the sense that both fields point to a block of elements. The
types of the elements in the Child Block are the same as those of the node that is currently being explained,
since both are internal nodes. Both of the blocks contain node identifiers and a pointer to address tables, which
are used to access the memory locations of the nodes.

3.3.2. External nodes

The external nodes (Figure 6) are designed to store the content of the internal nodes; they are actually equivalent
to the value nodes in the XML document tree. The Document Identifier field identifies the document of the
value node. The PathInfo field is calculated by concatenating the node identifiers of the ancestor nodes, starting
from the document id and its root to the parent of the value node. The Parent Pointer points to the parent
of the value node in the address table, which shows the memory location of the parent node. The Value field
contains the content of the value node.

283

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

PathInfo

Node Identifer

Element Type

Document Identifer

Value Pointer

Timestamp Block Pointer

Child Element Block Pointer

Timestamp Element id - Alive

Timestamp Element id - L.D

Timestamp Element id - L.D

Child Element Identifier

Child Element Identifier

Child Element Identifier

Address Table

Data Pages

Figure 5. Structure of an internal node.

Node Identifer

Document Identifer

Value

PathInfo

Address Table
Data Pages

 Parent Pointer

Figure 6. Structure of an external node.

3.3.3. Timestamp nodes

Timestamp node types (Figure 7) are proposed to store the timestamp elements efficiently. We have 4 different
temporal dimensions in the TXML. These time dimensions are stored in the timestamp element as subelements.
In order to make the subelements HL7-compatible, the high and low attributes are defined in each of them. The
start point of the time dimensions is represented by the low attribute and the end point of the time dimension
is represented by the high attribute. The Document Identifier field identifies the document associated with the
timestamp node. The PathInfo field is calculated by concatenating the node identifiers of the ancestor nodes,
starting from the document id and its root to the parent of the timestamp node. The Status field represents the
state of the timestamp. The timestamp can be alive or logically deleted. The pointer to the next timestamp field
points to the next timestamp of its parent node since the internal nodes may have more than one timestamp
node.

3.4. Index structures

In query evaluations, we need special index structures to evaluate the queries without accessing the original
documents. There are 2 types of indices that are proposed in our system: time indices and path indices.

284

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

Document Identifier

PathInfo

Node Identifier

Status

Parent Pointer

VT Low

VT High

TT Low

TT High

AT Low

AT High

ET Low

ET High

Pointer to the Next Timestamp

Address Table

Data Pages

Sibling Timestamp

Figure 7. Structure of a timestamp node.

We propose time indices to process the time-related queries efficiently. The Temporal AR* tree (TAR*

tree) that we propose combines the AR* tree (PD range query property) and the 2R tree (now-relative

bitemporal data property) proposed in the literature and is used for supporting now-relative PD range queries.

Path indices in our system are used for supporting the selection and join operations that are used in the
temporal query evaluations.

3.4.1. Path indices

Path index table

As mentioned in [20], indexing paths (that are valid during a certain interval) rather than nodes enhance the
query performance dramatically. This ability is not provided by traditional path indices. The basic idea of our
path index tables is similar to that in [20] (i.e. we take advantage of indexing paths rather than nodes). In [20],
the authors index all equivalence classes of continuous paths in the documents in a separate table according to
their path type. “Continuous path” means the paths that are valid in a certain interval. However, indexing all
of the path types in a document will require a huge number of index tables. In our proposed system, instead of
indexing all of the paths, we index all of the root-to-leaf paths and create an alternate solution for the nonleaf
paths.

In our system, we define one path index table for each root-to-leaf path type. When a leaf ele-
ment is inserted into the database, the path index table for that path type is also updated. For example,
when a surgery element is inserted under a patient element, the corresponding path index table “Anaesthe-
siaDb/Patient/Surgery/Name” has to be updated. Figure 8 displays the structure of the path index table.
The NodeId field represents the unique identifier of the inserted element. The PathInfo field is calculated by

285

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

concatenating the node identifiers of the ancestor nodes, starting from the document id and its root to the
parent of the current node. The Status field indicates the status of the node, i.e. the node is current or logically
deleted. The Timestamps field consists of the timestamp elements of the node. Timestamp elements can be
more than one so that the field stores the node identifiers of the timestamp elements. When a new leaf element
is inserted, it is also inserted into the corresponding time index. Each data object that is inserted into the time
index has a minimum bounding rectangle (MBR) enclosing it. The MBR id of the element is inserted into the
path table. The MBR field indicates the element’s MBR and will be used in the temporal query processing.

NodeId PathInfo Status Timestamps MBRId Value

B+ Tree

Figure 8. Structure of the path index table.

The value fields of all of the path index tables are connected to a B+ tree, which is used for range queries
on the value fields. When a query that has a constraint on the value field is asked, the B+ tree is used for
searching the value fields.

The Status field, the MBR List, and the B+ tree index are the distinguishing features of the proposed
structure.

Join index table

The path index tables are used to index only the root to leaf paths. Nonleaf paths are not indexed with path
index tables in order to not increase the number of index tables dramatically. When we analyse the queries, we
realise that the nonleaf nodes are generally used for joining leaf nodes. Thus, we propose the join index table,
which indexes all of the nonleaf nodes in one table. Figure 9 shows the structure of the join index table.

Element Type Node Id Status MBR List Time stamps Path Index InstancePath Info

Figure 9. Structure of the join index table.

When a node is inserted into the temporal XML document tree, if the node is a leaf node, the corre-
sponding path index table is updated; otherwise, the join index table is updated.

The meaning and functions of the fields of the join index table are explained as follows. The Element
type field is used to store the element type of the node because different element types are indexed in the same
table. The NodeId is the unique identifier of the node. The PathInfo field is computed by concatenating the
node identifiers of the ancestor nodes, starting from the document id and its root to the parent of the current
node. The Status field indicates the status of the node, i.e. whether the node is current or logically deleted.
The Timestamps field consists of the timestamp elements of the node. Timestamp elements can be more than

286

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

one so that the field stores the node identifiers of the timestamp elements. A nonleaf node may have one or
more leaf children nodes or descendant nodes. A join operation on a leaf node uses an ancestor nonleaf node of
the leaf node. The second leaf node in the join operation is a leaf node that has the same ancestor node in the
upper levels of the tree. The Path Index Instances field contains the descendant leaf element records of the join
element in the path index tables. If the element type is used in the path of an index table, it means that the
nonleaf entry descendants are stored in that path index table. A nonleaf node in the join index table stores all
of the children/descendant instances located in the path index table according to their path type. A hash map
is used for path index instance storage. The keys are composed of the root-to-leaf path types and the values
are the (PathInfo, NodeId) tuple of the nodes in the path tables, which are the children/descendants of the
node in the join index table. The MBR List field is similar to the path index fields. When a leaf node, which
is the descendant/child of a node in the join index table, is inserted, its corresponding path index table field is
updated. Each insertion to the path table requires an update in the join index table for the parent or ancestor
node. A node’s timestamp must be greater than the union of its descendant/children timestamps, so the MBR

of a child node must overlap with its parent/ancestor’s MBR. The MBR List field of a node in the join index
table stores all of the MBRs of its descendant leaf nodes.

3.4.2. Time indices
Time-related data have to be stored in special data structures so that they can be efficiently queried. There are
some multidimensional indices that are defined in the literature [11,13,29]; however, none of them are designed
to support the mentioned 4 time dimensions. Time dimensions have different properties from spatial dimensions
because of their now-relative property. In order to use multidimensional indices for multiple time dimensions,
modifications are needed. Furthermore, as mentioned in [12], most of the existing multidimensional indices
are designed for all of the dimensional queries. However, temporal queries do not always use all of the time
dimensions. Instead, they use different combinations of the 4 time dimensions. In the literature, the AR* tree
[12] is designed to efficiently support partially dimensional range queries, but it does not support now-relative
data.

The temporal characteristics of anaesthesia data define the requirements of a temporal index. Anaesthesia
data have a validity period between the preoperative and postoperative anaesthesia periods, i.e. the valid time
end interval is closed. Generally, when we insert data into the database and sometime later realise that it
is incorrect, we delete the data. However, anaesthesia data must not be deleted for medicolegal reasons. If
anaesthesia data are current in the database, then the end point of their transaction time dimension is equal
to “now”. The availability time has similar characteristics to the transaction time, i.e. if the data are current,
then the availability end point is also equal to “now”.

For these reasons, an index structure that supports both PD range queries and now-relative temporal
dimensions is needed for the temporal indexing of anaesthesia data. In this paper, we propose a time index
structure, the Temporal AR* tree (TAR* tree), which we designed for now-relative PD temporal range queries.

Temporal AR* tree

The TAR* tree combines the PD property of the AR* tree and the now-relative property of the 2R tree.
The 2R tree is chosen as the multidimensional indexing method because it supports now-relative data for the
transaction time dimension. Anaesthesia data are not now-related in terms of the valid time dimension. There
is a proposed index structure that supports now-relative data for both the valid and transaction time [30].

However, one of the disadvantages of the structure in [30] is that it does not use off-the-shelf methods, and it is

287

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

very complex. Since anaesthesia data are valid between the preoperative and postoperative periods, the valid
time end interval is closed. Because of this, a multidimensional temporal index structure, which supports the
now-relative transaction time, is suitable for anaesthesia data. A temporal data model that supports the 4 time
dimensions, where the transaction time and the availability time are now-relative, is needed. In the literature,
there are some proposals that support the now-relative transaction time, such as the Bitemporal R tree and
the Double R (2R) tree [11]. Although the Bitemporal R tree is efficient for transaction time timeslice queries,
because of its structure, it is not possible to add an additional now-relative time dimension, i.e. the availability
time, to the Bitemporal R tree. As mentioned in [11], a second method that is based on the Double R tree
method, the 2R tree, is a good alternative to the Bitemporal R tree and can be extended to support the 4 time
dimensions. Figure 10 represents the structure of the proposed TAR* tree.

VTSVTE

TTS

ATS

ETSTE

VTSVTE

TTSTTE

ATS ATE

ETS TE

VTSVTE

TTS

ATS

ETSTE

VTSVTE

TTS

ATS

ETSTE

Node Group 1

Node group 2 Node group 3

VTSVTE

TTSTTE

ATS ATE

ETSTE

VTSVTE

TTS TTE

ATS ATE

ETS TE

Node Group 1

Node Group 3

Back TAR* Tree

Node Group 2

Front TAR* Tree

Figure 10. Structure of the TAR* tree.

As in the case of the 2R tree, there are 2 R trees in the TAR* tree structure. The front R tree holds the
live objects and the back R tree stores the logically deleted objects. Both the front and back R trees support
PD queries by using node groups. Data and their enclosing MBR (MBR will simply be used instead of the 4-D

hyperrectangle throughout the paper) are represented by [VTS , VTE , ETS , ETE , TTS , TTE , ATS , ATE].

When a data item is to be inserted into the database (since it is live and the transaction and availability time

end points are UC), it is inserted into the front R tree. If a data record is to be deleted (i.e. logically deleted)
from the database, then the record is deleted from the front R tree and is inserted into the back R tree while
setting its transaction end point to the deletion time and its availability time to a specific time that is provided
by the user.

In the back R tree, data are indexed by 4 pairs of their time dimensions. However, in the front R tree,
the transaction and availability time end points are UC and the front R tree indexes data objects according to
their transaction and availability start points and valid and event time intervals. A data item and its enclosing

288

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

MBR are represented by [VTS , VTE , ETS , ETE , TTS , ATS] in the front R tree of the TAR* tree. The
original 2R tree uses only the valid and transaction times, whereas a data item is indexed by its transaction
start time point in the front R tree. In the TAR* tree, the valid time and transaction time dimensions are
extended with the event and availability time dimensions.

When an object is inserted into the database, it is inserted into the front R tree. As explained for the
AR* tree [12], the insertion algorithm is a naive extension of the original R* tree. The insertion algorithm
takes the data object and a pointer to its data page and returns the MBR id of the data object in the front
R tree. An important point in the TAR* tree structure is that the front R tree indexes the data objects using
only the start points of their availability and transaction time dimensions. In order to delete a data object, i.e.
logical deletion, 2 algorithms are invoked. The first step is to find the data record that will be deleted from the
database in the front R tree. Since only logical deletion is supported in temporal databases, only live records
can be deleted and all of the live records are stored in the front R tree. The search algorithm is invoked to find
the data object in the R tree. Next, the data object is deleted from the front R tree and is inserted into the back
R tree. The end point of the transaction time of the data object is set to the deletion time and the end point
of the availability time is set to a specific time, which is obtained from the user. If the user does not supply
the availability time, then the availability time is also set to the deletion time. The algorithm returns the MBR
id of the data object in the back tree. As a result, the deletion operation is equivalent to deletion from the
front R tree and insertion into the back R tree. The deletion algorithm that is used in the front R tree is also a
naive extension of the original R* tree, as explained for the AR* tree [12]. The combination of 4 different time

dimensions produces 24 -1 query types. The node group structure of the AR* tree provides efficient processing
for each query type. When a query that does not have any constraints in the transaction time and the end point
of the availability time is asked, it is executed on the live objects in the front R tree (since the query execution

time is now) . All of the live objects are stored in the front R tree so that only the front R tree is used in a
search with a query that does not have any constraint in the transaction time dimension. The search algorithm
of the TAR* tree is similar to that of the AR* tree. However, a query that has a time constraint on the end
point of the availability time or transaction time dimension is about logically deleted objects. Consequently,
the query is executed on the back R tree, which stores only the logically deleted records. All of the remaining
query types are executed in the same way and have to be processed in both the front and back R trees. The
execution of retrieval queries in the front and back R trees is somewhat different. In the back R tree, queries are
executed in the usual way, whereas in the front R tree, the transaction time and availability time constraints
have to be transformed before evaluating. For example, if a query asks for data objects that are alive at ti

and valid at vj (t is in the x-axis and v is in the y-axis), both the front and back R trees are searched. The

back R tree is searched for all of the rectangles that contain the point (t i , vj). The front R tree is searched
for all of the vertical intervals that intersect a horizontal interval H. Interval H starts from the beginning of
the transaction time and extends until point t i at height vj . The advantage of the search algorithm in both

R trees is that it does not access the irrelevant dimensions while searching, as is the case with the AR* tree.
The search algorithm is the same as that for the AR* tree. The Transform Query algorithm is used for the
front R tree. Only the start point of the transaction and availability time dimensions are indexed. Thus, when
a query asks for a time point t i in the transaction/availability time, the search has to start from the beginning
of the transaction time and extend until point t i . The Transform Query algorithm assigns the beginning of
transaction time to TTs and t i to TTE . The General Search algorithm for the TAR* tree is the same as for
the AR* tree search algorithm.

289

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

Search Algorithm:

Input: rectangle: query range

node-group: initial node-group of the query

Output: result: all of the tuples in rectangle
Begin

If (initial node group contains TTE and/or ATE)

generalSearch (rectangle, node-group, back R tree);

Else If (initial node group does not contain TT or AT)

generalSearch (rectangle, node-group, front R tree);

Else If (initial node group contains TTS and/or ATS)

generalSearch (rectangle, node-group, back R tree);

rectangle ← –TransformQuery(TTS and/or ATS)

generalSearch (rectangle, node-group, front R tree);

End
TransformQuery Algorithm:

Input: time point (t i) for transaction time and/or time point (tj) for availability time

Output: start and end point of transaction time and/or start and end point of availability time

Begin

If (TTS)

TTE ← −ti

TTS ← – beginning of transaction time in the tree

If (ATS)

ATE ← −ti

ATS ← – beginning of transaction time in the tree

End
The TAR* tree is designed for efficiently querying now-relative PD temporal range queries in temporal

XML documents. We use the TAR* tree for 2 different reasons in our system. First, we use the TAR* tree to
index the root-to-leaf paths. The number of TAR* trees needed is equal to the number of the root-to-leaf paths.
Second, we use a single TAR* tree to index all of the nonleaf nodes. We have stated that the leaf nodes of the
TAR* tree are composed of a pointer to the data and its enclosing MBR. When a new element is inserted into
one of the TAR* trees, then its enclosing MBR is also inserted into the path index tables and the join index
table. The MBR relation table is updated with the new MBR.

MBR relation table

The TAR* tree is used for indexing the temporal dimensions of the paths in a temporal XML document.
However, the TAR* tree only indexes the temporal dimensions. If a query with a constraint on any of the key
dimensions is asked (e.g., return all D nodes where D.Aid = 5 and D.Timestamp.ValidTime = 2), and if we

use TAR* trees to execute the query, then unnecessary nodes would be accessed. As a solution, we can add
the node identifiers as a new dimension to the TAR* tree. However, a path may contain multiple intermediate
nodes, and since we do not know which node type’s constraint will be given in a query, we have to add all of
the intermediate node types as a key dimension to the tree. If we assume that the root-to-leaf path length is

290

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

n, this will lead us to add n different key dimensions to the TAR* tree. In the first case, if 2 nodes have the
same timestamp values, they will be indexed in the same MBR. However, in the second case, the 2 nodes will
be indexed in different boxes because of their key dimensions, and this will lead to an inefficiency in the TAR*
tree searches.

A possible solution for this type of question is to not use the TAR* tree directly. Instead of searching
the TAR* tree using only the time dimensions, we can search the path index and join index tables and apply
the time constraints in those tables. The MBR fields in the path index tables and join index tables give the
information of the temporal dimensions of the nodes. However, this does not prevent us from comparing the
list of MBRs, because the records in the index tables store only the minimum bounding boxes of themselves or
their descendants. There is no information on the relationships among the minimum bounding boxes. A good
solution is to precompute the overlapping MBRs when a new node is inserted into the TAR* trees. This will
prevent us from comparing the time dimensions during query processing.

We propose an MBR relation table to store the overlapping MBRs from all of the TAR* trees. The Table
shows the structure of the MBR relation table. The TAR* Tree Path Type shows the root-to-leaf path type of
the TAR* tree to which the MBR belongs. MBRId is the unique identifier of the MBR. “Overlapped MBRs”
is the MBR ids in different TAR* trees that overlap with the given MBR id.

Table. MBR relation table.

TAR* Tree Path Type MBRId Overlapped MBRs
Root/. . . /Leaf1 MBR1 {Root/. . . /leaf2⇒MBR2,MBR4}
Root/. . . /Leaf2 MBR2 {Root/. . . /Leaf1⇒MBR1}, {All TAR*⇒MBR5}
All TAR* Tree MBR6 {Root/. . . /Leaf2⇒MBR3}

An important property of temporal XML documents is consistency. As we stated earlier, the node time
interval is the union of its children’s time intervals. Thus, when a leaf node is inserted into its corresponding
TAR* tree, it is obvious that its MBR will be overlapped with the MBR of its ancestors in the TAR* tree of
the nonleaf nodes. Although the MBR relation table has the advantage of storing precomputed overlapping
intervals and consequently increasing the search performance, it has the disadvantage of incurring extra update
costs.

4. Performance study

We implemented and tested the proposed system and compared it with 3 other systems for the retrieval time of
various queries. The proposed system contains path indices and a temporal multidimensional index that is used
for temporal queries. We compared the proposed system with 2 different multidimensional indexing techniques.
Moreover, we compared the proposed system with a temporal XML index, TempIndex [20], that was proposed
in the literature.

The first structure that we use in our comparison is the Double R tree, which is designed for now-relative
bitemporal data. The Double R tree is designed for fully dimensional queries. However, the system that we
propose supports both fully and partially dimensional range queries. Thus, our proposed system clearly has a
better performance for PD range queries than the Double R tree.

The second structure that we use in our comparison is the AR* tree, which is designed for PD range
queries. While implementing the AR* tree, we use a maximum timestamp approach for now-relative timestamps.
Our proposed system retrieves the results in a shorter time than the AR* tree does.

Our proposed system can be used for evaluating different kinds of query types, such as Selection, Join,
Temporal Projection, Temporal Slicing, Temporal Join, and Temporal Partially Dimensional Range queries. In

291

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

the experiments, we focused on Temporal Partially Dimensional Range queries for the live and logically deleted
data to test the performance of the TAR* tree.

We compared the TAR* tree with the AR* tree and the Double R tree. We tested the execution time
of the Temporal Slicing and Temporal Partially Dimensional Range query types in the experiments. In order
to measure the advantage of the proposed structure over the Double R tree methodology, we use partially
dimensional range queries with 1, 2, 3, and 4 dimensions.

We have conducted 2 different sets of experiments. We used anaesthesia documents of 40 KB and
250 KB in size, respectively, in the first and second sets of experiments. The data structures that are
proposed and compared in this paper were implemented in Java. The first set of experiments (for the 40-

KB anaesthesia document) was tested on an Intel(R) Pentium(R) M processor 1.80 GHz PC, with 4 GB

RAM, running under Windows XP. The second set of experiments (for the 250-KB anaesthesia document)
was tested on an Intel Core i5 processor 2.30 Ghz PC, with 4 GB RAM, running under Windows 7. The
anaesthesia datasets are generated from a sample anaesthesia record. The anaesthesia records that are used in
anaesthesia information systems in healthcare institutions do not have a standard format but have a similar
structure. We used 3 different anaesthesia record formats based on the Central Vermont Medical Center
anaesthesia records [31]. We generated 9000 anaesthesia documents for the first set of experiments and 3000
anaesthesia documents for the second set. All of the documents are based on the 3 different anaesthesia
formats. All of the time and other element values are randomly generated. Each element has 4 types of time
values that are also randomly generated. The dataset contains live and deleted data. The exact amount of
deleted data depends on the path, but it is about 6% of the live data for the AgentTypeAmount element.
The anaesthesia documents are composed of 3 periods: preoperative, intraoperative, and postoperative. In
the first set of experiments, there are 76 different root-to-leaf paths in each document. One of the root-to-
leaf paths is an AgentType element, which is the descendant of the case data in the intraoperative period
(patient/surgery/intraoperativePeriod/CaseData/GasesAndAgents/Agent/AgentTypeAmount).

We filter the amount of AgentType elements in the queries. In each of the anaesthesia documents, there
are 20 and 148 AgentTypeAmount elements, respectively, in the first and second sets of experiments.

In the intraoperative period, the anaesthesia data are recorded every 2 to 5 min. Thus, we use the
anaesthesia datasets in which the time granularity of the anaesthesia data is in “minutes”. The measurements
are done in terms of the query processing time. In each experiment, we calculated the percentage of the
proposed system’s performance gain over the compared system. In each experiment, each query is run 10 times
with differing values, and the mean is used in Figures 11–19. The queries used in all of the experiments are the
same and are given in the following. Each query is run for live, dead, or both live and dead data.

1 dim VT:
List the drug amounts that are valid during 10.12.2006 18.35 - 10.12.2006 22.00.
patient/surgery/intraoperativePeriod/CaseData/Drugs/Drug/DrugAmount/TimeElement/VT [Low ⇒
10.12.2006 18.35 and High ⇐ 10.12.2006 22.00]
1 dim AT:

List all amounts of live agent types (from gases and agents) from intraoperative period whose availability time
starts between 12.10.2006 20.20 and 12.10.2006 21.20?
/patient/surgery/intraoperativePeriod/CaseData/GasesAndAgents/Agent/AgentTypeAmount/TimeElement/

AT[low ⇒ 12.10.2006 20.20 and low ⇐ 12.10.2006 21.20 and high = UC]

292

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

82
34

.0
8

81
21

.5
6

78
49

.7
1

80
67

.1
7

65
81

.5
0

66
47

.5
0

65
91

.4
0

70
86

.2
0

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1dim-alive-AT 3dim-alive-AT VT, ET

Ti
m

e (
m

s)

Query Types

Execution Times of TXML and Double R Tree

Double R
TXML

20.07% 18.15%
16.03%

12.16%

0
0.05

0.1
0.15

0.2
0.25

1d
im

-a
liv

e-
A

T

2d
im

-a
liv

e
- A

T,
 V

T

3d
im

-a
liv

e-
A

T,

V
T,

 E
T

4
di

m
- a

liv
e

-
A

T,
 V

T,
 E

T,
 T

TTX
M

L
Pe

rfo
rm

an
ce

 o
ve

r
D

ou
bl

e R
 (%

)

Query Types

TXML–Double R Tree Performance Graph

Figure 11. Query execution times of TXML and Double

R tree for the 40-KB anaesthesia documents.

Figure 12. TXML–Double R tree performance graph for

the 40-KB anaesthesia documents.

11
,3

55
.4

0

10
,3

54
.9

5

10
,4

23
.9

7

10
,6

82
.7

3

97
55

.2
0

88
96

.9
7

90
94

.0
0

84
41

.0
3

0

2000

4000

6000

8000

10,000

12,000

1d
im

-a
liv

e
-A

T

2d
im

-a
liv

e
-A

T
,

V
T

3d
im

-a
liv

e
-A

T
,

V
T

, E
T

4
di

m
- a

liv
e

-
A

T
, V

T
, E

T
, T

T

T
im

e
(m

s)

Query Types

Execution Times of TXML and Double R Tree

Double R

TXML

14.09% 14.08%
11.60%

13.68%

0.00

0.05

0.10

0.15

0.20
1d

im
-a

liv
e

-
A

T

2d
im

-
al

iv
e

-
A

T
,

V
T

3d
im

-a
liv

e
-A

T
,

V
T

, E
T

4
di

m
-

al
iv

e-
A

T
, V

T
, E

T
, T

T

T
X

M
L

 P
er

fo
rm

an
ce

ov
er

 D
ou

bl
e

R
 (

%
)

Query Types

TXML –Double R Tree Performance Graph

Figure 13. Query execution times of the TXML and

Double R tree for the 250-KB anaesthesia documents.

Figure 14. TXML–Double R tree performance graph for

the 250-KB anaesthesia documents.

67
44

.0
8

82
42

.3
3

83
77

.4
4

82
32

.0
5

83
34

.7
4

64
76

.3
4

65
81

.5
0

66
47

.5
0

65
91

.4
0

70
86

.2
0

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1d
im

-V
T

1d
im

-A
T

2d
im

-A
T

, V
T

3d
im

-
A

T
, V

T
, E

T

4
di

m
-

A
T

, V
T

, E
T

, T
T

T
im

e
(m

s)

Query Types

Execution Times of TXML and AR TreeAR

TXML

TXML–AR Tree Performance Graph

3.97%

20.15% 20.65% 19.93%

14.98%

0

0.05

0.1

0.15

0.2

0.25

1d
im

-V
T

1d
im

-A
T

2d
im

-A
T

, V
T

3d
im

-
A

T
, V

T
, E

T

4
di

m
-

A
T

, V
T

, E
T

, T
T

Query Types

T
X

M
L

 P
er

fo
rm

an
c

ov
er

 A
R

 (
%

)

Figure 15. Query execution times of the TXML and AR

tree for the 40-KB anaesthesia documents.

Figure 16. TXML–AR* tree performance graph for the

40-KB anaesthesia documents.

293

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

10
,6

19
.6

0

12
,6

50
.6

7

10
,6

04
.8

3

10
,2

19
.6

0

99
09

.2
0

94
15

.3
2

97
55

.2
0

88
96

.9
7

90
94

.0
0

91
88

.0
7

0

2000

4000

6000

8000

10,000

12,000

14,000

1d
im

-a
liv

e-
V

T

1d
im

-a
liv

e
-A

T

2d
im

-a
liv

e-
A

T
,

V
T

3d
im

-a
liv

e-
A

T
,

V
T

, E
T

4
di

m
-a

liv
e-

A
T

, V
T

, E
T

, T
T

T
im

e
(m

s)

Query Types

Execution Times of TXML and AR Tree

AR

TXML

11.34%

22.89%

16.10%

9.83%
7.28%

0.00

0.05

0.10

0.15

0.20

0.25

1d
im

-a
liv

e
-V

T

1d
im

-a
liv

e-
A

T

2d
im

-a
liv

e
-A

T
,

V
T

3d
im

- a
liv

e
-A

T
,

V
T

, E
T

4
di

m
-a

liv
e

-
A

T
, V

T
, E

T
, T

T

T
X

M
L

 P
er

fo
rm

an
ce

 o
ve

r
A

R
 (

%
)

Query Types

TXML – AR Tree Performance Graph

Figure 17. Query execution times of the TXML and AR

tree for the 250-KB anaesthesia documents.

Figure 18. TXML–AR* tree performance graph for the

250-KB anaesthesia documents.

42
,8

27

42
,2

72

49
,9

48 66
,3

47

99
,4

70

99
,8

49 11
8,

15
6

22
03

21
53

20
12

19
93

19
82

19
93

20
23

20
03

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000
110,000
120,000

1d
im

-
al

iv
e-

A
T

1d
im

-
bo

th
-A

T

2d
im

-
bo

th
-A

T
,

V
T

2d
im

-
al

iv
e-

A
T

,
V

T

3d
im

-
bo

th
-A

T
,

V
T

, E
T

3d
im

-
al

iv
e-

A
T

,
V

T
, E

T

4d
im

-
bo

th
-A

T
,

V
T

, E
T

, T
T

4d
im

-
al

iv
e-

A
T

,
V

T
, E

T
, T

T

T
im

e
(m

s)

Query Types

Execution Times of TXML and TempIndex

TempIndex

TXML

Figure 19. Query execution times of TXML and TempIndex for the 40-KB anaesthesia documents.

2 dim AT, VT:
List all amounts of live agent types (from gases and agents) from intraoperative period whose availability time
starts between 12.10.2006 20.20 and 12.10.2006 21.20 and validity time starts after 12.10.2006 20.20 and ends
before 12.10.2006 21.20?
/patient/surgery/intraoperativePeriod/CaseData/GasesAndAgents/Agent/AgentTypeAmount/TimeElement

[AT/low ⇒ 12.10.2006 20.20 and AT/low ⇐ 12.10.2006 21.20 and AT/high = UC and VT/low ⇒ 12.10.2006

20.20 and VT/high ⇐ 12.10.2006 21.20]

3 dim AT, VT, ET:

List all amounts of live agent types (from gases and agents) from intraoperative period whose availability time
starts between 12.10.2006 20.20 and 12.10.2006 21.20 and validity time starts after 12.10.2006 20.20 and ends
before 12.10.2006 21.20 and event time starts after 12.10.2006 20.20 and ends before 12.10.2006 21.20?

294

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

/patient/surgery/intraoperativePeriod/CaseData/GasesAndAgents/Agent/AgentTypeAmount/TimeElement

[AT/low ⇒ 12.10.2006 20.20 and AT/low ⇐ 12.10.2006 21.20 and AT/high = UC and VT/low ⇒ 12.10.2006

20.20 and VT/high ⇐ 12.10.2006 21.20 and ET/low ⇒ 12.10.2006 20.20 and ET/high ⇐ 12.10.2006 21.20]

4 dim AT, VT, ET, TT:

List all amounts of live agent types (from gases and agents) from intraoperative period whose availability time
starts between 12.10.2006 20.20 and 12.10.2006 21.20 and validity time starts after 12.10.2006 20.20 and ends
before 12.10.2006 21.20 and event time starts after 12.10.2006 20.20 and ends before 12.10.2006 21.20 and which
is recorded (transaction time) between 12.10.2006 20.20 and 12.10.2006 21.20?

/patient/surgery/intraoperativePeriod/CaseData/GasesAndAgents/Agent/AgentTypeAmount/TimeElement

[AT/low ⇒ 12.10.2006 20.20 and AT/low ⇐ 12.10.2006 21.20 and AT/high = UC and VT/low ⇒ 12.10.2006

20.20 and VT/high ⇐ 12.10.2006 21.20 and ET/low ⇒ 12.10.2006 20.20 and ET/high ⇐ 12.10.2006 21.20 and

TT/low ⇒ 12.10.2006 20.20 and TT/low ⇐ 12.10.2006 21.20 and TT/high = UC]

Figures 11 and 13 show the execution times of the queries using the TAR* tree and the Double R tree.
We also present the performance comparison of the proposed TAR* tree over the Double R tree for the fully
and partially dimensional queries on the live data in Figures 12 and 14. The only difference in the proposed
system and the compared system is the time index structure. We focused on the queries that filter live data
because both the TAR* tree and the Double R tree have special structures for live and deleted data. As the
number of query dimensions gets closer to the number of data dimensions, we expect that the performance of
the proposed model will get closer to the Double R, since Double R structure is designed for fully dimensional
queries. The experiment shows that the proposed tree (TAR* tree) has better performance in all of the PD
temporal queries over the Double R tree. However, as the query dimension increases, the performance of the
TAR* tree gets closer to the Double R tree. This is because the search region can be limited in the case of large
number of dimensions.

To compare the performance of the TAR* tree over the AR* tree, we execute partially and fully
dimensional temporal queries. In our proposed system, the valid time and event time dimensions are bounded,
i.e. they do not contain now-relative timestamps. In the AR* tree, the now-relative timestamps are inserted
using the maximum timestamp approach and the bounded timestamps are inserted according to their values.
On the other hand, in the TAR* tree, the now-relative timestamps are inserted as points and the bounded
timestamps are inserted according to their values.

In the AR* tree, logically deleted and live data are stored in the same structure. However, in the TAR*
tree, live data and deleted data are stored in different trees to decrease the search space.

Figures 15 and 17 show the execution times of the TAR* tree over the AR* tree and Figures 16 and 18
show the performance gain of the TAR* tree over the AR* tree. Because of the maximum timestamp approach,
we expect the performance of the TAR* tree to be better than that of the AR* tree for data. The experiments
show that the TAR* tree has better performance than the AR* tree for every temporal query. When we
compare the performance of the proposed tree with the AR* tree for now-relative timestamps (1 dim-AT) and

bounded timestamps (1 dim-VT), the experiments show that for the now-relative timestamps, the proposed
tree has better performance than that for the bounded timestamps. In our datasets, the percentage of the
deleted elements is approximately 6% of the AgentTypeAmount elements. We claim that as the percentage of
the deleted elements increases, the performance of the TAR* tree over the AR* tree also increases.

The last important system that we compare our system with is the TempIndex. The TempIndex is for

295

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

tracking historical information in an XML document and for recovering the state of the document for any given
time [20]. It uses continuous paths, which are valid continuously during a certain interval in a temporal XML

graph (used for summarising and indexing temporal XML documents). For indexing continuous paths, different

data structures have been proposed in the TempIndex (i.e. a new class of summaries called TSummary that

adds the time dimension to the path summarisation schemes).

We compared our proposed system and the TempIndex in terms of temporal retrieval queries. The
TempIndex is proposed for 1 temporal dimension, whereas our proposed system supports 4 different temporal
dimensions. To support 4 temporal dimensions in TempIndex, we implemented temporal depth tables for each
temporal dimension.

In TempIndex, the temporal filtering function uses temporal depth tables. It scans the appropriate
temporal depth table sequentially. If the query has multiple criteria on different temporal dimensions, then
multiple temporal depth tables are scanned. Each temporal depth table contains all of the nodes in the dataset
with the same temporal depth. On the other hand, our proposed system uses specialised temporal data structures
(TAR* tree) for filtering the temporal data, which have better performance over the sequential search.

We tested and compared the 2 systems with 500 anaesthesia records of 40 KB in size. Figure 19 shows
the execution times of queries using TXML and TempIndex. TXML executes the specified queries considerably
faster than TempIndex. For 9000 documents, the TempIndex implementation took too long to respond. The
main reason for the short execution time of our proposed method is the performance of the TemporalAR*
tree over the sequential search in the temporal depth tables. The experiment shows that proposed system
has an increasing performance on multiple time dimensions. As the number of dimensions increases in the
query, the number of temporal depth tables also increases, since we store each temporal dimension in a different
temporal depth table. As a result, more tables are sequentially searched, which increases the execution time for
TempIndex.

TXML has indices for processing nontemporal data, as well. In Figure 20, we show the execution time
of the nontemporal selection Query 7: List the patients of surgeon “J. Smith”. //patient/

surgery/intraoperative/surgeons [primary=”J.Smith”]. Question 7 is applied to the 40-KB anaesthesia docu-
ments.

In Figure 21, we show the execution time of another nontemporal query, Query 8, which combines
selection and join operations. Query 8 is applied to the 250-KB anaesthesia documents. Query 8 lists the

752.10

946.30
1051.50

0

500

1000

1500

E
xe

cu
tio

n
T

im
e

TXML AR DoubleR

Query 7

TXML
AR
Double R

13
,5

81
.0

0

13
,9

93
.0

0

13
,6

75
.3

3

12,000

13,000

14,000

15,000

T
X

M
L

A
R

D
ou

bl
e

R

T
im

e
(m

s)

Execution Times of Join - Selection Query

Figure 20. Execution time (in ms) of Query 7, a non-

temporal selection query, for the 40-KB anaesthesia docu-

ments.

Figure 21. Execution time of Query 8, a nontemporal

join query, for the 250-KB anaesthesia documents.

296

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

LactatedRingsType Amounts of patients to whom EPHEDRINE was applied. For this query, the following 2
paths are joined according to the Case Data element.

“patient/surgery/intraoperativePeriod/CaseData/Drugs/Drug/DrugName[’EPHEDRINE’]”;

“patient/surgery/intraoperativePeriod/CaseData/LactatedRings/LactatedRingsTypeAmount”.

The AR* tree and the Double R tree had to be augmented with path index and join index to be able
to process the nontemporal and some temporal queries. Although all 3 models use similar structures to answer
Query 7, the structures contain time data (i.e. other storage structures are accessed) and this affects the

performance of the nontemporal queries. TXML performs 20.52% better than the AR* tree and 28.47% better
than the Double R tree. In this experiment, we have 2100 XML anaesthesia documents.

The TXML storage structures are designed not only for expediting the processing of various types of
temporal queries (on VT, AT, ET, TT), but at the same time that of nontemporal and mixed temporal and
nontemporal queries. In our design, we consider the fact that secondary storage space is rather inexpensive and
the bottleneck in the performance is the time spent in accessing data [11]. Thus, our design is geared towards
expediting retrieval. Due to the presence of various index structures in the proposed method, a considerable
amount of secondary storage space is used. None of the index structures compared in our experiments have
the capabilities that TXML possesses. To perform our experiments and realise the given comparisons, we
had to augment the mentioned index structures with extra storage structures. After this augmentation in our
implementation for the experiments, the secondary storage space used by TXML and the Double R tree is
almost the same. The storage space used by the AR* tree is nearly 10% more than that used by TXML,
whereas the space used by TempIndex is nearly 2.5 times more than that used by TXML. The most space
consumption (around 5 GB in the first set of experiments) is due to the MBR index, which exists in the Double

R and AR* trees. In TempIndex, there is no MBR, but the Temporal Depth structure that is used instead takes
up huge amounts of space (several times that of the MBR index). Storage space requirements of just the indices

primarily used for time, i.e. the TAR index, AR index, Double R index, and tMapIndex in TXML, the AR*
tree, the Double R tree, and TempIndex, respectively, are close (around 450 MB in the first set of experiments)
in our implementation for the experiments.

5. Conclusion

The time information in anaesthesia data is important because of research, audit, and medicolegal issues. Most
of the current temporal XML models only record the valid time and transaction time. However, event and
availability times are also needed in order to represent time information accurately and to be able to make some
critical decisions. In this paper, we proposed a temporal XML data model, TXML, for anaesthesia data, which
records the valid time, transaction time, event time, and availability time, in order to provide the temporal
information of the events associated with anaesthesia. TXML can be used for any health-related or otherwise
temporal XML data that contain the transaction time, bounded valid time, event time, and availability time
information.

The main contributions of the paper can be summarised as follows: attaching time information to XML-
based anaesthesia records, recording 4 different time dimensions of anaesthesia data, and efficiently processing
partially and fully dimensional temporal queries.

TXML consists of different index structures to improve the performance of the system by decreasing the
number of page accesses. Two different index types, PathIndex and JoinIndex, are proposed in the system in
order to support path indexing. PathIndex is used for indexing root-to-leaf paths in the system and JoinIndex

297

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

is used for nonleaf paths. Nontemporal queries can be efficiently processed by the path index and join index
structures without having to traverse the anaesthesia document tree.

In order to process temporal queries, a new temporal index structure, the TAR* Index, is proposed. The
TAR* Index makes use of the advantages of the AR* tree for partially dimensional range queries. It also makes
use of the advantages of the Double R tree and stores live and logically deleted records in 2 different trees to
avoid large rectangle formation, consequently avoiding excessive dead spaces and overlaps for now-relative data.
Combining the advantages of the AR* tree and the Double R tree, the TAR* tree helps to efficiently process
partial and full dimensional temporal queries.

Supporting 4 different time dimensions allows inquiring on different types of temporal and nontemporal
queries. The model’s implementation is not only efficient in processing temporal anaesthesia queries (such as
temporal projection, temporal selection, temporal slicing, temporal join, time period containment, and temporal
comparison) but is also efficient for nontemporal anaesthesia queries that are used in anaesthesia audits or in
scientific research.

References

[1] V. Parmar, “Role of information management system and automated record in anaesthesia”, Indian Journal of

Anaesthesia, Vol. 50, pp. 99–102, 2006.

[2] M. Gardner, T. Peachey, “A standard XML schema for computerized anaesthetic records”, Anaesthesia, Vol. 57,

pp. 1174–1182, 2002.

[3] HL7 SIGGAS. Generation of Anaesthesia Standards, available at http://www.hl7.org, 2005.

[4] Y. Shahar, “Timing is everything: temporal reasoning and temporal data maintenance in medicine”, Proceedings

of the Conference on Artificial Intelligence in Medicine and Medical Decision Making, pp. 30–46, 1999.

[5] J.M. Feldman, “Medicolegal aspects of anaesthesia information management systems”, Seminars in Anaesthesia,

Perioperative Medicine and Pain, Vol. 23, pp. 92–86, 2004.

[6] M. Böhlen, J. Clifford, R. Elmasri, S.K. Gadia, F. Grandi, P. Hayes, “The consensus glossary of temporal database

concepts - February 1998 version”, in Temporal Databases: Research and Practice, Springer, Berlin, pp. 376–405,

1997.

[7] C.S. Jensen, “Introduction to temporal database research”, in Temporal Database Management, thesis, available

at http://www.cs.aau.dk/˜csj/Thesis/pdf/chapter1.pdf, 2000.

[8] B. Stantic, G. Governatori, A. Sattar, “Handling of current time in native XML databases”, Proceedings of the

17th Australasian Database Conference, Vol. 49, pp. 175–182, 2006.

[9] S.K. Kim, S. Chakravarthy, “Modelling time: adequacy of three distinct time concepts for temporal databases”,

Proceedings of the 12th International Conference on the Entity-Relationship Approach, pp. 475–491, 1993.

[10] C. Combi, A. Montanari, “Data models with multiple temporal dimensions: completing the picture”, Proceedings

of the 13th Conference on Advanced Information Systems Engineering, pp. 187–202, 2001.

[11] A. Kumar, V.J. Tsotras, C. Faloutsos, “Designing access methods for bitemporal databases”, IEEE Transactions

on Knowledge and Data Engineering, Vol. 10, pp. 1–20, 1998.

[12] Y. Feng, A. Makinouchi, “Efficient evaluation of partially-dimensional range queries using adaptive R*-tree”,

Proceedings of the 17th International Conference on Database and Expert Systems Applications, Vol. 4080, pp.

687–696, 2006.

[13] N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, “The R*-tree: an efficient and robust access method for points

and rectangles”, Proceedings of the ACM SIGMOD International Conference on Management of Data, Vol. 19, pp.

322–331, 1990.

298

ÜNLÜ DUYGULU and GÜNDEM/Turk J Elec Eng & Comp Sci

[14] Y. Cui, “High dimensional indexing”, Lecture Notes in Computer Science, Vol. 2341, 2003 (monograph).

[15] J. Balust, A. Macario, “Can anesthesia information management systems improve quality in the surgical suite?”,

Current Opinion in Anesthesiology, Vol. 22, pp. 215–222, 2009.

[16] A. Meyer-Bender, R. Spitz, B. Pollwein, “The anaesthetic report: custom-made printouts from anaesthesia-

information-management-systems using extensible stylesheet language transformation”, Journal of Clinical Moni-

toring and Computing, Vol. 24, pp. 51–60, 2010.

[17] F. Wang, F.C. Zaniolo, “XBIT: an XML-based bitemporal data model”, Lecture Notes in Computer Science, Vol.

3288, pp. 824–810, 2004.

[18] F. Grandi, F. Mandreoli, P. Tiberio, “Temporal modeling and management of normative documents in XML

format”, Data and Knowledge Engineering - Special Issue: WIDM, Vol. 54, pp. 354–327, 2003.

[19] A. Vaisman, A.O. Mendelzon, E. Molinari, P. Tome, “Temporal XML: data model, query language and implemen-

tation”, University of Toronto, available at http://www.cs.toronto.edu/˜avaisman/papers.html, 2004.

[20] F. Rizzolo, A.A. Vaisman, “Temporal XML: modeling, indexing and query processing”, The International Journal

on Very Large Data Bases, Vol. 17, pp. 1179–1212, 2008.

[21] M. Duong, Y. Zhang, “LSDX: a new labeling scheme for dynamically updating XML data”, Proceedings of 16th

Australasian Database Conference, pp. 185–193, 2005.

[22] Q. Li, B. Moon, “Indexing and querying XML data for regular path expressions”, Proceedings of the 27th Interna-

tional Conference on Very Large Data Bases, pp. 361–370, 2001.

23 E. Cohen, H. Kaplan, T. Milo, “Labeling dynamic XML trees”, Proceedings of the 21st ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, pp. 271–281, 2002.

[23] The Apache XML Project, About Apache Xindice, available at http://xml.apache.org/xindice/, 2006.

[24] Sedna, About Sedna, Native XML Database System, available at http://modis.ispras.ru/sedna/index.htm, 2006.

[25] Data ex Machina, The Natix XML Repository History, available at http://www.dataexmachina.de/natix.html,

2006.

[26] Timber, Introduction, available at http://www.eecs.umich.edu/db/timber, 2006.

[27] K.M. Win, W.K. Ng, E.P. Lim, “ENAXS: efficient native XML storage system”, Proceedings of the 5th Asia-Pacific

Web Conference on Web Technologies and Applications, Vol. 2642, pp. 59–70, 2003.

[28] A. Guttman, “R-Trees - a dynamic index structure for spatial searching”, Proceedings of the ACM SIGMOD

International Conference on Management of Data, Vol. 14, pp. 47–57, 1984.

[29] R. Bliujute, C.S. Jensen, S. Saltenis, G. Slivinskas, “R-Tree based indexing of now-relative bitemporal data”,

Proceedings of the 24th International Conference on Very Large Data Bases, pp. 345–356, 1998.

[30] Rapid Record, A Computer Assisted Anaesthesia Record Keeper, available at http://www.rapid-

record.com/index.htm.

299

