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Abstract: Single satellite-to-satellite passive tracking techniques have great significance in space surveillance systems.

A new passive modified iterated extended Kalman particle filter (MIEKPF) using bearings-only measurements in the

Earth-Centered Inertial Coordinate System is proposed. The modified iterated extended Kalman filter (MIEKF), with

a new maximum likelihood iteration termination criterion, is used to generate the proposal distribution of the MIEKPF.

Moreover, a new measurement update equation of the MIEKF is derived by modifying the objective function of the

Gauss–Newton iteration. The approximated second-order linearized state propagation equation, Jacobian matrix of

state transfer, and measurement equations are derived in satellite 2-body movement. The tracking performances of the

MIEKPF, iterated extended Kalman particle filter (IEKPF), extended Kalman particle filter (EKPF), and extended

Kalman filter (EKF) are compared via Monte Carlo simulations through simulated data from STK8.1. The simulation

results indicate that the proposed MIEKF is capable of passively tracking a low earth circular orbit satellite with a high

earth orbit satellite using bearings-only measurements and has higher tracking precision than the traditional algorithms.

Key words: Bearings, Gauss–Newton iteration, modified iterated extended Kalman filter, particle filter, passive tracking

1. Introduction
Satellite-to-satellite tracking is used for various measurements and orbit restrictions to give the target satellite’s
motion state estimation. The ordinary measurements are the range and its changing rate, the angles and
their changing rates, and a combination of these measurements [1]. Compared with the cooperative tracking
mode, the satellite-to-satellite passive tracking system can obtain angles and frequencies by means of optical
or radioed measurements. The angles are the most easily acquired target information. Research on passive
tracking using bearings-only measurements has great significance in space surveillance systems [2,3]. Low earth

orbit (LEO) satellites usually need signals relayed to transmit signals to the ground station. If a high earth

orbit (HEO) satellite is used to passively receive these signals, i.e. navigation and communication, the satellite
tracking system can be realized through analysis and can estimate the parameters of these signals using filtering
algorithms.

The measurements of satellite-to-satellite passive tracking are nonlinear. For nonlinear problems, several
variants of the filters such as the extended Kalman filter (EKF), the divided difference filter (DDF), the

unscented Kalman filter (UKF), and the particle filter (PF) are introduced. A new satellite-to-satellite EKF

tracking method with the bearings-only measurements in the J2000.0 Earth-Centered Inertial (ECI) frame was
∗Correspondence: plwu@163.com
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proposed in [4]. Two different observation models were established based on bearings-only detection data in [5],
and the EKF method was used to track LEO satellites with a single space-based optic platform. A simplified
DDF algorithm was proposed for satellite-to-satellite passive orbit determination and tracking in [6]. A UKF

tracking method was proposed in [7], and it can use passive tracking to locate the orbit of a satellite by bearings.
In recent years, the PF has attracted significant attention in the target-tracking field.

A new passive modified iterated extended Kalman particle filter (MIEKPF) tracking algorithm using
bearings-only measurements is proposed in this paper. The rest of this paper is organized as follows. In Section
2, the tracking model for the satellite passive tracking is formulated. The state transfer matrix and measurement
Jacobian matrix are also derived in a satellite 2-body problem. In Section 3, the MIEKPF tracking algorithm
is proposed, and the modified iterated extended Kalman filter (MIEKF) with new measurement update and
iteration termination criteria is used to generate the proposal distribution of the MIEKPF, which can reasonably
approximate the posterior distribution by integrating the latest measurements into the system state transition
density. The simulation results of 100 Monte Carlo experiments based on simulated data from the Satellite Tool
Kit (STK8.1) are given in Section 4. The conclusions are presented in Section 5.

2. Tracking model
2.1. State motion equation

The relative movement of Earth and a satellite is a 2-body movement without perturbation according to the
law of universal gravitation. LEO and HEO satellites can be regarded as 2 simplified particles in a geocentric
celestial sphere coordinate. The trajectories of the LEO and HEO satellites are shown in Figure 1.
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Figure 1. Trajectory of the satellite tracking system.

Select the position and velocity vectors in the ECI coordinate system as state vector X = (x, y, z, ẋ, ẏ, ż)T .
According to the law of universal gravitation, the motion equation can be expressed in a 2-body problem as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẍ = −μ
x

(x2 + y2 + z2)3/2

ÿ = −μ
y

(x2 + y2 + z2)3/2

z̈ = −μ
z

(x2 + y2 + z2)3/2

, (1)

where μ is the Keplerian constant.
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The motion state differential equation is:

Ẋ(k) = (ẋ(k) ẏ(k) ż(k) ẍ(k) ÿ(k) z̈(k))T = f(X(k), k). (2)

The second-order discretization of Eq. (2) is:

X(k + 1) = X(k) + f(X(k))T + F (X(k))f(X(k))
T 2

2
+ q(k) = Φ(X(k)) + q(k), (3)

where F (X(k)) = ∂f(X(k))/∂X(k) , and q(k)is zero-mean Gaussian white noise with variance Q(k).

At time k , suppose that the state vectors of the HEO satellite are Xa = [xa(k)ya(k)za(k)ẋa(k)ẏa(k)ża(k)]T

and the state vectors of the observed LEO satellite are Xb = [xb(k)yb(k)zb(k)ẋb(k)ẏb(k)żb(k)]T .

The Jacobian of the state equation is:

F (Xb) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

F41 F42 F43 0 0 0

F51 F52 F53 0 0 0

F61 F62 F63 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where ρ(k) = x2
b(k) + y2

b (k) + z2
b (k),F41 = −μ(ρ3/2(k) − 3x2

b(k)ρ1/2(k))/ρ3(k), F42 = −3μxb(k)yb(k)ρ−5/2(k),

F43 = −3μxb(k)zb(k)ρ−5/2(k), F51 = −3μxb(k)yb(k)ρ−5/2(k),F52 = −μ(ρ3/2(k)− 3y2
b (k)ρ1/2(k))/ρ3(k), F53 =

−3μyb(k)zb(k)ρ−5/2(k), F61 = −3μxb(k)zb(k)ρ−5/2(k), F62 = −3μyb(k)zb(k)ρ−5/2(k), F63 = −μ(ρ3/2(k) −
3z2

b (k)ρ1/2(k))/ρ3(k).

2.2. Measurement equation

Suppose the HEO has a receiver, which can obtain the azimuth θ and pitching angle ε between the observed
LEO and HEO satellites. The angles are defined as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θ(k) = tan−1

(
yb(k) − ya(k)
xb(k) − xa(k)

)

ε(k) = tan−1

⎛
⎝ zb(k) − za(k)√

(xb(k) − xa(k))2 + (yb(k) − ya(k))2

⎞
⎠ . (5)

The measurement equation is described as:

Y (k) =
[

θ(k)
ε(k)

]
= h(Xa(k), Xb(k)) + V (k), (6)

where V (k)is the measurement noise.

The Jacobian matrix of the measurement equation is:

H(k) =
∂h(k)
∂Xb(k)

=

[
H11 H12 0 0 0 0

H21 H22 H23 0 0 0

]
, (7)
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where rx(k) = xb(k) − xa(k),ry(k) = yb(k) − ya(k), rz(k) = zb(k) − za(k),r2(k) = r2
x(k) + r2

y(k) +

r2
z(k),H11 = −ry(k)/(r2

x(k) + r2
y(k)),H12 = rx(k)/(r2

x(k) + r2
y(k)),H21 = −rz(k)rx(k)/((r2

x + r2
y)

1/2r2),H22 =

−rz(k)ry(k)/((r2
x(k) + r2

y(k))1/2r2),H23 = (r2
x(k) + r2

y(k))1/2/r2 .

3. The modified iterated extended Kalman particle filter

The PF utilizes sequential Monte Carlo methods to approximate the posterior distribution using a set of weighted
samples, and thus it can theoretically represent any distribution [8]. However, due to the huge calculated amount
and the serious degeneracy problem, the sample impoverishment after the resampling step is a handicap in
applying the PF to the state estimation [9]. To solve this problem, some researchers have adopted analytical
methods. For example, the EKF or UKF approximation is used as the proposal distribution for a PF. Freitas et
al. [10] combined the PF and EKF to form the extended Kalman particle filter (EKPF). The EKPF can get a
better state equation of dynamic systems by EKF than PF; however, the EKF is a typical suboptimal estimate
filter. When applying the EKF to nonlinear systems, the estimation error can be magnified and the estimation
will be far from the optimal values [11]. A new iterated extended Kalman particle filter (IEKPF) was proposed

in [12], and the iterated extended Kalman filter (IEKF) is used to generate the proposal distribution.

3.1. Iterated extended Kalman filter

The IEKF approximates the optimal state estimation using the measurement information effectively [13]. An

approximate maximum a posteriori (MAP) estimate can be obtained through the iterative updating linear
measurement equation. The IEKF is given as follows.

X(k|k − 1) = Φ(X(k − 1)) (8)

P (k|k − 1) = F (k|k − 1)P (k − 1|k − 1)F T (k|k − 1) + Q(k − 1) (9)

X1(k|k) = X(k|k − 1), P 1(k|k) = P (k|k − 1)

For i = 1, 2 · · ·n
Hi(k) = ∂h(X)/∂X |X=Xi(k|k) (10)

Ki(k) = P 1(k|k)(Hi(k))T
(
Hi(k)P 1(k|k)(Hi(k))T + R(k)

)−1
(11)

Xi+1(k|k) = X1(k|k) + Ki(k)
(
Y (k) − h(Xi(k|k)) − Hi(k)(X1(k|k) − Xi(k|k))

)
(12)

P i+1(k|k) = (I − Ki(k)Hi(k))P 1(k|k)(I − Ki(k)Hi(k))T + Ki(k)R(k)
(
Ki(k)

)T
(13)

End For

X(k|k) = Xi+1(k|k) (14)

P (k|k) = P i+1(k|k) (15)

Here, n is the maximum iterative number. The update algorithm of the IEKF reduces to that of the EKF in
the case of a single iteration. Inevitably, the iteration will increase the filter time and improve the tracking
precision. Compromise always has to be made between the tracking precision and computation cost.
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3.2. Modified iterated extended Kalman filter

The IEKF update is an application of the Gauss–Newton method for approximating a maximum likelihood
estimation. The Gauss–Newton method can guarantee the global convergence but cannot guarantee the
achievement of the likelihood surface. The objective function of the IEKF is given by [14]:

f(X(k)) =
1
2
‖S(Z(k) − g(X(k)))‖2

, (16)

where ST S = Q̄−1 ,Z(k)=[Y (k), X1(k)]T , Z(k) ∼ N(g(X(k)), Q̄(k)), g(X(k)) = [h(X(k)), X(k)]T , Q̄(k) =[
R(k) 0

0 P 1(k)

]
.

Eq. (16) indicates that the disadvantage of the IEKF is caused by its objective function, which largely
depends on the initial estimate. The objective function can be modified as:

f̃(X(k)) =
1
2

∥∥∥S̃(Z̃(k) − g(X(k)))
∥∥∥2

, (17)

where S̃T S̃ = Q̃−1 , Z̃(k)=[Y (k),Xi(k)]T , Z̃(k)∼ N(g(X(k)), Q̃(k)), g(X(k)) = [h(X(k)), X(k)]T , Q̃(k) =[
R(k) 0

0 P i(k)

]
.

In the above equation, the initial estimate X1(k) and its covariance P 1(k) are replaced by the iterative

estimate Xi(k)and its covariance P i(k). Thus, the influence of the initial estimate error for the whole iterative
process can be decreased. According to the properties of the Gauss–Newton method, a new update equation is
obtained as:

Xi+1 (k) = Xi(k) + Ki(k)(Z(k)−h(Xi(k))), (18)

where
Ki(k) = ((Hi(k))T R−1(k)Hi(k) + (P i(k))−1)−1(Hi(k))T R(k)−1. (19)

Accordingly, its covariance matrix can be written as:

P i+1(k) = P i(k) − Ki(k)Hi(k)P−1(k). (20)

Although the iteration can be completed by Eqs. (18), (19), and (20) [15], its gain requires computing the
inverse matrix of the estimate covariance matrix and the inverse matrix of the measurement covariance matrix.
In practice, the inverse operation is difficult to achieve and too many inverse operations may cause instability.
Therefore, we deduce a new gain equation. Since the iterative procedure is a process of approximating a
maximum likelihood estimate, the likelihood function can be written as:

L(X(k))=
1√

(2π)m+n
∣∣∣Q̃(k)

∣∣∣exp(−1
2
(Z̃(k) − g(X(k))T Q̃−1(k)(Z̃(k) − g(X(k))), (21)

where m and n denote the dimensions of the measurement vector and the state vector. According to the property
of the maximum likelihood estimate, we have:

(g′(X(k)))T Q̃−1(k)(Z̃(k) − g(X(k))) = 0. (22)
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Replacing g by its first-order approximation atXi+1 (k), we can obtain:

Xi+1 (k) − X(k) = ((g′(Xi+1(k)))T Q−1(k)g′(Xi+1(k)))−1(g′(Xi+1(k)))T Q−1(k)(Z̃(k) − g(Xi+1(k))). (23)

Thus, the estimate covariance matrix can be computed as:

P i+1(k) = E((Xi+1 (k) − X(k))(Xi+1 (k) − X(k))T )

= ((Hi(k))T R−1(k)Hi(k) + (P i(k))−1)−1
. (24)

It follows that:
(P i+1(k))−1 = (Hi(k))T R−1(k)Hi(k) + (P i(k))−1. (25)

According to the matrix inversion lemma [16], we have another form of the estimate covariance matrix, shown
below.

P i+1(k) = P i(k) − (P i(k)(Hi(k))T (Hi(k)P i(k)(Hi(k))T + R(k))−1)Hi(k)P i(k)

= P i(k) − Ki(k)Hi(k)P i(k)
(26)

Thus, a new gain equation is obtained:

Ki(k) = P i(k)(Hi(k))T (Hi(k)P i(k)(Hi(k))T + R(k))−1. (27)

Since the inverse matrix of the estimate covariance matrix and the inverse matrix of the measurement covariance
matrix need not be computed in Eq. (27) and the number of the inverse operations decreases to 1 from 4, better
feasibility and stability can be obtained.

A new maximum likelihood iteration termination criterion is also proposed in this paper. The maximum
likelihood estimate for X is given by:

X∗(k) = arg min [q (X(k))] , (28)

where

q (X(k)) = −1
2
(Z̃(k) − g(X(k))T Q̃−1(k)(Z̃(k) − g(X(k)). (29)

Suppose that q
(
Xi+1(k)

)
< q

(
Xi(k)

)
, the q

(
Xi+1(k)

)
will be closer to the maximum likelihood surface than

q
(
Xi(k)

)
, and Xi+1(k) will be closer to the optimal solution than Xi(k). From Eq. (29), we can get:

(X̃i(k))T (P i−1(k))−1X̃i(k) + ((Ỹ i(k))T R−1(k)Ỹ i(k) < ((Ỹ i−1(k))T R−1(k)Ỹ i−1(k)), (30)

where X̃i(k) = Xi(k) − Xi−1(k), Ỹ i(k) = Ỹ (k) − h(Xi(k)). Eq. (30) is the iteration termination condition.

In conclusion, the procedure of the MIEKF can be given as follows.

X(k|k − 1) = Φ(X(k − 1)) (31)

P (k|k − 1) = F (k|k − 1)P (k − 1|k − 1)F T (k|k − 1) + Q(k − 1) (32)

Set X1(k|k) = X(k|k − 1), P 1(k|k) = P (k|k − 1)

For i = 1, 2 · · ·n

Hi(k) =
∂h(X)

∂X
|X=Xi(k|k) (33)
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Ki(k) = P i(k)(Hi(k))T (Hi(k)P i(k)(Hi(k))T + R(k))−1 (34)

Xi+1(k|k) = Xi(k|k) + Ki(k)
(
Y (k) − h(Xi(k|k))

)
(35)

P i+1(k|k) = (I − Ki(k)Hi(k))P i(k|k) (36)

If Eq. (30) is satisfied, the iteration is terminated; otherwise, the iteration continues.

End
X(k|k) = Xi+1(k|k) (37)

P (k|k) = P i+1(k|k) (38)

3.3. Modified iterated extended Kalman particle filter

As shown in the section above, the MIEKF has a bigger support overlap with the true posterior distribution
than the overlap achieved by the IEKF and EKF estimates. In this paper, a novel filter named the MIEKPF is
proposed. The MIEKF is used to generate the proposal distribution within the particle filter architecture. The
procedure of MIEKPF is given as follows:

1. Initialization

Initializing a random particle set of N particles {(X̂i
b(0), wi(0))|i = 1, 2, . . . , N} from the prior probability

distribution p(X̂b(0)), where wi(0) = 1/N .

2. Recursion

For k = 1,2. . .

For i = 1:N
Computing the Jacobian matrix F i(k) of the state equation with Eq. (4):

a. Updating the particles with the MIEKF algorithm.

b. Getting the mean value X̄i(k)and covariance P i(k)from the particle set {X̂i(k)}N
i=1 . An approximate

sample Xi(k)can be drawn from the importance density function:

q(Xi
b(k)|Xi

b(k − 1), Y (1 : k)) = N(X̂i
b(k); X̄i

b(k), P i(k)). (39)

c. Updating the weights. Calculating the weights of the particle according to the measurements values
of the new state:

wi(k) = wi(k − 1)
p(Y (k)|Xi

b(k))p(Xi
b(k)|Xi

b(k − 1))
q(Xi

b(k)|Xi
b(k − 1), Y (1 : k))

. (40)

End For
For i = 1:N
Standardizing the weights:

w̄i(k) = wi(k)/
N∑

i=1

wi(k). (41)

End For
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3. Resampling

Getting the new particle set according to the weight standardization and setting the threshold points Nth for
the sample (Nth equals the particle numbers N under normal circumstances).

Computing the valid particle numbers:

N̂eff = 1/

N∑
i=1

(wi(k))2. (42)

Computing the posterior probability estimate of the target state:

Xb(k) =
N∑

i=1

Xi
b(k)w̄i(k). (43)

4. Simulation and results

The circular orbit satellite is chosen as the LEO satellite, and the HEO satellite obtains the directions of the
LEO satellite at intervals of T = 1 s. The 2 satellites’ orbit elements are shown in Table 1, where a is the
semimajor axis, e is the eccentricity, i is the inclination, Ω is the right ascension of the ascending node, ω is
the argument of perigee, and τ is the time past perigee.

Table 1. Orbit elements of the HEO and LEO satellites.

Orbit elements HEO LEO
a (km) 42,000 7171

e 0.1 0
i (degrees) 120 30
Ω (degrees) 30 75
ω (degrees) 45 60

τ (s) 0 500

In order to guarantee the universality of the simulated data, STK8.1 is used to generate the tracking
scenario, and afterwards, the HEO and LEO satellites are imported into the tracking scenario using the orbit
wizard function in STK8.1. The 2 satellites’ ephemeris data are generated by importing the orbital elements in
Table 1 into STK8.1. Using the report tool in STK8.1, we can obtain the 2 satellites’ orbital data, consisting
of position, velocity, and start and stop time. Using the access analysis function in STK8.1, we can obtain the
entire access time table from the HEO to the LEO. The former 13,500 data points in the longest access duration
are chosen as the simulation data, and Eq. (5) is used to generate measurement data.

Monte Carlo simulation results are presented here in order to demonstrate the tracking performance of the
MIEKPF, and 200 runs were performed. The scenario of LEO satellite tracking is defined as follows: the initial

state vector of LEO is X̂b(0) = [−4558.2185km − 5248.8001 km 1759.5401km 4.4925 km/s − 4.9885 km/s −
3.2428km/s]T , the particle numbers areN = 50, and the measurement noise variance is σθ = 0.1mrad ,

σε = 0.1mrad , P (0) = diag[1000 1000 1000 10 10 10] . The maximum iterative number is n = 5. The
trajectories of the satellites, shown in Figures 2–5, show the position estimation error of the 4 algorithms in
the directions x, y, and z, respectively. The average root mean square errors (RMSEs) of the target’s position
and velocity for the 4 algorithms are shown in Tables 2 and 3, separately. The simulation results show that the

127



WU et al./Turk J Elec Eng & Comp Sci

PF can significantly reduce the tracking error compared to the EKF. Moreover, the combination of the IEKF
with the PF can improve the tracking precision. Specifically, the proposed MIEKPF has the highest tracking
compared to the other 3 algorithms by integrating the latest measurement into the system state transition
density. The position tracking precision of the proposed MIEKPF decreased by 18.37% and 42.71% compared
with the IEKPF and EKPF, respectively. The velocity tracking precision of the proposed MIEKPF decreased
by 42.33% and 50.27% compared with the IEKPF and EKPF, respectively.
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Figure 2. Trajectory of the LEO and HEO satellites. Figure 3. Position error of the x direction.

Table 2. The RMSE comparison of the position estima-

tion.

Algorithms x (km) y (km) z (km)
EKF 86.8234 90.8876 45.5191

EKPF 13.6351 8.2207 8.8515
IEKPF 8.0736 6.5008 7.4820

MIEKPF 7.6151 2.7976 6.5629

Table 3. The RMSE comparison of the velocity estima-

tion.

Algorithms x (km/s) y (km/s) z (km/s)
EKF 3.1580 3.8406 1.8640

EKPF 1.5280 1.7975 1.1247
IEKPF 1.2743 1.6108 0.9282

MIEKPF 0.8627 0.6382 0.7331
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Figure 4. Position error of the y direction. Figure 5. Position error of the z direction.
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5. Conclusions

In this paper, a new particle filter that uses the MIEKF to generate the proposal distribution is proposed
for single satellite-to-satellite passive tracking in the ECI Coordinate System. According to the essence of
the MIEKF, where the Gauss–Newton method is used to approximate a maximum likelihood estimate, a new
update method is obtained for the MIEKF. The MIEKF can generate an approximate MAP estimate of the
system state; thus, the proposal distribution generated by the MIEKF is closer to the true posterior distribution
than the IEKF or EKF. The linearized state propagation equation, the Jacobian matrix of the state transfer,
and the measurement equation are derived in 2-body movement. Simulations have shown that the proposed
MIEKPF has higher tracking precision than the EKF, EKPF, and IEKPF. The proposed MIEKPF is an effective
algorithm for passive target satellite tracking systems.
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