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Abstract: In this paper, a new adaptive-robust control approach for robot manipulators is developed. The adaptive-

robust control law is not only robust to unknown structured parameters but also robust to unknown unstructured

parameters such as unstructured joint friction and disturbances. The bounded disturbances and unstructured model are

taken into account in a dynamic model and it is assumed that the structured and unstructured parameters are unknown.

The structured and unstructured parameters are distinguished between parameters and these parameters are treated

separately. Next, new parameter estimation functions are developed for each of the 2 uncertainty groups. After that,

the developed dynamic adaptive compensators for the unknown structured and unknown unstructured parameters are

combined and the control law is formulated by the combination of the compensators, including the proportional-derivative

feedforward control. Based on the Lyapunov theory, the uniform ultimate boundedness of the tracking error is obtained.

Key words: Robust control, adaptive control, adaptive-robust control, robot control, parameter estimation, uncertainty

bound estimation, Lyapunov stability

1. Introduction
Numerous adaptive and robust control methods have been developed in the past in order to increase tracking
performance in the presence of parametric uncertainties. Most adaptive controls, like most parameter adaptive
control algorithms, may exhibit poor robustness to unstructured dynamics and external disturbances. Some
adaptive control laws, like most parameter adaptive control algorithms for robot manipulators, are given in
[1–6].

Robust control laws are used for parametric uncertainty, unstructured dynamics, and other sources
of uncertainties. Leitmann [7] and Corless and Leitmann [8] gave a popular approach used for designing
robust controllers for robot manipulators. Some robust control laws developed based on the approaches
by Leitmann [7] and Corless and Leitmann [8] are given in [9–11]. However, disturbance and unstructured

dynamics are not considered in the algorithms in [9–11]. Danesh et al. [12] developed Spong’s approach [9]
in such a manner that the control scheme is made robust not only to uncertain inertia parameters but also
to unstructured dynamics and disturbances. A robust control approach was proposed by Liu and Goldenberg
[13] for robot manipulators based on a decomposition of model uncertainty. In [13], parameterized uncertainty
was distinguished from unparameterized uncertainty and a compensator was designed for parameterized and
unparameterized uncertainty. A decomposition-based control design framework for mechanical systems with
model uncertainties was proposed by Liu [14].
∗Correspondence: burkanr@istanbul.edu.tr
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An adaptive scheme of the uncertainty bound was developed in [11,15–17] in order to increase the tracking
performance of uncertain systems. However, a method for the derivation of the adaptive uncertainty bound
estimation law was not previously proposed. A method for the derivation of the uncertainty bound estimation
law was proposed in [18]. In this method, functions depending on robot kinematics and tracking error, and
integration techniques, can be used for the derivation of uncertainty bound estimation laws. However, bad
transient behavior was obtained in the transient state and chattering was observed in the tracking performance in
[15–19]. A parameter and uncertainty bound estimation functions were developed in [19] in order to improve the

tracking performance of robust controllers [9,15–18], and bad transient behavior and chattering were eliminated.

In [19], only a structured dynamic model was considered, and bounded disturbances and an unstructured model
were not taken into account in the dynamic model. Nominal control parameters and the upper uncertainty
bound on parameters are required to be known a priori and a compensator for bounded disturbances and an
unstructured model was not designed.

In this paper, a new adaptive-robust control law is considered robust to unknown structured and un-
structured parameters, such as joint frictions and disturbance. The bounded disturbances and unstructured
model are taken into account in a dynamic model. It is assumed that the structured and unstructured param-
eters are unknown. The structured and unstructured parameters are distinguished between parameters and
these parameters are treated separately. Next, the adaptive dynamic compensators are developed for each of
the 2 uncertainty groups. After that, the compensators for the unknown structured and unstructured param-
eters are combined and the control law is formulated by the combination of the compensators, including the
proportional-derivative feedforward control. In previous studies [13,14], robust control input for unstructured
parameters were designed. However, the upper uncertainty bound on structured and unstructured parametric
uncertainties are known to be a priori and a variable function has not been used for designing the compensators
for unstructured parameters. The inertia parameters and the uncertainty bound on parameters are adaptive
in adaptive-robust control laws [20–22]; however, the inertia parameters are assumed to be known initially and
they exist in the control law. In this paper, the structured and unstructured parameters are unknown and the
inertia parameters and the upper uncertainty bound on the structured and unstructured parameters do not
exist in the control law. In addition to these, a parameter estimation function is developed for the unstructured
parameters, and the unstructured parameters are estimated with the estimation law in order to compensate for
joint friction and external disturbance. Based on the Lyapunov theory and the Leitmann [7] or Corless and

Leitmann approach [8], uniform ultimate boundedness of the tracking error is obtained.

2. Design adaptive dynamic compensators for the structured and unstructured parameters

The dynamic model of an n-link manipulator can be written as:

M(q)q̈ + C(q, q̇)q̇ + G(q) + d = τ. (1)

Here, q denotes the generalized coordinates, τ is the n-dimensional vector of the applied torques (or forces),

M(q) is the n × n symmetric positive definite inertia matrix, C(q, q̇)q̇ is the n-dimensional vector of the

centripetal and Coriolis terms, G(q) is the n-dimensional vector of the gravitational terms, and d is the

unstructured parameters, such as the joint frictions and disturbances at the joints. Eq. (1) can be written
in the following form:

Y (q,q̇, q̈)π + d = τ. (2)
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Here, π is a p-dimensional vector of the inertia parameters. For any specific trajectory, the desired position,
velocity, and acceleration vectors are qd , q̇d , and q̈d . The measured actual position and velocity errors are

q̃ = qd − q and ˙̃q = q̇d − q̇ . Using the above information, the corrected desired velocity and acceleration vectors
for nonlinearities and decoupling effects are proposed as:

q̇r = q̇d + Λq̃; q̈r = q̈d + Λ ˙̃q. (3)

The error σ is given as:

σ = q̇r − q̇ = ˙̃q + Λq̃, (4)

where Λ is a positive defined diagonal matrix. The following adaptive control is then defined [23]:

τa = M̂1(q)q̈r + Ĉ1(q, q̇)q̇r + Ĝ1(q) + Kσ

= Y (q, q̇, q̇r , q̈r)π̂1 + Kσ
, (5)

where K is a positive defined diagonal matrix. In order to increase robustness to the parameterized and
unparameterized model uncertainty, and disturbances at the joints, the following control law is proposed in
terms of the adaptive control such that:

τ = τa + Y (q, q̇, q̇r, q̈r)(u1 + u2) + ud

= M̂1(q)q̈r + Ĉ1(q, q̇)q̇r + Ĝ1(q) + Kσ + Y (q, q̇, q̇r, q̈r)(u1 + u2) + ud

= Y (q, q̇, q̇r, q̈r)(π̂1 + u1 + u2) + ud + Kσ

, (6)

where u1 and u2 are additional inputs designed to be robust to the unknown structured parameters, and ud

is designed to be robust to unstructured parameters such as joint frictions and disturbances. Substituting Eq.
(6) into Eq. (1), the following is yielded after some algebra:

M(q)σ̇ + C(q, q̇)σ + Kσ = −M̃1(q)q̈r − C̃1(q, q̇)q̇r − G̃1(q) − Y (q, q̇, q̇r , q̈r)(u1 + u2) − ud + d

= −Y (q, q̇, q̇r , q̈r)(π̃ + u1 + u2) − ud + d
, (7)

where π̃ is the parameter error and is defined as [23]:

π̃ = π̂1 − π. (8)

The modeling error is [23]:

M̃1 = M̂1 − M ; C̃1 = Ĉ1 − C; G̃1 = Ĝ1 − G. (9)

In addition to these, the estimation of second parameter π̂2 and the estimation of uncertainty bound ρ̂ are

defined. Considering π̂2 and ρ̂ , a new parameter error vector θ̃ is defined as:

θ̃ = π̂2 − ρ̂. (10)

The unstructured model uncertainty and disturbances at the joints d are not constant but are bounded as:

‖d‖ < ρd1. (11)
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Since ρd1 ∈R is assumed to be unknown, ρd1 should be estimated with the estimation law to control the system
properly. ρ̂d1 shows the estimate of ρd1 and ρ̃d1 is the estimation error. ρ̃d1 is defined based on [11] as:

ρ̃d1 = ρd1 − ρ̂d1 . (12)

In order to define a new controller, the following theorem is given.

Theorem 1 Let εd > 0. Considering the control law defined in Eq. (6), the control inputs π̂1 , u1, u2, and

ud are defined as:

ud =

⎧⎨
⎩

σ
‖σ‖ ρ̂d if ‖σ‖ > εd

σ
εd

ρ̂d if ‖σ‖ ≤ εd

; ˙̂π1 = ΓY T σ; u1 = π̂2; u2 = −ρ̂, (13)

where π̂1 and π̂2 are the estimation of the structured parameters and ρ̂ is the estimation of the uncertainty
bound of the unknown structured parameters. The dynamic compensators for the unknown structured parameters
π̂2 and ρ̂ are defined as follows:

π̂2i = (β2
i /αi)Sin(2α

∫
Y T σdt)i; ρ̂i = λiCos(α

∫
Y T σdt)i. (14)

Uncertainty bound estimation laws for the unknown unstructured parameters are defined as:

˙̂ρd1 = b1 ‖σ‖ ; ρ̂d2 =
ψ2

γ
(e−γ

�
‖σ‖dt − e−2γ

�
‖σ‖dt); ρ̂d = ρ̂d1 + ρ̂d2, (15)

where b1 ∈ R+ and ψ , β , α , λ, and γ ∈ R are the adaptation gains. If the control inputs π̂1 , u1 , u2 , and ud

are substituted into the control law of Eq. (6) for controlling the robot manipulators, then the tracking errors ˙̃q
and q̃will converge to 0.

Proof In order to prove the theorem, a Lyapunov function is defined as:

V (σ, q̃, φ,θ̃, ρ̃d1) = 1
2σT M(q)σ + 1

2 q̃T Bq̃ + 1
2 π̃T

1 Γ−1π̃1 + 1
2 θ̃T θ̃

+ 1
2b1

ρ̃2
d1 + 1

2φ2ρ̂2
d2 ≥ 0

, (16)

where ϕ is a time-dependent function and changes with time. The time derivative of V along the system in Eq.
(7) is:

V̇ = σT M(q)σ̇ + 1
2σT Ṁ(q)σ + q̃T B ˙̃q + θ̃T ˙̃

θ

+π̃T
1 Γ−1 ˙̃π1 + ρ̃d1b

−1
1

˙̃ρd1 + ρ̂d2φφ̇ρ̂d2 + ρ̂d2φ
2 ˙̂ρd2

. (17)

Substituting Eq. (7) into Eq. (17), the result is:

V̇ = σT [ 12Ṁ(q) − C(q, q̇)]σ − σT Kσ + q̃T B ˙̃q − σT Y (u1 + u2) + π̃T
1 [Γ−1 ˙̃π1 − Y T σ]

−σT ud − (ρd1 − ρ̂d1)b−1
1

˙̂ρd1 + σT d + θ̃T ˙̃θ + ρ̂d2φφ̇ρ̂d2 + ρ̂d2φ
2 ˙̂ρd2

. (18)

Note that ˙̃ρd1 = − ˙̂ρd1 since ρd1 is a constant. The adaptation law is chosen such that:

Y T σ − Γ−1 ˙̃π1 = 0. (19)
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That is [23]:
˙̂π1 = ΓY T σ. (20)

Note that ˙̃π1 = ˙̂π1 since π is a constant. Next, the term in Eq. (18) will be 0 such that:

π̃T [Y T
σ − Γ−1 ˙̃π1] = 0. (21)

Taking B = 2ΛK , using the property σT [Ṁ(q) − 2C(q, q̇)]σ = 0∀σ ∈ Rn [2,23], and substituting ˙̂ρd1 = b1 ‖σ‖
from Eq. (15) into Eq. (18), Eq. (18) becomes:

V̇ = − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ − σT Y (u1 + u2) − σT ud − ‖σ‖ ρd1

+ ‖σ‖ ρ̂d1 + σT d + θ̃T ˙̃
θ + ρ̂d2φφ̇ρ̂d2 + ρ̂d2φ

2 ˙̂ρd2

. (22)

2.1. Adaptive compensators for the unknown structured parameters

As seen from Eq. (22), there are relationships between the control inputs u1, u2 , and ud and the time-dependent

function θ̃T ˙̃
θ . The time-dependent function θ̃T θ̃ is defined as:

θ̃T θ̃ = [(2β2/α) sin(α
∫

(Y T σdt)) − λ]2/(2β)2 . (23)

Next, θ̃T ˙̃
θ is obtained as:

θ̃T ˙̃
θ = [(2β2/α) sin(α

∫
(Y T σdt)) − λ] cos(α

∫
(Y T σdt))(Y T σ)

= [(2β2/α) sin(α
∫

(Y T σdt)) cos(α
∫

(Y T σdt)) − λ cos(α
∫

(Y T σdt))](Y T σ)

= σT Y (π2 − ρ̂)

. (24)

The control parameters are defined in Eq. (13) such that u1 = π̂2 and u2 = −ρ̂ . Substituting the control

parameters u1 = π̂2 and u2 = −ρ̂ from Eq. (13) and Eq. (24) into Eq. (22), the following equation is obtained:

V̇ = − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ − σT Y (π̂2 − ρ̂) + σT Y (π̂ − ρ̂) + σT ud − ‖σ‖ ρd1 + σT d

+ ‖σ‖ ρ̂d1 + ρ̂d2φφ̇ρ̂d2 + ρ̂d2φ
2 ˙̂ρd2

. (25)

As seen from Eq. (25), the third and fourth terms are canceled out by each other and then Eq. (25) is arranged
as:

V̇ = − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ − ‖σ‖ ρd1 + ‖σ‖ ρ̂d1 + σT d − σT ud + ρ̂d2φφ̇ρ̂d2 + ρ̂d2φ

2 ˙̂ρd2 . (26)

2.2. Adaptive compensators for the unknown unstructured parameters and disturbances

In order to design uncertainty bound estimation functions for the unknown unstructured parameters, the
function ϕ is defined as:

φ =
eγ

�
‖σ‖dt

ψ
. (27)

456



BURKAN/Turk J Elec Eng & Comp Sci

There is no certain rule for the determination of ϕ for the control input ud that satisfies V̇ ≤ 0. System state
parameters and mathematical insight are used to search for the appropriate function of ϕ to prove the theorem.

From Eq. (15), ρ̂d2 and ˙̂ρd2 are written as:

ρ̂d2 =
ψ2

γ
(e−γ

�
‖σ‖dt − e−2γ

�
‖σ‖dt); ˙̂ρd2 =

ψ2

γ
(−e−γ

�
‖σ‖dt + 2e−2γ

�
‖σ‖dt)(γ ‖σ‖). (28)

If ρ̂d2 , ˙̂ρd2 , φ , and φ̇ are substituted into Eq. (26), the term ρ̂2
d2φφ̇ + ρ̂d2

˙̂ρd2φ
2 will be written as:

ρ̂2
d2φφ̇ + ρ̂d2

˙̂ρd2φ
2 = ψ4

γ2 (e−γ
�
‖σ‖dt − e−2γ

�
‖σ‖dt)

2
ψ−2e2γ

�
‖σ‖dt(γ ‖σ‖)

+ψ4

γ2 (e−γ
�
‖σ‖dt − e−2γ

�
‖σ‖dt)ψ−2e2γ

�
‖σ‖dt(−e−γ

�
‖σ‖dt + 2e−2γ

�
‖σ‖dt)(γ ‖σ‖)

= ψ4

γ2 (e−2γ
�
‖σ‖dt − 2e−3γ

�
‖σ‖dt + e−4γ

�
‖σ‖dt − e−2γ

�
‖σ‖dt

+3e−3γ
�
‖σ‖dt−2e−4γ

�
‖σ‖dt)ψ−2e2γ

�
‖σ‖dt(γ ‖σ‖)

= ψ2

γ (e−γ
�
‖σ‖dt − e−2γ

�
‖σ‖dt) ‖σ‖

.

(29)

Next, Eq. (26) is obtained as:

V̇ = − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ − ‖σ‖ ρd1 + σT d + ‖σ‖ ρ̂d1 − σT ud + ψ2

γ
(e−γ

�
‖σ‖dt − e−2γ

�
‖σ‖dt) ‖σ‖

≤ − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + ‖σ‖ ( ‖d‖−ρd1) + ‖σ‖ ρ̂d1 − σT ud + ‖σ‖ ρ̂d2

≤ − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + ‖σ‖ (ρ̂d1 + ρ̂d2) − σT ud

≤ − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + ‖σ‖ ρ̂d − σT ud

, (30)

where ρ̂d2 = ψ2

γ (e−γ
�
‖σ‖dt − e−2γ

�
‖σ‖dt) and ρ̂d = ρ̂d1 + ρ̂d2 . Two cases are considered for proof of the

theorem.
Case 1. ‖σ‖ ≥ εd .

For Case 1, the control input is defined as ud = σ
‖σ‖ ρ̂d . Next, Eq. (30) is obtained as:

V̇ = − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + ‖σ‖ ρ̂d − σT σρ̂d

‖σ‖

≤ − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + ‖σ‖ (ρ̂d − ρ̂d) ≤ 0

. (31)

Since K and Λ are the positive definite matrices, V̇ ≤ 0 and the system is stable. Eq. (16) shows that V is a

positive continuous function and V tends to be constant as t → ∞ , and therefore V remains bounded. Thus, ˙̃q

and q̃ are bounded; that is, ˙̃q and q̃ converge to 0 and this implies that σ is bounded and converges to 0. As

a result,
∫

Y T σdt is bounded and converges to a constant. The trigonometric functions are bounded, implying

that π̂1 , π̂2 , ρ̂ , and ρ̂d are bounded.

Case 2. ‖σ‖ ≤ εd .

For Case 2, the control input is defined as ud = σ
εd

ρ̂d . Next, Eq. (30) is obtained as:

V̇ ≤ − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + ‖σ‖ ρ̂d − σT σ

εd
ρ̂d

≤ − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + ‖σ‖ (ρ̂d − ‖σ‖

εd
ρ̂d)

. (32)
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This last term achieves a maximum value of ερ̂d /4 when ||σ ||= ε/2. We have:

V̇ ≤ −xT Qx + εd
ρ̂d

4
≤ 0, (33)

where xT = [ ˙̃qT , q̃T ] and Q = diag[ΛKΛ, K], provided that:

xT Qx ≥ εd
ρ̂d

4
, (34)

using the relationship:

δminQ ≤ xT Qx ≤ δmaxQ, (35)

where δmin (Q) and δmax (Q) denote the minimum and maximum eigenvalues of Q, respectively. It can be

obtained that V̇ ≤ 0 if:

δminQ ‖x‖2 ≥ εd
ρ̂d

4
. (36)

It is shown that V̇ ≤ 0 for ||x||> w, where:

‖x‖ ≥
√

εdρ̂d

4δmin(Q)
= w. (37)

τ = Y (q, q̇, q̇r, q̈r)[π̂1 + (β2/α)Sin(2α

∫
Y T σdt) − λCos(α

∫
Y T σdt)] + ud + Kσ. (38)

The resulting block diagram is given in Figure 1.

+

-

+

∫

∫
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+ 

dq q
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dq
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-
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..
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....
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+

+
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  λ
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Sin(.)   β2/α

+

  

Γ-

  

  2α

Cos(.)

-γ

-2γ
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exp(.) ψ2/ γ

+

inv

1/εd

 +

+

  A2

- 
  o

r 
   

 +

 A1

  εd

+

α

+

-

∧

∧

Figure 1. Block diagram of the adaptive-robust control law in Eq. (38).
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Let Sw denote the smallest level set of V containing B(δ), the ball of the radius w, and let Br denote the
smallest ball containing Sδ . Next, all of the solutions of the closed system are of uniform ultimate boundedness
with respect to Br . The situation is shown in Figure 2. All trajectories will eventually enter the ball Br ; in

fact, all trajectories will reach the boundary of Sδ since V̇ is defined as negative outside of Sδ . Note that the
radius of the ultimate boundedness set, and hence the magnitude of the state tracking error, are proportional
to the product of uncertainty bound and the constant εd [24].

Br S w

w

Figure 2. The uniform ultimate boundedness set. Since V̇ is negative outside the ball Br , all trajectories will eventually

enter the level set Sδ , the smallest level set of V containing Bδ . The system is of uniform ultimate boundedness with

respect to Br , the smallest ball containing Sw [24].

3. Simulation results

x

y 

l2

l1

m2

m1

q
1

q
2

Figure 3. Two-link planar robot [25].

The matrix M(q), C(q, q̇), and the vector G(q) in Eq. (1) are given by [25]:

M(q) =

[
(m1 + m2)l21 + m2l

2
2 + 2m2l1l2 cos q2 m2l

2
2 + m2l1l2 cos q2

m2l
2
2 + m2l1l2 cos q2 m2l

2
2

]
;

C =

[
−m2l1l2(2q̇2) sin q2 −m2l1l2q̇2 sin q2

m2l1l2q̇2 sin q2 0

]
;

459



BURKAN/Turk J Elec Eng & Comp Sci

G =

[
(m1 + m2)gcl1 cos q1 + m2gcl2 cos(q1 + q2)

m2gcl2 cos(q1 + q2)

]
. (39)

With this parameterization, the dynamic model in Eq. (2) can be written as:

τ = Y (q, q̇, q̈)π =

[
y11 y12 y13 y14 y15 y16

y21 y22 y23 y24 y25 y26

]
π, (40)

where π =[ π1 π2 π3 π4 π5 π6 ]T . The robot link parameters are:

π1 = (m1 + m2)l21 , π2 = m2l
2
2 , π3 = m2l1l2,

π4 = m1l1, π5 = m2l1, π6 = m2l2.
(41)

The components y ij of Y (q,q̇, q̈) in Eq. (40) are given as:

y11 = q̈1; y12 = q̈1 + q̈2; y13 = cos(q2)(2q̈1 + q̈2) − sin(q2)(q̇
2
2 + 2q̇1q̇2);

y14 = gc cos(q1); y15 = gc cos(q1); y16 = gc cos(q1 + q2);

y21 = 0; y22 = q̈1 + q̈2; y23 = cos(q2)q̈1 + sin(q2)(q̇
2
1);

y24 = 0; y25 = 0; y26 = gc cos(q1 + q2). (42)

Y (q, q̇, q̇r, q̈r) in Eq. (2) has the following components:

y11 = q̈r1; y12 = q̈r1 + q̈r2;

y13 = cos(q2)(2q̈r1 + q̈r2) − sin(q2)(q̇1q̇r2 + q̇1q̇r2 + q̇2q̇r2);

y14 = gc cos(q1); y15 = gc cos(q1); y16 = gc cos(q1 + q2);

y21 = 0; y22 = q̈r1 + q̈r2; y23 = cos(q2)q̈r1 + sin(q2)(q̇1q̇r1);

y24 = 0; y25 = 0; y26 = gc cos(q1 + q2). (43)

In order to investigate the performance of the proposed control law, computer simulations are carried out
for 4 cases, which are given below.

Case 1. β = 0, λ = 0, and ud = 0. In this case, the pure adaptive control law [23] is obtained and the

control input in Eq. (38) is obtained as:

τ = Y (q, q̇, q̇r, q̈r)π̂1 + Kσ. (44)

Case 2. β = 0 and λ = 0. A pure adaptive control law with an unstructured model uncertainty
compensator is obtained. In this case, the control input in Eq. (38) is obtained as:

τ = Y (q, q̇, q̇r, q̈r)π̂1 + ud + Kσ. (45)

Case 3. ud = 0. In this case, an unstructured model uncertainty compensator ud is not considered.
Only the adaptive control law with structured uncertainty compensators is considered and the control input in
Eq. (38) is obtained as:

τ = Y (q, q̇, q̇r, q̈r)[π̂1 + (β2/αi)Sin(2α
∫

Y T σdt) − λCos(α
∫

Y T σdt)] + Kσ . (46)
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Case 4. The adaptive control law in Eq. (38), with compensators for structured and unstructured
dynamics, is used.

For computer simulation, the desired trajectory for both joints is defined as q1 = q2 = 2Cos(t)-2. The
simulations have been done under robot parameters such as l1 = l2 = 1, m1 = 3, m2 = 15. In order to
investigate the performance of the proposed adaptive-robust controller, each control law with the same control
parameters, such as K = diag(25 25) and Λ = diag(25 25), is applied to the same model system using the same

trajectory. The disturbance torque is defined as d = 20sin(10t) at each joint. The control parameters Λ and K
are chosen to be identical, while the control parameters Γ, α , β , b1 , λ , ψ , and γ are changed. The obtained
results are given in Figures 4–6.
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Figure 4. a) Response using the adaptive control law in Eq. (44) [23] for Case 1, for Λ = diag([25 25]), K = diag([25

25]) with a disturbance torque d = 20sin(10t) at each joint, and b) response using the adaptive control law in Eq. (45)

for Case 2, for Λ = diag([25 25]), K = diag([25 25]), Γ = 1, b1 = 20, ψ = 12, and γ = 0.2 with a disturbance torque

d = 20sin(10t) at each joint.
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Figure 5. a) Response using the adaptive-robust control law in Eq. (38) for Case 4, for Λ = diag([25 25]), K = diag([25

25]), Γ = 1, α = 12, β = 18, b1 = 15, λ = -15, ψ = 12, and γ = 2 with a disturbance torque d = 20sin(10t) at each

joint, and b) response using the adaptive control law in Eq. (38) for Case 4, for Λ = diag([25 25]), K = diag([25 25]),

Γ = 1, α = 12, β = 18, b1 = 15, λ = –15, ψ = 12, and γ = 2 without a disturbance torque d = 0 at each joint.

As shown in Figure 4, the tracking performance is poor in the case where the pure adaptive controller
in Eq. (44) is used. The steady state response of the pure adaptive controller is improved and the disturbance
is rejected with the additional control input ud for Case 2. As shown in Figure 5, the transient and steady
state performance of the system is improved and the disturbance torque is rejected by the proposed adapted
control law in Eq. (38). Figure 6 shows the tracking performance of the control law in Eq. (46) for Case 3 with

and without the disturbance torques in the joints. The pure adaptive-robust controller in Eq. (46) is robust
to the structured unknown parameters but showed poor robustness to the unstructured unknown parameters
and external disturbances. The proposed control law in Eq. (38) also seems to be more attractive where
the robustness to disturbance and the unstructured dynamics are concerned and the unstructured parametric
uncertainty is large. For explanations, estimation of the parameters and uncertainty bound parameters are
given in Figures 7–12.

462



BURKAN/Turk J Elec Eng & Comp Sci

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–0.02

–0.015

–0.01

–0.005

0

0.005

0.01

0.015

0.02

Time (s)

T
ra

ck
in

g 
er

ro
r 

(r
ad

)

e1
e2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–300

–200

–100

0

100

200

300

Time (s)

T
or

qu
e 

in
pu

t (
N

m
)

Joint1
Joint2

a 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–6

–4

–2

0

2

4

6

× 10
–3

Time (s)

T
ra

ck
in

g 
er

ro
r 

(r
ad

)

e1
e2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–300

–200

–100

0

100

200

300

Time (s)

T
or

qu
e 

in
pu

t (
N

m
)

Joint1
Joint2

b 

Figure 6. a) Response using the adaptive control law in Eq. (46) for Case 3, for Λ = diag([25 25]), K = diag([25 25]),

Γ = 1, α = 12, β = 18, b1 = 0, λ = –15, ψ = 0, and γ = 0 with a disturbance torque d = 20sin(10t) at each joint,

and b) response using the adaptive control law in Eq. (46) for Case 3, Λ = diag([25 25]), K = diag([25 25]), Γ = 1,

α = 12, β = 18, b1 = 0, λ = –15, ψ = 0, and γ = 0 without a disturbance torque d = 0 at each joint.

Parameter estimation laws for unknown structured and unstructured parameters π̂1 , π̂2 , ρ̂ , and ρ̂d are
estimated with estimation laws in order to reduce the tracking error. As shown in Figures 7–12, the values of
π̂1 for the structured parameter are large for the pure adaptive control law in Eq. (44). The values of π̂1 for
the structured parameter are small and the value of ρ̂d for the unstructured parameter is large for Case 2. The
values of π̂1 are very small and π̂2 , ρ̂ , and ρ̂d are estimated properly for the proposed adaptive-robust control
law in Eq. (38).
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Figure 7. Estimation of the adaptive-robust control law in Eq. (44) [23] for Case 1, for Λ = diag([25 25]), K = diag([25

25]) with a disturbance torque d = 20sin(10t) at each joint.
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Figure 8. Estimation of π̂1 for the adaptive-robust control law in Eq. (45) for Case 2, for Λ = diag([25 25]), K =

diag([25 25]), Γ = 1, b1 = 20, ψ = 12, and γ = 0.2 with a disturbance torque d=20sin(10t) at each joint.
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Figure 9. Estimation of π̂1 for the adaptive-robust control law in Eq. (38) for Case 4, for Λ = diag([25 25]), K =

diag([25 25]), Γ = 1, α = 12, β = 18, b1 = 15, λ = –15, ψ = 12, and γ = 2 with a disturbance torque d = 20sin(10t)

at each joint.
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Figure 10. Estimation of π̂2 for the adaptive-robust control law in Eq. (38) for Case 4, for Λ = diag([25 25]), K =

diag([25 25]), Γ = 1, α = 12, β = 18, b1 = 15, λ = –15, ψ = 12, and γ = 2 with a disturbance torque d = 20sin(10t)

at each joint.
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Figure 11. Estimation of ρ̂ for the adaptive-robust control law in Eq. (38) for Case 4, for Λ = diag([25 25]), K =

diag([25 25]), Γ = 1, α = 12, β = 18, b1 = 15, λ = –15, ψ = 12, and γ = 2 with a disturbance torque d = 20sin(10t)

at each joint.

In order to investigate the performance of the proposed controller, another simulation is carried out with
a different disturbance torque and sensor noise. The disturbance torque is defined as d = 15Sin(10t)-12 at each
joint. It is assumed that the sensor cannot measure the position and velocity precisely and there is a difference
between the actual and measured values of the position and velocity. The differences between the measured
and actual values of the position and velocity are defined as (0.002)sin(10t)-0.001 for each joint. The obtained
result is given in Figure 13.

As shown in Figure 13, the proposed control law can compensate for different external disturbances and
sensor noises.
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Figure 13. a) Response using the adaptive-robust control law in Eq. (38) for Case 4, for Λ = diag([25 25]), K =

diag([25 25]), Γ = 1, α = 12, β = 18, b1 = 15, λ = –15, ψ = 12, and γ = 2 with a disturbance torque d =

15Sin(10t)-12 at each joint, and b) response using the adaptive control law in Eq. (38) for Case 4, for Λ = diag([25 25]),

K = diag([25 25]), Γ = 1, α = 12, β = 18, b1 = 15, λ = –15, ψ = 12, and γ = 2 with a disturbance torque d =

15Sin(10t)-12 with a sensor noise (0.002)sin(10t)-0.001 at each joint.
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4. Conclusion

In this paper, a new adaptive-robust control approach for robot manipulators was developed in order to improve
tracking performance in the presence of unknown structured and unstructured parameters such as joint friction
and disturbances. The bounded disturbance and unstructured model were taken into account in a dynamic
model. It was assumed that the structured and unstructured parameters are unknown and a priori knowledge
is not required. In order to investigate the effect of the control parameters Γ, α , β , b1 , λ , ψ , and γ on the
tracking performance, the control parameters Λ and K were chosen to be identical, while the control parameters
Γ, α , β , b1 , λ , ψ , and γ were changed. A computer simulation was carried out under the same conditions
with the same control parameters: K = diag(25 25) and Λ = diag(25 25). The tracking performance of the
system was changed according to the values of control parameters α , β , b1 , λ , ψ , and γ . The values of α , β ,
b1 , λ , ψ , and γ can be selected from 1–15, 1–20, 1–20, (–1)–(–20), 1–20, and 1–4, respectively. The control
law had better performance with the control parameters Γ = 1, α = 12, β = 18, b1 = 15, λ = –15, ψ = 12,
and γ = 2, and the obtained results were given in the Figures. As shown in the Figures, the tracking error was
very small, the values of π̂1 were very small, and the values of ρ̂ and ρ̂d were large compared to π̂1 for the
proposed adaptive-robust control law in Eq. (38). These results show that proper estimation of the unknown
structured and unstructured parameters was achieved and the disturbances and joint frictions were rejected by
the proposed adaptive-robust controller.

5. Discussion

The adaptive control law [2,23] is used for large uncertainties but it is a pure unknown dynamic model and

external disturbance [9]. Moreover, obtaining the best tracking performance is not possible for the pure adaptive

control law in Eq. (44). In the pure adaptive control law in Eq. (44) [2,23], only the parameter estimation law
is considered and the estimation of π̂1 is given in Figure 7, where the values of π̂1 are large and, as a result, a
large tracking error is obtained. In order to obtain a small tracking error, the dynamic compensators must be
estimated properly. However, a large dynamic compensator π̂1 causes a large tracking error and, as a result,
obtaining a small tracking error and proper estimation for π̂1 is not possible in the pure adaptive control law

in Eq. (44). The closed system is stable and ˙̃q and q̃ converge to 0, and this implies that σ is bounded and

converges to 0. As a result, YT σ converges to 0 and
∫

Y T σdt is bounded and converges to a constant. However,∫
Y T σdt changes slowly and

∫
Y T σdt does not converge to its true value, that is, the most appropriate value

that forces the tracking error to be minimum. As a result, a bigger tracking error and bigger π̂1 are obtained.
The aim of this study was to obtain a small tracking error and, at the same time, to design a proper dynamic
compensator. For this purpose, new parameter and bound estimation laws for the pure adaptive control law

were considered in order to reduce the tracking error. When YT σ converges to 0,
∫

Y T σdt changes very slowly

and a small tracking error and small
∫

Y T σdt are obtained. The control parameter
∫

Y T σdt is very small

and the dynamic compensators (β2/α)Sin(2α
∫

Y T σdt) and λCos(α
∫

Y T σdt) are estimated properly. The

values of π̂2 and ρ̂ can be adjusted by changing the control parameters α , β , and λ to the appropriate values.
The dynamic compensators π̂1 , π̂2 , and ρ̂ converge to their true values fast, and, as a result, the tracking
error is very small and obtaining better tracking performances is possible. As shown in Figures 7, 8, and 9,
the estimation of π̂1 is very small and π̂2 , ρ̂ , and ρd change over time. These results show that the proper
estimation of π̂1 , π̂2 , and ρ̂ are achieved.

Development of the estimation function for the unknown unstructured parameters has not been considered
before. In this paper, development of the estimation functions for the unknown unstructured parameter was
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considered in order to compensate for external disturbances and joint frictions. In the design, a variable

function φ = eγ
�

‖?‖dt

ψ
is used and the unknown unstructured parameters are estimated as a function of

ρ̂d2 = ψ2

γ (e−γ
�
‖σ‖dt − e−2γ

�
‖σ‖dt). In previous studies [12–14], compensators for the unstructured parameters

were developed. However, the upper uncertainty bounds on the unstructured parameters are constant; they are
a known a priori and the values of the compensators are changed depending on σ . When σ approaches 0, the
value of the compensator for the unstructured parameters will decrease and go to 0. As a result, the values of
the compensators for the unstructured parameter decrease and better compensation cannot be achieved. In this
paper, a new uncertainty bound estimation law for the unstructured parameter was developed. In the design, a
variable function is used and a proper uncertainty bound on the unstructured parameter is achieved. When σ

goes to 0,
∫
‖σ‖dt goes to a constant. If the tracking error is too small, σ will also be too small, and as a result,∫

‖σ‖dt will converge to a small constant value. However, the exponential function depending on
∫
‖σ‖dt will

not be very small. As a result, a small tracking error is obtained and the proper estimation of ρd is achieved.
The unknown structured and unstructured parameters are compensated well and better tracking performance
is obtained for the proposed adaptive-robust control law in Eq. (38).
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[21] İ. Uzmay, R. Burkan, “Parameter estimation and upper bounding adaptation in adaptive-robust control approaches

for trajectory control of robots”, Robotica, Vol. 20, pp. 653–660, 2002.
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