
Turk J Elec Eng & Comp Sci

(2013) 21: 500 – 512

c© TÜBİTAK

doi:10.3906/elk-1110-60

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Design and evaluation of schemes for computing sum of squares in fixed point

Metin Mete ÖZBİLEN1,∗, Miloš Dragutin ERCEGOVAC2

1Department of Computer Engineering, Mersin University, Mersin 33343, Turkey
2Department of Computer Science, University of California, Los Angeles, CA 90095, USA

Received: 27.10.2011 • Accepted: 28.02.2012 • Published Online: 22.03.2013 • Printed: 22.04.2013

Abstract: Several schemes for computing the sum of squares for fixed point numbers are designed, synthesized, and

evaluated in this study. The schemes use radix-2 folding, radix-4 folding, and radix-4 dual recoding approaches for

squaring. The schemes have been modeled in hardware description language, simulated, and synthesized using Cadence

SOC81 in 45 nm and 90 nm libraries and with Mentor Graphics Leonardo Spectrum for 180 nm. We show delay and

area for 16-, 24-, and 32-bit operands. After hard-wire and software optimizations, it is seen that schemes with radix-4

give better results, especially in area.

Key words: Squaring, sum of squares, folding, radix-2, radix-4, argument recoding

1. Introduction

Squaring operations and sum of squares are frequently used in scientific calculations. They are used in geometric

calculations in 2D and 3D environments found in graphics, video games, and multimedia animation. For

example, the calculation of the distance between 2 objects requires the sum of squares. Squaring is also frequently

used in signal processing and the sum of squares takes place in calculation of waveforms in digital signal

processors [1]. Squaring techniques have been considered in the past and efforts to increase their performance

are continuing. Some of the common methods are radix-2 and radix-2 folding, radix-4 folding, and radix-4 dual

recoding [2, 3, 4].

In this paper we provide efficient schemes for computing the sum of 2 squares by integrating squaring

with addition operations. Several techniques for squaring of fixed-point numbers are reviewed to determine

the suitable schemes for calculating the sum of squares. Various addition techniques have been considered and

adaptations are made to find a good fit to the sum of squares design. The squaring arrays and adder schemes are

implemented in hardware description language (HDL) and their correctness is checked by ModelSim simulation

software. The gate level delays are determined using Quartus software and synthesized with Cadence SOC81

software. An HDL generator library is developed in C/C++ language to speed up the design steps. With the

help of this generator library, different instances of squaring and addition schemes for 16, 24, and 32 bits can

be implemented quickly.

2. Squaring methods

We consider the following methods for calculating the square of a fixed-point number: (i) a standard radix-2

squaring with bit-array simplifications [2], (ii) a radix-4 folding scheme with Booth recoding [3], and (iii) a

∗Correspondence: mmozbilen@mersin.edu.tr

500

ÖZBİLEN and ERCEGOVAC/Turk J Elec Eng & Comp Sci

radix-4 with dual coding [4]. Most of the squaring methods are based on multiplication operation and utilize

partial squares similar to partial products in multiplication. These partial squares are generally in either radix-2

or radix-4 format, placed in bit arrays. The sum of partial square arrays is calculated with reduction methods

such as the Wallace [5], Dadda [6], or Carry-Save array. The details of these methods are discussed in following

section.

2.1. Radix-2 squarer

The bit-array for x2 consists of a diagonal with entries xixi = xi and regions above and below the diagonal.

Because of the commutative property of the and operator, the sums of entries above and below the diagonal

are equal. Therefore, the bit array containing the diagonal elements and the bit array either above or below the

diagonal is shifted left to compute their sum. The transformed bit array and reduced array for a 6-bit squarer

is shown in Figure 1.

11 10 9 8 7 6 5 4 3 2 1 0
x5x0 x4x0 x3x0 x2x0 x1x0 x0

x5x1 x4x1 x3x1 x2x1 x1 x0x1

x5x2 x4x2 x3x2 x2 x1x2 x0x2

x5x3 x4x3 x3 x2x3 x1x3 x0x3

x5x4 x4 x3x4 x2x4 x1x4 x0x4

x5 x4x5 x3x5 x2x5 x1x5 x0x5

x5x4 x5x3 x5x2 x5x1 x5x0 x4x0 x3x0 x2x0 x1x0 x0

x5 x4x3 x4x2 x4x1 x3x1 x2x1 x1

x4 x3x2 x2

x3

(a)

11 10 9 8 7 6 5 4 3 2 1 0
x5x4 x5x3 x5x2 x5x1 x5x0 x4x0 x3x0 x2x0 x1x0 x0

x5 x4x3 x4x2 x4x1 x3x1 x2x1 x1

x4 x3x2 x3x
′
2 x2

(b)

Figure 1. Bit array simplification in squaring of magnitudes (n = 6): a) bit array after using identities xixi = xi and

xixj + xjxi = 2xixj , b) further reduction in number of rows after using identity xixj + xj = 2xixj + xix
′
j .

2.2. Radix-4 folding

Let x be an 8-bit signed number to be squared. Its 2’s complement representation is

x = −x727 + x627 + · · ·+ x121 + x020 (1)

and its radix-4 Booth representation is

X = −X326 + X224 + X122 + X020 (2)

where the digit Xi ∈ {−2,−1, 0, 1, 2} is defined as

Xi = −2x2i+1 + x2i + x2i−1. (3)

501

ÖZBİLEN and ERCEGOVAC/Turk J Elec Eng & Comp Sci

The square of X can be calculated using Eq. (4) where both operands are Booth-encoded. Booth multiplication

permits only one operand to be Booth-encoded. The details of how this problem is resolved are described in

[3].

X2 =
(
X326 + X224 + X122

)
×X020 + X0 ×X020+(

X324 + X222
)
×X124 + X1 ×X124+(

X324
)
×X228 + X2 ×X228+

X3 ×X3212

(4)

Eq. 4 can be rearranged as

X2 =
(
P023 + C0

)
+(

P123 + C1

)
24+(

P223 + C2

)
28+

C3212

(5)

where

Ci = Xi ×Xi, i = 1, . . . , 4
Pi =

(
−X725−2i + X624−2i + · · ·+ X2i+220 + X2i+120

)
Xi,

i = 0, . . . , 2.
(6)

The square is then calculated by summing Ci s and Pi s. The Ci terms can have the value of {0,+1,+4} The

placement of these partial squares in the bit array is shown in Figure 2, where S1 s are the injecting constants

with value ‘1’ due to 2’s complement of Pi terms. The sign extension technique used here is presented in [7].

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P06 P05 P04 P03 P02 P01 P00 C02 C00

P14 P13 P12 P11 P10 C12 C10

P22 P21 P20 C22 C20

C32 C30

S1 S1 S1 S1 S1

S1 C32 P22 P21 P14 P13 P06 P05 P04 P03 P02 P01 P00 C02 C00

S1 S1 P20 C22 P12 P11 P10 C12 C10 P00 C02 C00

S1 S1 C20

Figure 2. Bit array simplification in radix-4 Booth folding squaring.

3. Radix-4 dual recoding

In Booth-recoded multiplication, only one operand is coded into a radix-4 digit string. The second operand

remains in binary. In squaring only one operand x is needed, which is already coded as X . The dual coding

method [4] uses distinct asymmetric roles of a single operand. In this method, each coded digit is multiplied

with its coded companion. Booth-folding and Booth radix-4 [3] recoding operations can be combined to reduce

the partial square array. These methods utilize the reoccurrence of

(x′)
2

= x2 − d (2x′ + d) , (7)

where d is the low order Booth radix-4 digit of x . The Booth folding method is useful for the squaring of

integers where low-order bits are needed [3].

The dual coding method utilizes Eq. (7) and it is determined by

x2 = (x′ + d)
2
, (8)

502

ÖZBİLEN and ERCEGOVAC/Turk J Elec Eng & Comp Sci

where d is the high-order radix-4 digits of x and x is the rounded-off tail.

In Eq. (7), d denotes the squarer leading digits, (2x′ + d) is the squarand, and d (2x′ + d) is the partial

square [4]. The result, x2 , is obtained by adding partial squares.

The square of x is calculated using the following equation:

x2 = sum
bn+1/2c
i=1 diqi16−i, (9)

where n is number of bits in x , di is the radix-4 Booth-coded digit of x , and

qi =

{
x2i.x2i+2 . . . xn−1 for x2i−1 = 0
x′2i.x

′
2i+2 . . . x

′
n−2x

′′
n−1 for x2i−1 = 1,

(10)

where x′2i is 1’s complement of x2i and x′′n−1 is 2’s complement.

Once the partial squares are formed, they are placed in the squaring array as in Figure 3.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Q00 Q01 Q02 Q03 Q04 Q05 Q06 Q20 Q21 Q22 Q30 Q31 Q32 Q33 Q34

Q10 Q11 Q12 Q13 Q14 S1

S1

Figure 3. Bit array simplification in radix-4 dual Booth recoder squaring.

4. Setup for sum of squares

We developed several designs to determine which squaring scheme was better for the calculation of the sum of

squares. The designs are based on the squaring methods described in the previous section, reduction schemes,

and final adder schemes.

Similar reduction and final adder schemes were applied to each squaring scheme for revealing the per-

formance of the squaring operation. We looked at the effect of different argument precisions (16, 24, and 32)

and investigated different types of carry-lookahead adders (CLAs) to obtain the best results. The following

CLAs were implemented and analyzed: Brent–Kung [8], Sklansky [9], and Kogge–Stone [10]. The experimental

results are shown in Table 1 and Table 2. Each is implemented with VHDL and their correctness was checked

by simulation method. The details of each design are described below.

Table 1. Experimental results for carry-lookahead adders (delay).

Delay (ps) 16-bit 24-bit 32-bit 48-bit 64-bit
Brent–Kung 82 126 221 345 423

Sklansky 82 140 219 349 456
Kogge–Stone 115 203 290 498 706

Table 2. Experimental results for carry-lookahead adders (area).

Area (Gate) 16-bit 24-bit 32-bit 48-bit 64-bit
Brent–Kung 735 689 989 999 999

Sklansky 735 625 988 999 999
Kogge–Stone 287 321 342 370 401

503

ÖZBİLEN and ERCEGOVAC/Turk J Elec Eng & Comp Sci

4.1. Radix-2 folding squaring

The data flow and functional blocks are shown in Figure 4. The function of each block is as follows: GEN-Ps

generate partial squares. Partial squares are generated as in Figure 1. In reduction arrays (RAs), partial squares

are reduced to sum and carry vectors using (3:2) counter, (2:2) counter, and (4:2) compressors. The reduction

scheme is shown in Figure 5.

X

GEN P

RA

CMPRS 4:2

S h

S C

Y

R4BR

RA

CS

FA

MSB

FA

LSB

S l

Figure 4. Sum of squares using radix-2 folding method.

CMPRS is formed from (4:2) compressors. They reduce results from RAs into a sum and a carry vector.

FAs are the final adders, separated into halves of most significant bits (MSB) and least significant bits (LSB)

for better performance.

The best results are obtained using separate Kogge–Stone adders for the MSB and LSB halves. The

synthesis results are given in Table 3.

Table 3. Synthesis Results for radix-2 sum of squares.

16-bit 24-bit 32-bit
w/FA 45 nm typical

Delay (ps) 1453 1744 1824
Area (gate) 1084 2177 3445

w/FA 90 nm typical
Delay (ps) 1453 1811 1929
Area (gate) 1054 2101 3246

w/FA 180 nm typical
Delay (ps) 2530 2870 3590
Area (gate) 2897 5970 10941

4.2. Radix-4 folding squaring

The implemented design is shown in Figure 6. The explanation of functional blocks and data flow is as follows.

The R4BR is the radix-4 Booth encoder. It encodes input according to Eq. (3). GEN-W does recoding

504

ÖZBİLEN and ERCEGOVAC/Turk J Elec Eng & Comp Sci

(4:2) Compressor (3:2) Counter, Full Adder (FA) (2:2) Counter, Half Adder (HA)

Figure 5. Radix-2 folding squarer reduction tree.

of inputs according to Eq. (11).

Wi = −b725−2i + b624−2i + ... + b2i+220. (11)

Wi s are used in calculation of Pi in Eq. (6). GEN-C generates the Ci s in Eq. (6). Alignment and complementing

of partial products due to radix-4 Booth recoding is done in SHF-CMP. GEN-P builds the partial squaring tree

to be summed. The details of the design are given in [3]. RA is the unit where the partial tree is reduced into a

carry and a save vector. The reduction is carried out using (3:2) counters, (2:2) counters, and (4:2) compressors.

The reduction scheme is shown in Figure 7. The reduction scheme is kept very similar to the radix-2 folding

due to analogy and better comparison. CMPRS consists of (4:2) compressors. The results from squarers are

flattened to a carry and a save vector. These carry and save vectors are summed in the final adders (FAs).

Similar to the radix-2 squarer, it is divided into 2 portions to speed up calculation.

The design is synthesized with Cadence SOC81 for 45 nm and 90 nm libraries and 180 nm with Mentor

Graphics Leonardo Spectrum. The synthesis results are given in Table 4.

Table 4. Synthesis results for radix-4 folding sum of squarer.

16-bit 24-bit 32-bit
w/FA 45 nm typical

Delay (ps) 1480 1823 1910
Area (gate) 1071 2361 3921

w/FA 90 nm typical
Delay (ps) 1468 1754 1824
Area (gate) 1013 2160 3602

w/FA 180 nm typical
Delay (ps) 2590 3460 3540
Area (gate) 2139 5371 8307

505

ÖZBİLEN and ERCEGOVAC/Turk J Elec Eng & Comp Sci

X

R4BR GEN_W

GEN_C

RA

CMPRS 4:2

S C

S C S C

Y

R4BRGEN_W

GEN_C

RA

SHF

CMP

GEN_W

SHF

CMP

GEN_W

FA

MSB

FA

LSB

Sh Sl

Figure 6. Sum of squares using radix-4 folding squarer method.

4.3. Radix-4 dual recoding

The last method implemented is shown in Figure 8. The explanation of each block function and data flow is as

follows.

R4BR recodes input into radix-4 Booth recoding, similar to the radix-4 folding method. It is the

implementation of Eq. (3). The truth table for this block is given in Table 5, where b2i−1 , b2i , b2i+1 denotes

adjacent input bits where b−1 = 0; the column labeled with ‘B’ denotes the corresponding Booth value and the

next 3 columns denote the recoded Booth value. For 24-bit input the block generates twelve 3-bit output. DE

means “dual encoder” and recodes the input for squaring. It implements Eq. (10). Partial squares are generated

in Wx210 blocks. The dual recoded inputs are multiplied here to generate partial squares. The outputs of the

R4BR and DE are multiplied using the wired multiplication method. Wired multiplication is a slightly modified

(4:2) Compressor (3:2) Counter, Full Adder (FA) (2:2) Counter, Half Adder (HA)

Figure 7. Radix-4 folding squarer reduction tree.

506

ÖZBİLEN and ERCEGOVAC/Turk J Elec Eng & Comp Sci

X

R4BR DE

IB

RA

CMPRS 4:2

Wx012

S

SC

Y

R4BRDE

IB

RA

Wx012

CS

C

FA

MSB

FA

LSB

Sh Sl

Figure 8. Sum of squares using radix-4 dual recoding squarer method.

multiplexer and is shown in Figure 9, where Qi are dual encoded input bits with Q−1 = 0 and d1 and d2 are

radix-4 coded inputs.

Pi

Q i

Q i+1

d 2

d1

Figure 9. Wired multiplication cell.

IB is the inversion bit; it is only a buffer that holds n bits of R4BR block. The partial squares are

reduced to a carry and a sum vector in RA. The reduction is performed similar to the radix-4 folding and

radix-2 folding methods. The reduction scheme is shown in Figure 10. FAs are the final adders as in the radix-4

folding method and radix-2 folding method.

Table 5. Truth table for R4BR block.

b2i−1 b2i b2i+1 B n d1 d2
0 0 0 0 0 0 0
0 0 1 1 0 0 1
0 1 0 1 0 0 1
0 1 1 2 0 1 0
1 0 0 2̄ 1 1 0
1 0 1 1̄ 1 0 1
1 1 0 1̄ 1 0 1
1 1 1 0 0 0 0

The design is synthesized with Cadence SOC81 for 45 nm and 90 nm cell libraries and Mentor Graphics

Leonardo for 180 nm. The results are given in Table 6.

507

ÖZBİLEN and ERCEGOVAC/Turk J Elec Eng & Comp Sci

(4:2) Compressor (3:2) Counter, Full Adder (FA) (2:2) Counter, Half Adder (HA)

Figure 10. Radix-4 dual recoding squarer reduction tree.

Table 6. Synthesis results for radix-4 dual recoding sum of squarer.

16-bit 24-bit 32-bit
w/FA 45 nm typical

Delay (ps) 1550 1765 2065
Area (gate) 983 2412 4233

w/FA 90 nm typical
Delay (ps) 1472 1725 2119
Area (gate) 954 1977 3355

w/FA 180 nm typical
Delay (ps) 2440 2790 3380
Area (gate) 2154 4398 8085

5. Comparisons of methods

The methods are compared analytically and experimentally and their advantages and disadvantages are dis-

cussed in this section. The radix-2 folding method has an advantage in preparation time of the partial squares.

The partial squares are prepared simultaneously; also, using the folding method reduces the number of partial

squares. Although radix-4 folding has the advantage of the folding method, the radix-4 Booth recoding and

preparation steps of terms take longer than in the radix-2 folding scheme. Partial squares become ready after

the shifting and complementing process. Radix-4 dual encoding also has a disadvantage similar to radix-4

recoding. It also has a dual encoder, but both recodings take place simultaneously, unlike in radix-4 folding.

Comparative results of the 24-bit sum of squares in 90 nm for units and whole designs with final adders are

given in Table 7 and Table 8, respectively.

All of the methods in this study were based on fixed-point arithmetic; therefore, the methods can be

easily modified to operate on floating point numbers. Methods can be adjusted to operate on the mantissa part

Table 7. Comparative results of units for 24-bit sum of squares in 90 nm.

Unit Delay Arrival Unit Delay Arrival Unit Delay Arrival

R4BR
163 163

R4BR

320 320

GEN-P 48 48

GEN-W DE

RA 854 902

GEN-C

97 260

IB

SHF-CMP Wx012

GEN-P
RA 549 869

RA 634 892

508

ÖZBİLEN and ERCEGOVAC/Turk J Elec Eng & Comp Sci

Table 8. Comparative results of sum of squares in 90 nm. Delay (ns), area (gates), power (nW).

Name of 16-bit 24-bit 32-bit

Design Delay Area Power Delay Area Power Delay Area Power

Radix-2 Squarer 1453 1054 661,057 1811 2101 1,521,541 1929 3246 2,780,204

Radix-4 Folding 1468 1013 560,238 1754 2160 1,238,931 1824 3602 2,435,524

Radix-4 Dual Decoding 1472 954 635,276 1725 1977 1,314,889 2119 3355 2,787,366

of the floating point numbers. As a fixed point design, methods can be applicable to microcontrollers and digital

signal processing processors in the calculation of geometric function such as the hypotenuse of triangles. When

modified to floating point, they can be applicable as multimedia extensions from general propose processors to

graphical processing units. Sums of squares are frequently used in many geometric and trigonometric operations,

such as normalization of vectors.

Radix-2 folding has reduction arrays with twice as many rows as the radix-4 folding and radix-4 dual

recoding methods. This seems to be a disadvantage, but the simultaneous behavior of counters used in reduction

compensates most of this delay. The half-height reduction arrays of both radix-4 recoding methods are an

advantage in both delay and area. Radix-4 dual recoding has the shortest reduction array.

The remaining parts of the designs are very similar to each other. The reduced arrays are flattened by

(4:2) compressors and the flattened results are summed by CLAs in FAs. The comparable results for 24 bits

are given in Table 7. The full comparison of methods with the FA is shown in Figure 11 and Figure 12.

For better objectivity and to see the effect of the final adder, designs were also compared without fnal

adders. These results are show in Figure 13 and Figure 14.

,

,

Figure 11. Comparison of areas for sum of squares designs.

509

ÖZBİLEN and ERCEGOVAC/Turk J Elec Eng & Comp Sci

Figure 12. Comparison of delays for sum of squares designs.

6. Results and conclusion

In this paper we implemented and evaluated several squaring methods for fixed-point operands to be used in

calculating the sum of 2 squares. The experimental results show that final adder has a major effect in both the

,

Figure 13. Comparison of areas for sum of squares designs without final adder.

510

ÖZBİLEN and ERCEGOVAC/Turk J Elec Eng & Comp Sci

Figure 14. Comparison of delays for sum of squares designs without final adder.

delay and area of the approaches considered. When the designs are used in calculation of multistep processes

like the square root of sum of squares, output in the form redundant of carry and sum vectors, produced by the

reduction step, is sufficient. The results show that the radix-4 dual recoding setup gives the best values in both

area and delay. These values also meet goals for square root calculation using redundant adders. Designs can

be pipelined for further performance improvements. This study can be extended with a division or reciprocal

square root design to provide a full geometric rotation operation or vectorormalization in graphics applications.

Acknowledgments

M. Özbilen would like to thank the Scientific and Technological Research Council of Turkey (TÜBİTAK) for

financial support during his stay in the Computer Science Department of the University of California, Los

Angeles, September 2010 to August 2011.

References

[1] J. Pihl, E.J. Aas, “A multiplier and squarer generator for high performance DSP applications”, IEEE 39th Midwest

Symposium on Circuits and Systems, Vol. 1, pp. 109–112, 1996.

[2] M.D. Ercegovac, T. Lang, Digital Arithmetic, San Francisco, Morgan Kaufmann, 2004.

[3] A.G.M. Strollo, D. De Caro, “Booth folding encoding for high performance squarer circuits”, IEEE Transactions

on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 50, pp. 250–254, 2003.

[4] D.W. Matula, “Higher radix squaring operations employing left-to-right dual recoding”, 19th IEEE Symposium on

Computer Arithmetic, pp. 39–47, 2009.

[5] C.S. Wallace, “A suggestion for a fast multiplier”, IEEE Transactions on Electronic Computers, Vol. EC-13, pp.

14–17, 1964.

511

ÖZBİLEN and ERCEGOVAC/Turk J Elec Eng & Comp Sci

[6] L. Dadda, “Some schemes for parallel multiplier”, Alta Frequenza, Vol. 34, pp. 349–356, 1965.

[7] J. Fadavi-Ardekani, “M*N Booth encoded multiplier generator using optimized Wallace trees”, IEEE 1992 Inter-

national Conference on Computer Design: VLSI in Computers and Processors, pp. 114–117, 1992.

[8] R.P. Brent, H.T. Kung, “A regular layout for parallel adders”, IEEE Transactions on Computers, Vol. C-31, pp.

260–264, 1982.

[9] J. Sklansky, “Conditional-sum addition logic”, IRE Transactions on Electronic Computers, Vol. EC-9, pp. 226–231,

1960.

[10] P.M. Kogge, H.S. Stone, “A parallel algorithm for the efficient solution of a general class of recurrence equations”,

IEEE Transactions on Computers, Vol. C-22, pp. 786–793, 1973.

512

