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Abstract: In this paper, a unified system for voice activity detection (VAD) and speech enhancement is proposed. In

the proposed system, there is mutual exchange of information between VAD and speech enhancement blocks. A new and

robust VAD algorithm is implemented for the VAD block of the unified system. The newly proposed VAD algorithm uses

a periodicity measure and an energy measure obtained from spectral energy distribution and spectral energy difference

of the input speech data. For the speech enhancement block, the modified Wiener filtering (MWF) approach is utilized.

It has been shown that the utilization of information exchange between the VAD and MWF algorithms in the unified

system increases the performance of both algorithms and the proposed unified system improves the robustness of a

speech recognition system significantly. Both of the enhanced algorithms are noniterative. Therefore, the proposed

unified system is computationally attractive for real-time applications.
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1. Introduction
Voice activity detection (VAD) and speech enhancement systems have been extensively studied by the speech
processing community since the 1970s because of their importance in many different applications like wireless
communications, speech coding, speech recognition, hands-free conferences, and so on.

The main objective of a VAD system is to correctly decide if a given audio signal portion is speech or
nonspeech. Determination of speech segments in a given signal can be considered a statistical hypothesis problem
for VAD systems where the challenge is the determination of to which category (either speech or nonspeech)

the given signal belongs. As indicated in [1], earlier algorithms for VAD were mostly based on various features

like linear prediction coding (LPC) parameters [2], energy levels, formant shape [3], zero crossing rate (ZCR),

cepstral coefficients [4], and the periodicity measure [5]. More recently, VAD systems that make use of various

statistical models have been proposed [1, 6]. Speech enhancement systems, on the other hand, aim to minimize
the effects of noise in audio signals. Speech enhancement can be either single-channel or multi-channel. In
single-channel enhancement, speech is available from a single microphone, whereas multi-channel systems make
use of more than one microphone [7]. Multi-channel speech enhancement techniques have the advantage of
multiple signal inputs to the system and this enables better noise characterization and therefore better noise
suppression. However, these systems are inherently more complex and this imposes constraints in terms of the
algorithmic complexity and cost. In addition, there may be applications where multiple microphone input is not
possible due to hardware constraints. For these reasons, single-channel speech enhancement techniques became
more popular. Single channel speech enhancement algorithms may be classified under 3 main classes [8]: (i)
∗Correspondence: ceyhankasap@gmail.com
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Spectral-subtraction algorithms [9, 10, 11], (ii) Wiener filtering-based algorithms [12, 13, 14, 15, 16, 17], (iii)

Subspace algorithms [18, 19].

This work is concentrated on implementing a unified system for VAD and single-channel speech enhance-
ment. The following section describes the system model for the proposed unified system.

1.1. Unified system for VAD and speech enhancement

Most of the speech applications that incorporate VAD and speech enhancement blocks typically utilize these
blocks separately and independently. One example might be speech recognition systems. Before processing the
audio input for recognition, these systems typically require a VAD module in order to determine the utterances
in the input. After the VAD module, a noise removal system is generally applied to reduce the background
noise for efficient recognition. Our proposed unified system aims to provide a single and efficient framework for
these seemingly separated functionalities.

Our basic motivation for the proposed unified system is primarily based on the assumption that VAD
and speech enhancement problems are closely related. We expect that although VAD and speech enhancement
systems operate for distinct purposes, the 2 systems might operate better if they mutually exchange information
in a unified framework. Suppression of acoustic noise in the audio input signal would improve VAD performance.
Similarly, the discrimination of the speech/nonspeech character of the input frames, which would be obtained
from a VAD algorithm, would enable better noise attenuation. We propose a novel VAD algorithm to be used
for the VAD block of the unified system. The newly proposed VAD algorithm uses a periodicity measure and
an energy measure obtained from spectral energy distribution and spectral energy difference of the input speech
data. Utilization of speech enhancement enables us to implement the so-called hybrid VAD algorithm to be used
in the proposed unified system. Availability of noised suppressed frames in the hybrid VAD algorithm allows the
extraction of more reliable VAD features and therefore improves the speech/nonspeech detection performance.

The speech enhancement block of the unified system relies on the modified Wiener filtering (MWF) approach

proposed in [7]. By making the VAD decisions explicitly available for the MWF algorithm, the algorithm is

modified to implement the so-called enhanced modified Wiener filtering (EMWF) algorithm with increased
noise suppression performance. Figure 1 depicts a schematic representation of our proposed unified system
for VAD and speech enhancement. As can be seen in Figure 1, the proposed unified system incorporates the
capabilities of speech/nonspeech detection and noise suppression in a single framework. The input speech signal
to the system is partitioned into multiple outputs where each output contains separate speech segments from
the input signal (VAD functionality). The outputs of the system comprise noise suppressed speech (speech

enhancement functionality).

In this paper, we describe the components of our proposed system and present our evaluations to
demonstrate the increased performances of hybrid VAD and EMWF algorithms that are implemented in the
unified framework. The outline of the paper will be as follows. First, the new VAD algorithm and its hybrid
version, which we use for the VAD block of the proposed unified system, are presented in Section 2. Then,
in Section 3, the principles of the EMWF algorithm, which we use for the speech enhancement block of the
proposed unified system, are explained. In Section 4, evaluations by both subjective and objective measures
are demonstrated. Finally, Section 5 presents the discussion and conclusions.
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Figure 1. Unified system for VAD and speech enhancement.

2. VAD algorithm

The newly proposed VAD algorithm is specifically implemented to be used for the proposed unified system. In
that sense, we do not aim to implement a VAD algorithm with extreme speech/nonspeech detection performance.
For our proposed unified system, the error of treating nonspeech as speech at the beginning or end of speech
regions is considered less harmful than classifying speech frames as nonspeech due to the information loss in the
latter case. For this reason, our proposed VAD algorithm has a relaxed condition to find the exact talkspurt
boundaries and small silence margins at speech boundaries are tolerated. Computational speed and robustness
to noise are chosen as the most important criteria for the newly proposed VAD algorithm. Since the inclusion of
every separate feature brings about the additional cost of computation, the features used for the proposed VAD
algorithm are carefully chosen according to their computational complexity and their discriminative contribution
to the final speech/nonspeech decision. Features used for the proposed VAD algorithm are periodicity measure
and an energy measure obtained from spectral energy distribution and spectral energy difference of the input
frames.

2.1. Periodicity measure

Periodicity in the input frame is an indication of speech character rather than nonspeech character because
of the fact that voiced sounds in human speech are generated by periodic vibrations of the vocal cords. The
periodicity measure used for the proposed VAD algorithm is the probability of voicing parameter, which is
defined as the ratio of the peak autocorrelation lag to the signal energy (zeroth autocorrelation lag) [20]. The

peak autocorrelation lag of the input frame is searched in a range between 3 ms (333 Hz) and 18 ms (55.5

Hz), since the typical fundamental frequency range of human speech tends to range from 200 Hz to 125 Hz.
Probability of the voicing parameter for speech frames typically ranges from 0.3 to 0.7. Therefore, frames that
have a periodicity measure greater than 0.8 are considered as noise.
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2.2. Energy measure

It is expected that a rise in the energy level above a threshold indicates the presence of speech in the input
frame. In order to compensate for the varying background noise energy, a varying energy threshold for speech
is used in the proposed VAD. The energy threshold for speech is calculated from time varying minimum and
maximum energy levels that adaptively define the extreme energy thresholds for speech frames. The energy
parameter for a frame is computed as the weighted sum of 2 measures, namely the spectrally weighted energy
measure and the spectrally weighted energy difference measure.

2.2.1. Spectrally weighted energy measure

Peterson and Barney [21] demonstrated that the first 3 formants, which carry much of the energy content of
vowels in English, are located at frequencies lower than 3 kHz. Although unvoiced sounds display spectral
concentration at higher frequencies, a spectrum range up to 4 kHz contains much of the energy content of
human speech. Moreover, average energy distribution up to 4 kHz range is not uniform for human speech.
Lower frequency bands generally carry more energy than do upper frequency bands [22].

In the light of the above arguments, the proposed VAD extracts the energy content of the input frame
in 5 equal length frequency subbands in order to compute the spectrally weighted energy measure. The energy
content of the frame is considered to be located in the 300 Hz to 3400 Hz range (i.e. each subband has a length

of 620 Hz). FFT of the input frame is used to calculate the total power for each subband and the log10 value
of the total power in each frequency subband is interpreted as the energy measure of that specific subband.
Heuristically determined weighting coefficients, which are shown in Figure 2, are applied to the energy measures
calculated for each subband. These weighted energy values are then summed to obtain the spectrally weighted
energy measure for the frame. The algorithm used to compute the spectrally weighted energy parameter,
m energyWeighted, is shown in Figure 3.
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Figure 2. Weighting coefficients of subbands for spectrally weighted energy measure computation.

2.2.2. Spectrally weighted energy difference measure

Since the average energy distribution over frequency is not uniform for human speech, large energy differences
over the 0 to 4 kHz frequency range are supposed to be an indication of the presence of actual speech in the
input signal. The proposed VAD utilizes this fact by calculating a spectrally weighted energy difference measure.
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Figure 3. Algorithm to compute the spectrally weighted energy parameter, m energyWeighted.

The same subbands that are used to calculate the spectrally weighted energy measure are also utilized for the
calculation of the spectrally weighted energy difference measure. First, an average subband energy value for
each of the 5 subbands is calculated for the current frame. If it is the first frame, the average subband energy is
simply set to the total energy of that subband. If it is not the first frame, 90% of the previous average subband
energy is summed with 10% of the current total subband energy to calculate the average energy. The difference
between the average subband energy and the total subband energy gives the subband energy difference value for
that subband. Lastly, heuristically determined weighting coefficients, which are shown in Figure 4, are applied
to the energy difference values calculated for each subband. The sum of these weighted energy difference values
gives the spectrally weighted energy difference measure for the frame. The algorithm used to compute the
spectrally weighted energy difference parameter, m energyDifference, is shown in Figure 5.
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Figure 4. Weighting coefficients of subbands for spectrally weighted energy difference measure computation.

2.3. Soft decision assignment and decision smoothing

After the features are extracted from the input frame, the proposed VAD associates a soft decision value, rather
than a strict speech/nonspeech decision, with the frame. The soft decision value, soft decision, assigned to a
frame is nonnegative and increases as the speech likeliness of the frame increases. It is calculated as a function
of 3 parameters: (i) energy measure for the current frame, m energy, (ii) speech threshold for the current frame,

speech threshold, and (iii) probability of voicing measure for the current frame, prob voice.
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Figure 5. Algorithm to compute the spectrally weighted energy difference parameter, m energyDifference.

The energy measure for a frame, m energy, is computed as

m energy =
(
1.10 ∗ m energyWeighted

)
+

(
0.25 ∗ min(m energyDifference, 2)

)

+
(
min(1.0, 0.5 ∗ prob voice)

)
(1)

where m energyWeighted is the spectrally weighted energy measure computed according to the algorithm shown
in Figure 3, m energyDifference is the spectrally weighted energy difference measure computed according to the
algorithm shown in Figure 5, and min(x, y) represents the minimum function that returns the minimum of x

and y .
Speech threshold for a frame, speech threshold is computed as

speech threshold =
[
0.01 ∗

(
m maxEnergy − m minEnergy

)
∗

(
40 + 5 ∗ (10 − sensitivity)

)]
+ m minEnergy (2)

where m maxEnergy is the expected maximum energy level for a speech frame, m minEnergy is the expected
minimum energy level for a speech frame, and sensitivity is a configurable input parameter with a default value
of 3. Note that m maxEnergy and m minEnergy are adaptive during the operation of VAD.

Lastly, the soft decision value for a frame, soft decision, is computed as

soft decision =

⎧⎪⎨
⎪⎩

0.75 + m energy − speech threshold if m energy ≥ threshold and prob voice > 0.4
0.5 + m energy − speech threshold if m energy ≥ threshold and prob voice ≤ 0.4
0 if m energy < threshold

(3)
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where threshold = speech threshold − 0.5.

The proposed VAD implements decision smoothing for better speech/nonspeech characterization. The
implemented decision smoothing approach relies on the heuristic rule of increasing the soft decision value for
the current frame if the previous frame is tagged as a speech frame. Speech/nonspeech determination for the
processed frame is based on the history of soft decisions for the last 20 frames. The sum of the soft decision
values of the last 20 frames is used to make the final speech/nonspeech determination. The reason for using a
history of soft decisions is the fact that human speech may show very large energy variations even in very short
time intervals and speech/nonspeech determination based on a single soft decision may cause low energy speech
frames to be misevaluated as nonspeech.

2.4. Operation of the proposed VAD

The proposed VAD system analyzes the audio input and separates the input into numerous portions, where each
portion contains actual speech in a distinct output stream (i.e. the nonspeech portions between the utterances

are removed). A circular speech buffer continuously reads the input speech signal frame by frame. A frame

length of 20 ms and a skip length of 10 ms are used for the system. Based on the speech/nonspeech decisions
made for the frames, the system is either in a speech started or speech ended state. The system is initially at
speech ended state. Detection of speech in the current frame makes the VAD system switch its state from speech
ended to speech started. This in turn triggers the system to start writing the input signal into a separate output
stream. After a while, when the utterance ends, detection of nonspeech in the incoming frames triggers the
VAD system to switch to the speech ended state and this stops the writing operation. Transitions between the
2 states enable the partitioning of the input signal into separate output streams and these transitions continue
until the whole audio input stream is processed by the system.

A common problem in all VAD systems is the difficulty in locating the beginning and end of an utterance
if there are: a) weak fricatives at the beginning or end, b) weak plosive bursts at the beginning or end, c)

nasals at the end, d) voiced fricatives that become devoiced at the end of words, and e) trailing off of vowel

sounds at the end of an utterance [23]. The proposed VAD algorithm uses configurable prespeech buffer and
postspeech buffer values in order to overcome these problems. These parameters extend the duration of speech
decisions and enable the detection of actual speech instances that are very much likely to be missed by the VAD
algorithm.

Other than prespeech buffer and postspeech buffer, there are 3 additional configurable parameters, namely
speech trigger, silence trigger, and sensitivity, which are used to adjust the sensitivity of the proposed VAD.
Speech trigger has a default value of 8 and it determines the threshold for the speech started decision. When
the sum of the objective soft decision values of the last 20 frames exceeds the speech trigger value, the current
frame is considered an actual speech instance and the system transitions to speech started state (if the current

state is already speech started, the current state is preserved). Silence trigger has a default value of 700 ms
and it determines the total required signal length to trigger the speech ended decision. The system keeps track
of the total length of successive frames, where the sum of the objective soft decision values in the previous 20
frames is smaller than the value of speech trigger for each frame. When this length exceeds the silence trigger,
the current state of the system is set to speech ended. Sensitivity has a default value of 3 and it is restricted
to be between 0 and 12. As can be deduced from Eq. (3), a decreased sensitivity value increases the signal
energy threshold required to achieve a positive soft decision value. Therefore, under low SNR conditions, lower
sensitivity values must be used to avoid false triggering.
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The default values for the configurable parameters used for the proposed VAD algorithm are aimed to be
optimized for a wide range of audio signals under different SNR conditions. They are finalized after an extensive
number of observations. However, if there is a priori knowledge about the characteristics of the audio signal
to be processed, these parameters may be altered for better performance. The flowchart of the proposed VAD
algorithm is shown in Figure 6.

Figure 6. Flowchart for the proposed VAD algorithm.

2.5. Hybrid VAD

As expected, performance of the proposed VAD is reduced under low SNR conditions. After experiments, 2
main problems were observed under low SNR conditions. Firstly, noise frames with high energy could easily be
detected as actual speech. Secondly, detection of actual speech frames that contain low energy was problematic
when the SNR was low.

The hybrid VAD algorithm, which we implement as the VAD block of our proposed unified system for
VAD and speech enhancement, tries to eliminate the above problems by utilizing speech enhancement. By
making use of speech enhancement in the form of MWF, performance of the proposed VAD is improved. Two
main modifications are done in the proposed VAD algorithm to implement the hybrid VAD algorithm. Firstly,
noise suppressed frames are used to extract features for the hybrid VAD algorithm. This results in better
periodicity characterization. Secondly, since spectral energy variation is more distinct for noise suppressed
frames, contribution of the spectrally weighted energy difference measure in the final speech/nonspeech decision

is emphasized by modifying Eq. (1) to
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m energy =
(
1.10 ∗ m energyWeighted

)
+

(
0.375 ∗ min(m energyDifference, 2)

)

+
(
min(1.0, 0.5 ∗ prob voice)

)
(4)

for the hybrid VAD. The net effect of these modifications is the increased accuracy of soft decision values
assigned to frames.

3. Speech enhancement algorithm

The speech enhancement block of the unified system relies on the MWF algorithm proposed in [7]. The

MWF algorithm proposed in [7] uses an SNR dependent noise suppression factor with the aim of employing an
aggressive enhancement at nonspeech intervals and a milder filtering at the speech segments. By increasing the
noise suppression factor for regions where speech is not likely to be present, the algorithm reduces the Wiener
filter gain in order to employ aggressive filtering. That way, the degraded parts of the signal are suppressed.
Conversely, for regions where speech is likely to be present, the algorithm increases the Wiener filter gain in
order to employ only mild filtering. That way, the distortion/suppression of the speech segments is prevented.

The bottleneck of the MWF algorithm is the absence of an explicit speech/nonspeech decision for the processed
frame. Such a decision would help in adjusting the level of filtering. Our new algorithm improves the MWF
from this perspective. By making the VAD decisions explicitly available for the MWF algorithm, the algorithm
is modified to implement the so-called EMWF algorithm with increased performance. The following section
presents a preliminary explanation of the basics of the MWF algorithm.

3.1. Modified Wiener filtering

For an additive noise signal model of y(t) = s(t) + n(t), where y(t) is noisy speech, s(t) is noise-free speech,

and n(t) is noise signal, a generalized Wiener filter can be formulated as

H(ω) =

(
P̂s(ω)

P̂s(ω) + αPn(ω)

)β

(5)

where P̂s(ω) is the clean speech power spectrum estimate, Pn(ω) is the noise power spectrum, α is the noise
suppression factor, and β is the power of the filter. Application of this filter to the noisy input speech signal
produces an estimate for the noise-free speech signal. It is assumed that the noisy speech and noise-free speech
have the same phase and so the filter just alters the amplitude at each frequency. Thus, we have

Ŝ(ω) = H(ω)Y (ω) (6)

ŝ(t) = F−1{Ŝ(ω)} (7)

where Y (ω) is the Fourier transform of the noisy speech, F−1{.} is the inverse Fourier transform operation,

and Ŝ(ω) is the estimate of the Fourier transform of the clean speech signal. In this formulation, it is assumed

that we have an estimate of the clean speech power spectrum, P̂s(ω). This estimate is calculated from the
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Fourier transform of the LPC coefficients of the noisy speech, Py(ω), by only a DC gain modification of Py(ω)
as

P̂s(ω) =
ĝs

2

gy
2
Py(ω) (8)

where ĝs and gy are the DC gains of the noise-free speech signal and the noisy speech signal, respectively. The
MWF algorithm assumes that noise and speech are uncorrelated and power spectra of the noisy speech signal,
noise-free speech signal, and noise signal are related as

Py(ω) = P̂s(ω) + Pn(ω) (9)

If we integrate both sides of the equation over ω and use the expression for P̂s(ω) stated in Eq. (8) we have

∫ π

−π

Py(ω)dω =
∫ π

−π

ĝs
2

gy
2
Py(ω)dω +

∫ π

−π

Pn(ω)dω (10)

Using Parseval’s relation, the above equation can be simplified to

ĝs
2

gy
2

=

{
Ey−En

Ey
if Ey > En,

0 otherwise,
(11)

where En is the noise energy and Ey is the noisy speech energy. If we substitute the expression for ĝs
2/gy

2 in

the dc gain modification equation, the clean speech spectrum estimate becomes

P̂s(ω) =
Ey − En

Ey
Py(ω) (12)

Using the above expression in Eq. (5) and introducing a time-dependent noise suppression factor αt we obtain

H(ω) =
(

[(Ey − En)/Ey]Py(ω)
[(Ey − En)/Ey]Py(ω) + αtPn(ω)

)β

(13)

The above equation can be simplified to

H(ω) =
(

Py(ω)
Py(ω) + [Ey/(Ey − En)]αtPn(ω)

)β

(14)

Eq. (14) indicates that more aggressive filtering is applied for increasing values of αt . For proper speech
enhancement, the value of αt must be high for noise only frames and low for speech only frames; i.e. an
inverse relation between the SNR value of the frame (Es/En ) and αt must be introduced. This inverse relation

is simply obtained by replacing αt with En/Ey α′ where α′ is a constant. With this modification Eq. (14)

becomes

H(ω) =
(

Py(ω)
Py(ω) + [En/(Ey − En)]α′Pn(ω)

)β

(15)

Let us denote the time dependent multiplication factor that scales the noise spectrum, the [En/(Ey − En)]α′

term, by λt . Then the above equation is equivalent to

H(ω) =
(

Py(ω)
Py(ω) + λtPn(ω)

)β

(16)
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3.2. Enhanced modified Wiener filtering

The novelty of the EMWF algorithm lies in the utilization of VAD decisions for frames. Compared with MWF,
which employs “hard” noise spectrum update rules, usage of VAD decisions enables the EMWF algorithm to
apply more flexible updates for noise spectrum estimation. The EMWF algorithm employs more aggressive up-
dates for increasing the estimated noise spectrum during speech regions (EMWF uses a higher static upconstant

value (10 dB/s for 10 ms skip length) compared to MWF (3.5 dB/s for 10 ms skip length)). This results in more
rapid convergence of the actual and estimated noise spectra. During speech regions, a variable upconstant value
with an upper limit of 7 dB/s for 10 ms skip length is used to increase the noise power spectrum estimate. This
variable upconstant value with an upper limit is required to prevent erroneous upwards updates. The net result
of these enhancements is the increased accuracy of the noise spectrum estimate. Increased accuracy of the noise
spectrum estimate enables better noise attenuation performance. The EMWF algorithm is noniterative like the
original MWF and hence it is also attractive for real-time implementation.

Step-by-step algorithm description of the new EMWF algorithm is as follows:

Step 1) A frame length of 20 ms with a skip length of 10 ms is provided as the input to the algorithm.

Step 2) Hanning window is applied on the frame.

Step 3) Autocorrelation lags of order 18 are calculated for the input frame. Let us denote the index of

the successive input frames by k . If this is not the first frame (k �= 0), an interpolation factor of γ = 0.7 is

applied on the autocorrelation lags of the kth frame (ith autocorrelation lag for the kth frame, R[i]k , is set to

R[i]k = γR[i]k + (1 − γ)R[i]k−1 ). If this is the first frame (k = 0), autocorrelation lags are unchanged. Then,

18th order LPC coefficients are calculated from the autocorrelation lags using Durbin’s recursive procedure [24].

Finally, DFT of the LPC coefficients are calculated in order to find Py(ω)k , power spectrum of the kth noisy

input frame.

Step 4) The noise power spectrum estimate for the kth frame, Pn(ω)k , is calculated for each frequency.

If it is the first frame (k = 0), it is assumed that the first frame purely denotes noise and the initial noise power

spectrum estimate, Pn(ω)0 , is calculated by taking DFT of 8th order LPC coefficients of the input frame. The

reason for not directly setting Pn(ω)0 = Py(ω)0 and using an order of 8 for LPC coefficients instead is that LPC

order of 8 results in a smoother spectrum compared to 18. Test simulations verified that this initial smoothed
spectrum resulted in less distortion.

If it is not the first frame (k �= 0), the noise power spectrum estimate for the kth frame, Pn(ω)k , is found

by an update of the previous value Pn(ω)k−1 . The equation for Pn(ω)k is

Pn(ω)k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.023Pn(ω)k−1 if Py(ω)k > Pn(ω)k−1 and signal is in nonspeech region
(1 + δ)Pn(ω)k−1 if Py(ω)k > Pn(ω)k−1 and signal is in speech region
Pn(ω)k−1 if Py(ω)k = Pn(ω)k−1

0.933Pn(ω)k−1 if Py(ω)k < Pn(ω)k−1

(17)

In the above equation, VAD outputs are used to decide whether the signal is in the speech region or not.
Soft decision values for the last 20 frames, which are provided by the VAD algorithm, are summed. If the sum
is found to be smaller than 10, then the current frame is tagged as nonspeech. Conversely, if the sum is higher
than 10, this is interpreted as showing that the signal is currently in the speech region.

The 1 + δ term in Eq. (17) represents the variable upconstant that is inversely related to the log energy

difference between the current frame energy, (Ey)k , and average noise energy estimate, Ên . The inverse relation
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is achieved by setting δ to δ = 1 / 1000(log10(Ey)k − log10Ên). As previously mentioned, we prefer to restrict

the upwards noise update within certain limits when we are in the actual speech region in order to minimize
errors. Therefore, an upper limit of 1.016 (7 dB/s for 10 ms skip length) is set for 1 + δ .

Step 5) The time dependent λt factor that scales the noise spectrum Eq. (16) is calculated. After test
simulations, it has been determined that an exponential relation, rather than a linear relation, between the SNR
and the scaling factor λt results in less distorted speech and the time dependent scaling factor is found as

λt =

(
(En)k

max
[
((Ey)k − (En)k), ((En)k/50)

]
)μ

ν (18)

where μ = 0.4 and ν = 63.01 (18 dB) are heuristically determined constants.

Step 6) The Wiener filter gain for each frequency is calculated from Eq. (16), where β = 0.5 and the
value of λt is determined from Step 5.

Step 7) DFT of the kth noisy-speech frame, Y (ω)k , is calculated.

Step 8) The spectrum of the kth noise-free speech frame, Ŝ(ω)k , is found by multiplying Y (ω)k with

H(ω)k at each frequency.

Step 9) The real part of the inverse DFT of Ŝ(ω)k is calculated to obtain the kth noise-free speech frame

ŝk .

Step 10) The overlap-add method is used for combining the filtered frames to form the overall enhanced
signal output.

4. Evaluations

4.1. Evaluations for the proposed VAD

Although implementing a VAD algorithm with superior speech/nonspeech detection performance was not the
main focus of this study and our proposed VAD algorithm has a relaxed condition to find the exact talkspurt
boundaries, we still wanted to have a quantitative measure for the performance of the newly proposed VAD
algorithm. To evaluate the performance of the newly proposed VAD algorithm, we compared our algorithm
with 2 standard VAD algorithms, namely ITU-T G.729 Annex B VAD [25] and ETSI Adaptive Multi-Rate

(AMR) VAD option 2 [26]. The database for the VAD performance comparison experiment was prepared by

adding white Gaussian noise to clean speech signals (5 TIMIT database sentences) at SNR levels of 5, 10, 15,
20, and 25 dB. We used a configuration of prespeech buffer = 10 ms, postspeech buffer = 15 ms, speech trigger
= 8, silence trigger = 700 ms, and sensitivity = 3, for our VAD algorithm. Figure 7 graphically shows the
total error for all algorithms at varying SNR levels. As can be seen in the figure, both of the standard VADs
have better performances than the proposed VAD at high SNR levels. However, at low SNR conditions, the
performance of the proposed VAD is better than that of G.729 VAD and slightly worse than that of AMR VAD.

4.2. Hybrid VAD improvements

In order to demonstrate the increased performance of the hybrid VAD, we used 10 recordings of actual noisy
speech data in Turkish that are collected in a car under different conditions. The properties of the recordings
are provided in Table 1. These recordings contain a total of 644 words, phrases, or sentences spoken by 4 male
speakers. The recordings were presented as inputs both to the newly proposed VAD algorithm and to its hybrid
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Figure 7. Performance comparison of the proposed VAD with G.729 VAD and AMR VAD under additive white Gaussian

noise.

version. Among the 644 words, phrases, or sentences, 484 of them were successfully detected by the proposed
VAD, whereas the detected instance number increased to 584 for the hybrid VAD. For the common detected
words, phrases, or sentences, a comparative error analysis was performed. Table 2 demonstrates the error
analysis performance comparison. As can be seen in Table 2, the total errors in speech/nonspeech boundary
decisions are smaller in the hybrid VAD compared to the standard VAD. The detection rate, which is computed
as the ratio of the number of successfully detected utterances to the number of actual utterances, is also higher
for the hybrid VAD. The false alarm rate, which is computed as the ratio of the number of faulty detected noise
only utterances to the number of actual utterances, is smaller for the hybrid VAD too.

Table 1. Properties of the recordings used for VAD performance measurements.

Sample Sample properties Sample length (min:s) Number of utterances

Sample 1 air conditioner on at level 2,
windows open, noisy traffic

6:02 182

Sample 2 air conditioner off, windows
open, traffic

2:30 46

Sample 3 air conditioner on at level 1,
windows closed, traffic

2:43 47

Sample 4 air conditioner on at level 2,
windows closed, car at idle

1:53 46

Sample 5 air conditioner on at level 2,
windows closed, traffic

2:58 51

Sample 6 air conditioner on at level 3,
windows closed, car at idle

1:51 46

Sample 7 air conditioner off, windows
open, noisy traffic

3:47 90

Sample 8 air conditioner off, windows
open, noisy traffic

1:26 45

Sample 9 air conditioner off, windows
open, traffic

1:35 44

Sample 10 air conditioner off, windows
open, traffic

1:49 47
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Table 2. Performance comparison of proposed VAD and Hybrid VAD.

Total error Total error Detection Detection False alarm False alarm
in proposed in Hybrid rate in rate in rate in rate in

Sample VAD VAD proposed VAD Hybrid VAD proposed VAD Hybrid VAD
(ms) (ms) (%) (%) (%) (%)

Sample 1 20,235 19,165 62.6% 90.1% 2.7% 1.6%

Sample 2 9194 8316 95.7% 100.0% 0 0

Sample 3 7828 7679 95.7% 100.0% 0 0

Sample 4 12,044 7118 84.8% 100.0% 0 0

Sample 5 7117 6353 98.0% 100.0% 0 0

Sample 6 8964 6308 95.7% 100.0% 0 0

Sample 7 8431 8999 25.6% 60.0% 4.4% 2.2%

Sample 8 9831 6657 80.0% 88.9% 2.2% 2.2%

Sample 9 6435 6924 97.7% 100.0% 0 0

Sample 10 6252 5131 97.9% 97.9% 0 0

Total 96,331 82,650 75.2% 90.7% 0.015% 0.009%

4.3. Enhanced modified Wiener filtering improvements

The accuracy of the noise power spectrum estimate is the key factor for increased performance of the Wiener
filtering-based speech enhancement algorithms. In order to compare the accuracy of the noise power spectrum
estimates of EMWF and MWF, we first added 0.5 s of silence to 5 different TIMIT database utterances. Then
car noise from the NOISEX database was added to the clean speech signals at 2 different SNR levels, 5 dB and
20 dB. Noisy signals were filtered using both methods separately. At every 10th frame, starting from the first
frame, estimated noise power spectra of the algorithms were compared with real noise power spectra.

Figures 8 and 9 demonstrate noise power spectra comparisons for a TIMIT database utterance with 20
dB car noise at several frame indices. As can be seen in these figures, during nonspeech intervals, the EMWF
algorithm employs more aggressive updates for the estimated noise spectrum. This enables faster convergence
of the estimated noise power spectrum to the real noise power spectrum. During speech intervals, noise power
spectrum estimate update is restricted within smaller ranges in order to minimize errors. The net effect is the
increased accuracy of noise power spectrum estimation for EMWF compared to MWF.

In order to obtain a quantitative measure for increased noise power spectrum estimation accuracy of the
EMWF algorithm, spectral distortion between estimated and real noise power spectra was computed at every
10th frame starting from the first frame for both of the algorithms. Then an overall spectral distortion measure,
SD, was computed as

SD =
10
L

L−1∑
i=0

∫ Fs

0

[
ln|Pn(ω)| − ln|P̂n(ω)|

]2

dω (19)

where Pn(ω) is the real noise spectrum, P̂n(ω) is the estimated noise spectrum, and L is the number of frames

used in computation. Computed spectral distortion ratios of SDEMWF/SDMWF for each sample are tabulated
in Table 3. Spectral distortion ratios, which are smaller than 1 for all samples, demonstrate the increased noise
power spectrum estimation accuracy of the EMWF algorithm compared to the MWF algorithm.

Another experiment was performed in order to compare the objective quality measures of MWF and
EMWF outputs. The database for this experiment was prepared by adding white Gaussian noise to clean
speech signals (20 TIMIT database utterances) at 10 dB SNR. This database was then used to compare the
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Figure 8. Comparison of noise power spectrum estimate of MWF (Pn(w)MWF) , noise power spectrum estimate of

EMWF (Pn(w)EMWF) , real noise power spectrum (Pn(w)) , and noisy input speech power spectrum (Py(w)) for

TIMIT database utterance with 20 dB car noise at frames (a) 1, (b) 20, (c) 40, and (d) 60.

perceptual evaluation of speech quality (PESQ) scores of the noisy and enhanced speech signals, where the
enhancement was implemented by applying MWF and EMWF algorithms to the noisy signals. PESQ scores

Table 3. Comparison of spectral distortion measures for noise power spectrum estimation.

Sample used SDEMWF/SDMWF

Sample 1 at 5 dB SNR 0.67

Sample 1 at 20 dB SNR 0.42

Sample 2 at 5 dB SNR 0.68

Sample 2 at 20 dB SNR 0.45

Sample 3 at 5 dB SNR 0.53

Sample 3 at 20 dB SNR 0.52

Sample 4 at 5 dB SNR 0.88

Sample 4 at 20 dB SNR 0.60

Sample 5 at 5 dB SNR 0.67

Sample 5 at 20 dB SNR 0.46
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Figure 9. Comparison of noise power spectrum estimate of MWF (Pn(w)MWF) , noise power spectrum estimate of

EMWF (Pn(w)EMWF) , real noise power spectrum (Pn(w)) , and noisy input speech power spectrum (Py(w)) for

TIMIT database utterance with 20 dB car noise at frames (a) 100, (b) 150, (c) 200, and (d) 300.

are shown in Table 4. As can be seen in the results, the average PESQ score was 2.163 for noisy speech, 2.276
for the MWF method, and 2.4 for the EMWF method. This indicates that both algorithms increase the speech
quality and EMWF achieves better PESQ scores compared to the original MWF.

We also wanted to evaluate the performance increase in the objective quality for different SNR levels.
For this purpose, we added speech babble, car, pink, and white noise to 5 TIMIT database sentences at SNR
levels of 5, 10, 15, 20, 25, and 30 dB using the NOISEX database. Mean PESQ scores of noisy speech and
MWF and EMWF outputs were computed for each noise type. Figure 10 demonstrates the results. As can be
seen in Figure 10, the performance improvement of EMWF is more explicit at low SNR levels.

Finally, we performed another experiment to compare the subjective quality measures of MWF and
EMWF outputs. As indicated in [27], MOS tests are commonly used by the speech processing community for
both evaluating the effectiveness of speech coding algorithms and assessing the quality of synthesized speech.
Since we needed a subjective quality comparison of MWF and EMWF outputs, we performed MOS tests on a
test database that comprised 10 utterances collected in a car driven in traffic. In the MOS test, 15 subjects (3

females) were used. The subjects listened the original noisy samples and filtered samples (MWF and EMWF
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Table 4. PESQ scores of noisy and enhanced speech signals for white Gaussian noise with 10 dB SNR.

Enhanced Enhanced
Sample Noisy speech speech with speech with

MWF EMWF

Sample 1 2.224 2.271 2.285

Sample 2 2.294 2.463 2.589

Sample 3 2.297 2.364 2.391

Sample 4 1.730 2.241 2.254

Sample 5 2.568 2.530 2.862

Sample 6 1.897 2.015 2.033

Sample 7 2.275 2.342 2.440

Sample 8 2.015 2.371 2.435

Sample 9 2.145 2.412 2.498

Sample 10 2.346 2.246 2.630

Sample 11 2.033 2.121 2.221

Sample 12 2.105 2.310 2.359

Sample 13 1.975 1.948 2.373

Sample 14 2.408 2.303 2.349

Sample 15 2.357 2.376 2.504

Sample 16 2.096 2.207 2.202

Sample 17 2.182 2.154 2.203

Sample 18 2.294 2.489 2.584

Sample 19 1.928 2.299 2.389

Sample 20 2.083 2.067 2.393

Mean 2.163 2.276 2.400

outputs) using headphones. They were instructed to rate the sentences on a scale of 1–5, where 1 is very poor
and 5 is excellent. Some speech samples of speech coders having different MOS scores were presented to the
subjects to ensure consistency in evaluating the speech quality. Average MOS scores per subject are shown in
Table 5. As can be seen in the results, the average MOS score was 2.53 for noisy speech, 2.96 for the MWF
method, and 2.99 for the EMWF method. This indicates that both algorithms increase the subjective speech
quality and EMWF achieves a slightly better performance compared to the original MWF.

4.4. Unified system evaluations

Speech recognition plays an important role in various health care, military, human-computer interaction,
automated documentation applications etc. The voice-controlled prosthetic hand proposed in [28] can be
considered a recent example where speech recognition is used to enable human–machine interaction for health
care purposes. Due to its wide range of applicability, we wanted to investigate the performance of our proposed
unified system as a front-end to a speech recognition engine. Speech recognition performances were measured
for both actual and artificially noise added noisy speech samples. For actual noise performance comparison,
the same 10 recordings of actual noisy speech data in Turkish, which we used in Section 4.2, were utilized. For
artificially added noise performance comparison, 30 different TIMIT database sentences were grouped into 24
different sets, where each set was degraded with a certain type of noise at a certain SNR level. The NOISEX
database was used to add speech babble, car, pink, and white noise types to the samples at SNR levels of 5, 10,
15, 20, 25, and 30 dB. Noisy signals were first processed separately by the proposed VAD algorithm and the
unified system in order to eliminate the silence regions. The processed signals were then presented as inputs to
the speech recognizer.
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Figure 10. PESQ performances of MWF and EMWF outputs compared to unenhanced speech with (a) speech babble

noise, (b) car noise, (c) pink noise, (d) white noise.

Tables 6 and 7 demonstrate the increased recognition performance of the unified system compared to the
proposed VAD system. Recognition performance increased from 65.2% to 83.2% for actual noisy samples and
from 87.5% to 91.3% for artificially noise added samples. As can be seen from the results, the unified system
offers significant performance increase in speech recognition at low SNR levels due to the speech enhancement
capability embedded in the system.

5. Discussion and conclusion
In this work, we follow a unified approach for VAD and speech enhancement problems. We demonstrate that the
2 problems are interrelated and implement a unified system for VAD and speech enhancement. The hybrid VAD
and EMWF algorithms constitute the VAD and speech enhancement blocks of the proposed unified system,
respectively.

A new and robust VAD algorithm is implemented to be used for the proposed unified system. The newly
proposed VAD algorithm uses a periodicity measure and an energy measure that is computed according to
the spectral properties of human speech. The new algorithm associates a soft decision value, rather than a
strict speech/nonspeech decision, with each frame to indicate the speech likeliness of that frame. The final
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Table 5. Average MOS scores on a scale from 1 to 5 over 10 utterances recorded in a car driven in traffic for 3 different

conditions: (i) Original noisy speech, (ii) enhanced speech using MWF, and (iii) enhanced speech using EMWF.

Enhanced Enhanced
Listener Noisy speech speech with speech with

MWF EMWF

Subject 1 2.56 2.97 3.05

Subject 2 2.00 2.34 2.39

Subject 3 2.91 3.39 3.43

Subject 4 2.63 3.07 3.09

Subject 5 2.46 2.91 2.91

Subject 6 2.91 3.36 3.43

Subject 7 2.74 3.17 3.22

Subject 8 2.43 2.87 2.87

Subject 9 2.17 2.59 2.61

Subject 10 3.07 3.54 3.55

Subject 11 2.51 2.93 2.97

Subject 12 2.13 2.46 2.49

Subject 13 2.65 3.08 3.11

Subject 14 2.85 3.30 3.35

Subject 15 1.87 2.35 2.40

Mean 2.53 2.96 2.99

St. Dev. 0.36 0.38 0.38

Table 6. Unified system evaluations for samples in Turkish (actual noise).

Recognition rate in Recognition rate
Sample

Recognition rate Recognition rate

Sample 1 40.1% 71.4%

Sample 2 91.3% 100.0%

Sample 3 93.6% 95.7%

Sample 4 76.1% 100.0%

Sample 5 94.1% 98.0%

Sample 6 91.3% 100.0%

Sample 7 23.9% 54.5%

Sample 8 65.9% 79.5%

Sample 9 90.9% 95.5%

Sample 10 93.6% 95.7%

Total 65.2% 83.2%

speech/nonspeech decision is based on a history of soft decision values. Employing speech enhancement in
the form of MWF is shown to improve the performance of the proposed VAD algorithm. Utilization of speech
enhancement in the hybrid VAD algorithm not only decreased the average error but also increased the utterance
detection rate while decreasing the false alarm rate. Benefits of utilizing VAD for speech enhancement are
demonstrated by implementing the EMWF algorithm. The EMWF algorithm results in less spectral distortion
of noise power spectrum estimate compared to the standard MWF algorithm. Increased noise power spectrum
estimation accuracy of EMWF relative to MWF enables the EMWF algorithm to employ a more aggressive
enhancement at nonspeech intervals, and a more mild filtering at the speech segments compared to MWF. This
provides better speech enhancement. For comparison, the EMWF algorithm is tested under simulated and
actual car noise conditions and is shown to outperform the standard MWF in both subjective and objective
speech quality evaluations.
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Table 7. Unified system evaluations for samples in English (artificially added noise).

Recognition rate Recognition rate
Sample set Noise characteristics in standard in unified

VAD (%) system (%)

Set 1 speech babble, 5 dB SNR 73.3% 90.0%

Set 2 speech babble, 10 dB SNR 100.0% 93.3%

Set 3 speech babble, 15 dB SNR 100.0% 90.0%

Set 4 speech babble, 20 dB SNR 100.0% 86.7%

Set 5 speech babble, 25 dB SNR 100.0% 90.0%

Set 6 speech babble, 30 dB SNR 96.7% 90.0%

Set 7 car noise, 5 dB SNR 100.0% 100.0%

Set 8 car noise, 10 dB SNR 100.0% 96.7%

Set 9 car noise, 15 dB SNR 100.0% 96.7%

Set 10 car noise, 20 dB SNR 96.7% 96.7%

Set 11 car noise, 25 dB SNR 96.7% 96.7%

Set 12 car noise, 30 dB SNR 96.7% 96.7%

Set 13 pink noise, 5 dB SNR 6.7% 70.0%

Set 14 pink noise, 10 dB SNR 73.3% 83.3%

Set 15 pink noise, 15 dB SNR 96.7% 90.0%

Set 16 pink noise, 20 dB SNR 100.0% 96.7%

Set 17 pink noise, 25 dB SNR 100.0% 96.7%

Set 18 pink noise, 30 dB SNR 100.0% 100.0%

Set 19 white noise, 5 dB SNR 3.3% 56.7%

Set 20 white noise, 10 dB SNR 63.3% 90.0%

Set 21 white noise, 15 dB SNR 96.7% 90.0%

Set 22 white noise, 20 dB SNR 100.0% 93.3%

Set 23 white noise, 25 dB SNR 100.0% 100.0%

Set 24 white noise, 30 dB SNR 100.0% 100.0%

Total 87.5% 91.3%

Finally, the unified system is evaluated as a preprocessor to a speech recognition engine where actual
noisy and artificially noise added signals are used in the experiment. Compared to the single VAD system, the
usage of the unified system enables performance increase in speech recognition rates, especially at low SNR
levels.
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