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Abstract: Drug design datasets are usually known as hard-modeled, having a large number of features and a small

number of samples. Regression types of problems are common in the drug design area. Committee machines (ensembles)

have become popular in machine learning because of their good performance. In this study, the dynamics of ensembles

used in regression-related drug design problems are investigated with a drug design dataset collection. The study tries

to determine the most successful ensemble algorithm, the base algorithm–ensemble pair having the best/worst results,

the best successful single algorithm, and the similarities of algorithms according to their performances. We also discuss

whether ensembles always generate better results than single algorithms.
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1. Introduction

Drug datasets are often known as hard-modeled datasets because of a small number of samples and a large
number of dimensions. Getting good prediction results with such datasets in the process of drug design can
provide large financial and time savings in pharmaceutical research and development.

In machine learning, it is popular to use algorithm ensembles by using several algorithms and combining
their results. In ensembles, the base algorithms generate partially dependent or independent results on the same
or a different part of a dataset, and then the results are combined in several ways. The success of an ensemble
depends on 2 main properties: the first is the individual success of the base algorithms of the ensemble and the
second is the independence of the base algorithms’ results from each other (low error, high diversity) [1].

This study aims at overcoming the difficulties of modeling drug datasets using ensembles. Our experi-
ments focus on regression ensembles because most drug design problems are of the regression type. The perfor-
mance of ensemble algorithms over drug datasets is investigated both with respect to the ensemble algorithms
themselves and to the base algorithms used within the ensemble algorithms. In the literature, several ensemble
algorithms are proposed. However, the application of these algorithms to drug design datasets has been limited.
To provide more comprehensive results to the drug design community, the performances of 4 different ensemble
algorithms, 1 feature selection algorithm, and 7 base algorithms for each ensemble are comparatively evaluated
on 15 drug design datasets in this paper. The same experiments are repeated with the dimensionally reduced
drug design datasets.

The paper consists of 6 sections. Section 2 discusses the algorithms used in the study. Section 3 presents
previous works in this area in the form of a table. Section 4 introduces the dataset collection in the form of 3
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tables. The experimental results are presented in Section 5. Section 6 contains the conclusions.

2. Algorithms used in the study

In this section, the base and ensemble algorithms used in our study are briefly described. For the evaluation
of the algorithms, the WEKA software was used [2]. Each ensemble algorithm was used with each of the base

algorithms. The base algorithms were also used alone. With this configuration (4 ensemble + 1 single) × (7

base) = 35 different algorithms were obtained and used for the prediction of the drug design datasets.

2.1. Ensemble algorithms

Bagging/bootstrapping: Bagging generates N new equal-sized datasets from the original dataset by selecting

samples with a replacement [3]. The base algorithms are trained with the datasets. The independence of the
individual results is confirmed in the experiments to some degree. N was chosen as 10 in our experiments. The
results of the base algorithms are simply averaged to produce the ensemble result.

Additive regression: This is the adaptation of the AdaBoost algorithm to regression types of problems
[4]. At each iteration, the samples having big errors at the previous iteration are considered. The iteration
number was chosen as 10 in our study. The ensemble result is the weighted mean of the base algorithms. The
weights are inversely proportional to the errors of the base algorithms.

Random subspace: In this ensemble algorithm, all of the samples are used, but all of the features are
not used. Each algorithm in the committee is trained by a randomly selected subset of all of the features [5].
With this approach, the diversity of the results of the algorithms is increased. In our study, the number of
features in each subspace is chosen as half of the original number of features. The results of 10 algorithms
trained in different subspaces are combined. The results of the base algorithms are simply averaged to produce
the ensemble result.

Rotation forest: This is an ensemble method that trains N decision trees independently, using a different
set of extracted features for each tree [6]. Bootstrap samples are taken as the training set for the individual
classifiers, as in bagging. The main heuristic is to apply the feature extraction and to subsequently reconstruct
a full feature set for each classifier in the ensemble. To do this, the feature set is split randomly into K subsets,
principal component analysis is run separately on each subset, and a new set of linear extracted features is
constructed by pooling all of the principal components. The data is transformed linearly into the new feature
space. The base learner is trained with this data set. Different splits of the feature set will lead to different
extracted features. N was chosen as 10 in our experiments. The results of the base algorithms are simply
averaged to produce the ensemble result.

The ensemble algorithms and their abbreviations used in this study are shown in Table 1.

Table 1. Ensemble algorithms and their abbreviations.

Ensemble algorithm Abbreviation
Bagging BG

Additive regression (boosting) AR
Random subspace RS
Rotation forest RF

2.2. Base regression algorithms

In our study, 7 regression algorithms were used as base learners in the ensembles. They are as follows:
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M5 model trees: The regression tree algorithm proposed by Quinlan [7]. The dataset is divided into
subspaces within the leaves. A linear model is utilized in each subspace. The subspace boundaries are defined
by the “feature-threshold value” pairs, which mostly decrease the standard deviations of the output values.

REP: A fast regression tree algorithm [2]. Its leaves contain constant output values. At each node, a
“feature-threshold value” pair is selected based on the most reduction in the variance of the output. The tree
is then pruned by a bottom-up reduced-error pruning.

Partial least squares: Principal component analysis identifies directions with the greatest variation, but
does not use the output information. Partial least squares also takes into account the direction of the output
values when transforming the dataset into a lower dimensional space [8].

Simple linear regression: A linear regression model is constructed for each single feature. The model
having the lowest squared error is selected as the final model [2].

K nearest neighbor: A sample-based algorithm. The prediction of a test sample is the averaged output
of its K nearest training samples.

Decision stump: This algorithm constructs a decision tree with only one decision node. The decision
node is selected according to the lowest root mean squared error (RMSE).

Support vector regression: This algorithm implements the support vector machine for regression [9].

The base algorithms and their abbreviations are shown in Table 2.

Table 2. Base regression algorithms used and their abbreviations.

Base regression algorithm Abbreviation
M5 model trees M5P

REP REP
Partial least squares PLS

Simple linear regression SLR
Decision stump DS

K nearest neighbor NN
Support vector regression SVR

2.3. Dimension reduction process

Drug design datasets generally have a very large number of features. In our study, the original datasets and
their dimensionally reduced versions are used. By doing so, the effects of the feature selection process on
the accuracies of the algorithms are investigated. The accuracies over the original and dimensionally reduced
datasets are compared. The CfsSubsetEval method is used for feature selection [10]. This method chooses the
subsets of the features that are highly correlated with the output while having low intercorrelation. The method
is a wrapper type of feature selection strategy. It starts with the empty set of attributes and searches forward
by considering all of the possible single attribute additions at a given point. It iteratively adds attributes with
the highest correlation with the output as long as there is not already an attribute in the subset that has a
higher correlation with the attribute in question. It stops adding attributes when there are no attributes having
these conditions.

2.4. Dataset collection

Our drug data collection consists of 15 drug datasets obtained from several studies. The datasets are shown in
Table 3. The datasets with 1142 features were formed using the Adriana.Code software [11]. The molecules and
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outputs were obtained from the original studies. The other datasets were obtained exactly from the original
studies. The datasets in ARFF file format are available in [12].

Table 3. The 15 drug design datasets.

Original Number of
Dataset ID

Dataset Number of
number of selected Referencename samples
features features

1 benzo 195 32 32 [13]
2 carbolenes 37 1142 15 [14]
3 chang 34 1142 7 [15]
4 cristalli 32 1142 14 [15]
5 depreux 26 1142 12 [15]
6 mtp 274 1142 24 [13]
7 pah 80 112 10 [16]
8 pdgfr 79 320 11 [17]
9 phen 22 110 6 [18]
10 phenetyl 22 628 7 [19]
11 qsbr y 15 9 3 [20]
12 qsfsr 19 9 3 [21]
13 selwood 31 53 5 [22]
14 strupcz 34 1142 15 [15]
15 yokohoma 12 1142 11 [15]

3. Experimental results

Seven base regressors were used together with each ensemble algorithm on 15 regression-type drug design
problems. The experiments were done to answer the following questions in drug design problems:

- Do the algorithm ensembles generate more successful results than a single algorithm?

- What is the most successful ensemble algorithm?

- What is the base algorithm–ensemble pair with the best results?

- Which algorithm performs well with the ensembles?

- What is the most successful single algorithm?

- How are the algorithms and datasets grouped according to their performances?

- How does the dimension reduction process affect the results?

To answer these questions, 36 algorithms ((4 ensemble + 1 single) × (7 base algorithms) + Zero Rule

algorithm = 36) were employed on the 15 drug design datasets described in Table 3 and their dimensionally
reduced versions. A 5 × 2 cross validation was used and the RMSE results were averaged.

The RMSE is defined as:

RMSEa lg .name =

√√√√ 1
N

N∑
i=1

(
yi

a lg .name − yi
actual

)2

, (1)

where yi
a lg .name is the prediction of alg.name for the ith test sample, yi

actual is the actual output value of the

ith test sample, and N is the number of test samples.
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The Zero Rule algorithm measures the default error of a dataset. The RMSE value of the Zero Rule is
calculated as follows:

RMSEZeroRule =

√√√√ 1
N

N∑
i=1

(
ym − yi

actual

)2
, ym =

1
T

T∑
j=1

yj
actual, (2)

where yj
actual is the actual output value of the jth training sample, yi

a lg .name is the prediction of alg.name for

the ith test sample, T is the number of training samples, and N is the number of test samples.
Our base learners and ensemble algorithms have some hyperparameters to optimize. We used 2-fold

cross-validation to optimize these parameters. In bagging, we optimized the bagging size by trying values of
50%, 75%, and 100%. In additive regression, we optimized the shrinkage by trying values of 0.1, 0.5, and 1. In
random subspace, we optimized the subspace size by trying values of 25%, 50%, and 75%. In rotation forest,
we optimized the remove percentage by trying values of 25%, 50%, and 75%. In the M5P and REP trees, we
optimized the minimum number of instances by trying values of 1, 2, 3, 4, and 5. In K nearest neighbor, we
optimized K by trying values of 1, 3, and 5. In support vector regression, we optimized C by trying values of
0.01, 0.1, 1, 10, and 100.

In the 5 × 2 cross validation methodology, the dataset is randomly divided after shuffling into 2 halves.
One half is used in the training and the other is used in the testing, and vice versa. This validation is repeated
5 times. In the results of this validation, 10 estimates of testing the RMSE were obtained for each algorithm
and each dataset. In some experiments, very high RMSE results were obtained, especially with the simple
linear regression algorithm disturbing the overall averages. Because of this, the performance comparisons of the
algorithms were done with the algorithms’ success ranking instead of the averaged RMSEs. In each experiment,
the averaged 5 × 2 cross-validation RMSEs were sorted in ascending order. The algorithm with the lowest
RMSE got the 1st ranking. The worst got the 36th ranking. These success rankings are given in Tables 4 and
5. In Table 4, the results with the original datasets are shown. In Table 5, the results with the dimensionally
reduced datasets are shown. The 15 datasets are ordered along the columns of the tables. The algorithms are
ordered along the rows of the tables. The average success rate and standard deviation of each algorithm are
shown in the last 2 columns.

In Tables 6 and 7, the summaries of Tables 4 and 5 are given, respectively. Each cell is the averaged
success ranking of the experiments with the base algorithm in the cell’s row and the ensemble algorithm in the
cell’s column. The average success rankings of the single algorithms used are given in the ‘Single’ column. In the
Avg. column, the averaged success rankings of the experiments with respect to the base algorithms are given.
In the ‘Avg.’ row, the averaged success rankings of the experiments with respect to the ensemble algorithms
are given.

The Nemenyi test [23] was also applied to determine whether there was a statistically significant difference
between the algorithms’ average ranks. According to the Nemenyi test for 15 datasets, 36 algorithms, and a
significance level of 5%, 2 algorithms are different if the distance between their average ranks is at least 14.76.
In Figures 1 and 2, the graphical representation of the Nemenyi test results is shown.

When Tables 4, 5, 6, and 7 and Figures 1 and 2 are investigated, the following conclusions are reached.

For the experiments with the original datasets (Tables 4 and 6):

- The best ranking performance (6.00) is obtained with the additive regression-partial least squares (AR-

PLS) algorithm.

- The best performed ensemble algorithms are additive regression (AR) and bagging (BG).
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Table 4. The success ranking of 36 algorithms on 15 original drug datasets (best to worst, 1 to 36).

Dataset ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

RF-M5P 1 20 29 28 24 35 32 33 2 5 34 30 29 28 10 22.67

RF-REP 15 8 5 8 1 6 17 1 16 25 5 11 11 12 7 9.867

RF-PLS 2 29 17 25 30 26 18 34 4 29 32 27 17 21 24 22.33

RF-SLR 16 23 28 35 31 7 4 24 35 2 30 32 25 35 27 23.6

RF-DS 17 1 18 9 10 8 24 2 11 13 17 15 1 13 1 10.67

RF-NN 8 2 10 4 7 9 13 14 12 11 6 12 4 1 25 9.2

RF-SVR 29 36 36 36 36 32 36 36 36 36 11 34 19 36 36 32.33
AR-M5P 3 25 23 10 11 27 5 3 13 7 23 1 18 2 11 12.13

AR-REP 30 9 6 20 2 28 27 25 32 28 7 16 20 14 4 17.87

AR-PLS 4 3 11 5 12 1 1 4 1 3 8 13 5 3 16 6

AR-SLR 9 24 24 26 27 10 2 5 5 17 35 17 32 27 34 19.6

AR-DS 18 10 19 14 15 11 19 6 17 18 18 7 6 22 2 13.47

AR-NN 10 11 20 15 21 2 20 15 26 19 3 14 12 4 19 14.07

AR-SVR 31 35 35 33 35 36 25 26 9 33 24 35 34 34 30 30.33

BG-M5P 5 4 2 16 16 34 3 35 33 26 29 21 21 5 12 17.47

BG-REP 19 12 3 17 3 12 21 7 21 27 12 8 7 20 3 12.8

BG-PLS 6 13 12 6 8 3 6 8 6 6 13 2 2 6 13 7.333

BG-SLR 20 26 34 34 26 13 7 9 18 12 25 31 33 29 32 23.27

BG-DS 21 14 13 7 6 14 26 10 25 22 14 9 8 15 14 14.53

BG-NN 11 5 15 3 17 15 14 16 19 14 1 5 3 7 5 10

BG-SVR 32 34 33 30 34 29 35 27 3 32 33 33 22 33 31 29.4
RS-M5P 12 28 7 22 29 33 34 28 14 9 19 29 23 26 8 21.4

RS-REP 22 6 4 18 4 16 15 17 22 24 9 10 13 16 15 14.07

RS-PLS 13 15 21 11 18 4 8 11 7 4 20 18 9 17 20 13.07

RS-SLR 23 21 32 29 25 20 9 18 23 10 31 22 30 31 33 23.8

RS-DS 24 22 22 21 13 17 29 19 27 16 21 23 14 8 9 19

RS-NN 14 7 8 1 14 18 16 12 20 15 2 6 10 9 21 11.53

RS-SVR 33 32 30 31 33 21 31 29 10 35 22 24 31 30 28 28

M5P 25 31 14 12 22 31 10 21 28 20 26 3 26 25 22 21.07

REP 34 16 9 24 9 30 28 30 29 31 15 28 24 18 17 22.8

PLS 7 17 16 13 19 5 11 13 8 1 16 4 15 10 23 11.87

SLR 27 30 26 27 28 22 12 22 30 8 36 25 36 23 35 25.8

DS 28 27 27 23 23 23 30 31 31 23 27 19 27 24 18 25.4

NN 26 18 25 2 20 19 22 20 24 21 4 20 16 11 26 18.27

SVR 35 33 31 32 32 24 23 23 15 34 28 36 35 32 29 29.47
Zero0 36 19 1 19 5 25 33 32 34 30 10 26 28 19 6 21.53
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Table 5. The success ranking of 36 algorithms on 15 dimensionally reduced drug datasets (best to worst, 1 to 36).

Dataset ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

RF-M5P 1 4 36 35 32 8 9 11 2 4 27 15 16 29 22 16.73

RF-REP 15 16 5 19 7 9 17 12 17 27 12 27 8 10 17 14.53

RF-PLS 2 5 16 32 33 10 1 1 3 1 32 16 20 30 1 13.53

RF-SLR 16 7 17 23 35 11 2 3 8 6 31 17 11 35 4 15.07

RF-DS 17 8 10 5 8 12 31 13 21 28 23 28 2 1 5 14.13

RF-NN 9 11 2 7 9 1 18 4 13 14 6 9 1 7 6 7.8

RF-SVR 29 26 22 33 36 24 26 36 35 11 13 20 23 36 15 25.67
AR-M5P 3 21 23 8 10 13 10 20 14 15 18 1 34 15 23 15.2

AR-REP 30 31 28 25 14 32 32 33 33 34 7 31 24 20 32 27.07

AR-PLS 4 6 24 2 22 2 11 5 4 7 25 4 21 2 7 9.733

AR-SLR 10 22 31 26 30 14 12 14 9 8 30 5 33 28 24 19.73

AR-DS 18 12 29 12 2 25 27 21 22 26 19 25 17 11 25 19.4

AR-NN 11 23 3 13 15 15 28 15 23 19 2 21 12 16 8 14.93

AR-SVR 31 35 32 29 28 16 19 29 34 20 36 32 26 32 28 28.47

BG-M5P 5 9 11 6 3 17 3 30 11 16 28 18 31 17 33 15.87

BG-REP 19 17 12 20 16 18 20 16 27 32 8 29 13 21 34 20.13

BG-PLS 6 1 6 4 11 3 4 6 5 2 34 10 4 8 3 7.133

BG-SLR 20 24 25 34 31 26 13 22 18 21 20 6 32 9 9 20.67

BG-DS 21 13 13 14 4 27 30 17 24 29 14 22 9 3 29 17.93

BG-NN 12 14 1 15 12 4 21 7 12 17 3 7 3 18 10 10.4

BG-SVR 32 34 26 36 34 28 22 27 29 9 15 11 30 33 18 25.6
RS-M5P 13 10 7 9 27 19 5 8 10 10 9 12 27 22 26 14.27

RS-REP 22 18 20 16 17 20 23 18 26 30 1 26 18 12 30 19.8

RS-PLS 7 2 18 1 5 5 6 2 6 5 26 13 5 4 11 7.733

RS-SLR 23 25 27 21 13 29 14 23 19 18 10 8 19 13 19 18.73

RS-DS 24 19 33 10 1 30 33 24 25 31 21 30 14 5 16 21.07

RS-NN 14 15 8 11 18 6 24 9 15 12 4 23 6 14 12 12.73

RS-SVR 33 27 19 24 24 21 7 25 7 13 11 24 25 34 13 20.47

M5P 25 28 21 17 25 22 15 26 16 22 29 2 35 24 20 21.8

REP 34 29 14 31 26 33 34 28 30 33 16 34 15 26 27 27.33

PLS 8 3 15 3 19 7 8 10 1 3 33 14 10 6 2 9.467

SLR 27 32 35 27 23 31 16 31 28 25 24 3 36 25 21 25.6

DS 28 33 30 22 6 34 35 32 31 35 22 35 22 27 36 28.53

NN 26 20 4 18 20 23 25 19 20 23 17 19 7 19 14 18.27

SVR 35 36 34 30 29 35 29 34 32 24 35 33 28 31 31 31.73
Zero0 36 30 9 28 21 36 36 35 36 36 5 36 29 23 35 28.73
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Table 6. The averaged success rankings of the algorithms on the original datasets (best to worst, 1 to 36).

RF AR BG RS Single Avg.
M5P 22.67 12.13 17.47 21.40 21.07 18.95
REP 9.87 17.87 12.80 14.07 22.80 15.48
PLS 22.33 6.00 7.33 13.07 11.87 12.12
SLR 23.60 19.60 23.27 23.80 25.80 23.21
DS 10.67 13.47 14.53 19.00 25.40 16.61
NN 9.20 14.07 10.00 11.53 18.27 12.61
SVR 32.33 30.33 29.40 28.00 29.47 29.91
Avg. 18.67 16.21 16.4 18.70 22.10

Table 7. The averaged success rankings of the algorithms on the dimensionally reduced datasets (best to worst, 1 to

36).

RF AR BG RS Single Avg.
M5P 16.73 15.20 15.87 14.27 21.80 16.77
REP 14.53 27.07 20.13 19.80 27.33 21.77
PLS 13.53 9.73 7.13 7.73 9.47 9.52
SLR 15.07 19.73 20.67 18.73 25.60 19.96
DS 14.13 19.40 17.93 21.07 28.53 20.21
NN 7.80 14.93 10.40 12.73 18.27 12.83
SVR 25.67 28.47 25.60 20.47 31.73 26.39
Avg. 15.35 19.22 16.82 16.40 23.25
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Figure 1. Graphical representation of the Nemenyi test results of the compared methods with the ranks given in Table

6 (on original datasets). The numbers on the line represent the average ranks. Bold lines connect the algorithms that

have no significant difference.
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Figure 2. Graphical representation of the Nemenyi test results of the compared methods with the ranks given in Table

7 (on dimensionally reduced datasets).

- The best performed base algorithm is partial least squares (PLS).

- Additive regression and bagging increase the performance of each base algorithm. Rotation forest in-
creases the performances of REP, decision stump (DS), and nearest neighbor (NN). It decreases the performance

of partial least squares. Random subspace (RS) generally increases performance.

- The M5P, PLS, and SLR base algorithms had their best performances with additive regression. REP
and the DS algorithm with rotation forest, and the SVR algorithm with random subspace, had their best
performances.

- Rotation forest and random subspace had their best performances with NN. Additive regression and
bagging with PLS had their best performances.

- According to the Nemenyi test, there is no statistical difference between the best algorithm (AR-PLS)

and the algorithms having average ranks below 20.76 ( = 6.00 + 14.76).

For the experiments with the dimensionally reduced datasets (Tables 5 and 7):

- The best performance (7.13) is obtained with the BG-PLS algorithm.

- The best performing ensemble algorithm is rotation forest.

- The best performing base algorithm is partial least squares.
All of the ensemble algorithms generally increased the performance of each base algorithm. The exceptions

are AR-PLS and RF-PLS.
- The M5P and SVR base algorithms had their best performances with random subspace. The REP,

SLR, DS, and NN algorithms with rotation forest, and PLS with bagging, achieved their best performances.

- Rotation forest had its best performances with NN. Additive regression, random subspace, and bagging
with PLS had their best performances.
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- According to the Nemenyi test, there is no statistical difference between the best algorithm (BG-PLS)

and the algorithms having average ranks below 21.89 ( = 7.13 + 14.76).

The average successes of the algorithms were investigated above. Next, the best performing algorithm will
be investigated over each individual dataset. In Table 8, the dataset name, the error of the Zero Rule algorithm,
and the error and the name of the best performing algorithm are shown for the original and dimensionally
reduced datasets.

The Zero Rule predicts a single value for all of the test samples. This value is the mean value of all of
the training samples’ outputs. It only considers the outputs of the samples. It can be thought of as the default
error of a dataset. Thus, the Zero Rule errors are the same for the original and dimensionally reduced datasets.

Comparing the Zero Rule error and other algorithms errors shows whether the algorithms can decrease
the default error.

Table 8. The best performing algorithms on the original and dimensionally reduced datasets.

Dataset name
Zero Rule

With all of the features With the selected features
Best performing

RMSE
Best performing

RMSEerror
algorithm algorithm

benzo 0.25 RF-M5P 0.21 RF-M5P 0.21
carbolenes 0.23 RF-DS 0.22 BG-PLS 0.15

chang 0.20 Zero0 0.20 BG-NN 0.18
cristalli 0.28 RS-NN 0.24 RS-PLS 0.18
depreux 0.20 RF-REP 0.20 RS-DS 0.16

mtp 0.18 AR-PLS 0.16 RF-NN 0.15
pah 0.20 AR-PLS 0.10 RF-PLS 0.10

pdgfr 0.23 RF-REP 0.20 RF-PLS 0.17
phen 0.27 AR-PLS 0.13 PLS 0.14

phenetyl 0.27 PLS 0.10 RF-PLS 0.06
qsbr y 0.27 BG-NN 0.25 RS-REP 0.26
qsfsr 0.27 AR-M5P 0.19 AR-M5P 0.17

selwood 0.30 RF-DS 0.25 RF-NN 0.21
strupcz 0.22 RF-NN 0.21 RF-DS 0.16

yokohoma 0.28 RF-DS 0.27 RF-PLS 0.20

When Table 8 is investigated, the following conclusions are reached:

- The best performing algorithms are generally ensemble algorithms. This is in agreement with the
average success of the algorithms.

- The experiments with dimensionally reduced datasets have equal or better results than the original
datasets, except for 2 datasets (phen, qsbr y).

- The dimension reduction process changes the best performing algorithm, except for 2 datasets (benzo,

qsfrs).

The experiments with dimensionally reduced datasets were further investigated in detail. The results of
the best 10 algorithms and the Zero Rule are compared using the paired t-test [24]. In Table 9, the wins and

significant wins are shown between each pair of these 11 algorithms. The results are given in X(Y) form, which
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means that the algorithm in the corresponding row has better results at X datasets out of 15 than the algorithm
in the corresponding column. The number in brackets (Y) represents the number of significant wins for the
row with regard to the column. A 0 means that the scheme in the corresponding column did not score a single
(significant) win with regard to the scheme in the row. For example, the RF-PLS algorithm has a better result
than the Zero Rule for 10 datasets, and the differences for 5 out of 10 datasets are significant.

Table 9. The significant differences of the algorithms’ performances.

RF-PLS RF-DS RF-NN AR-PLS BG-PLS BG-NN RS-M5P RS-PLS RS-NN PLS ZeroR

RF-PLS - 9(2) 7(0) 7(0) 4(0) 7(0) 9(0) 5(0) 8(0) 2(0) 10(5)

RF-DS 6(0) - 4(0) 5(0) 3(0) 5(0) 7(0) 4(0) 5(0) 4(0) 13(6)

RF-NN 8(0) 11(0) - 5(0) 3(0) 7(0) 8(0) 3(0) 9(0) 4(0) 14(5)

AR-PLS 8(0) 10(4) 10(0) - 5(0) 9(0) 12(0) 3(0) 10(1) 4(0) 12(6)

BG-PLS 11(0) 12(3) 12(0) 10(0) - 11(0) 12(0) 4(0) 12(0) 7(0) 14(7)

BG-NN 8(0) 10(1) 8(0) 6(0) 4(0) - 8(0) 4(0) 8(0) 5(0) 15(7)

RS-M5P 6(0) 8(2) 7(0) 3(0) 3(0) 7(0) - 2(0) 7(0) 2(0) 11(5)

RS-PLS 10(0) 11(3) 12(0) 12(0) 11(0) 11(0) 13(0) - 13(0) 9(0) 13(7)

RS-NN 7(0) 10(0) 6(0) 5(0) 3(0) 7(0) 8(0) 2(0) - 4(0) 15(6)

PLS 13(0) 11(2) 11(1) 11(0) 8(0) 10(0) 13(0) 6(0) 11(0) - 13(7)

ZeroR 5(0) 2(0) 1(0) 3(0) 1(0) 0(0) 4(0) 2(0) 0(0) 2(0) -

When Table 9 is investigated, the following conclusions are reached:

- The BG-PLS, BG-NN, RS-PLS, and PLS algorithms are the most significantly winning algorithms over
the Zero Rule (at 7 datasets).

- The RF-PLS, AR-PLS, BG-PLS, BG-NN, RS-M5P, RS-PLS, and PLS algorithms have no significant
losses.

- The AR-PLS algorithm has the biggest significant winning number (11).

In Figures 3 and 4, the hierarchical clusters of the algorithms and datasets are given, respectively.
The closeness of the connection point of the clusters to the left side directly represents the similarity of the
algorithms/datasets.

When the algorithms are clustered, the algorithms are represented by points having 15 (the number of

datasets) features (dimensions). When the datasets are clustered, the datasets are represented by points having

36 (the number of algorithms) features (dimensions).

According to Figure 3, the following conclusions are reached:

- In both figures, the ensemble–algorithm pairs are generally clustered with their base single algorithms.

- The feature selection process does not affect the similarities of the algorithms dramatically.

According to Figure 4, the following conclusions are reached:

- On the left side of Figure 4, the datasets having 1142 features are generally clustered together.

- On the right side of Figure 4, there is no obvious pattern between the clusters and the number of
features/samples.

4. Previous works

The selected previous studies in this area for both classification and regression are shown comparatively in
Table 10. It is observed that a larger number of datasets was used in the classification problems. However, the
number of chemical/drug design datasets used is not sufficient to reach general conclusions.
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Figure 3. The hierarchical clusters of the algorithms according to their RMSE values on the original (left) and

dimensionally reduced (right) 15 datasets.
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Figure 4. The hierarchical clusters of the original (left) and dimensionally reduced (right) 15 datasets according to their

RMSE values obtained with 36 algorithms. In the figures, the dataset names, the number of features, and the samples

are given.

According to Table 10, together with our experiments, the following conclusions are reached:

- The number of used drug design/chemical datasets in our experiments is larger than those in previous
works.

- The success of PLS in our experiments verifies the high usage of PLS in previous studies.

- The superior success of ensemble algorithms over single algorithms is confirmed.
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Table 10. Previous works.

Reference Compared methods n the 
study Datasets Results 

[8] 
PLS, BG w h PLS, PLS 

ensemble w h and w hout 
no e 

e datasets are 
generated from one 

on-type near-
nfrared (NIR) datum 
w h several types of 

add ve no se. 

No e ensemble P etter than regular 
PLS. BG does not seem to g ve any 

mprovement over PLS. 

[25] 
Kernel PLS (KPLS), PLS, PLS 
BG, PLS boo ng, KPLS BG, 

KPLS boos ng, 

2 regress on-type 
NIR datasets. 

KPLS s better than PLS. BG and boos ng 
have no gn cant e ect on KPLS and PLS. 

[26] Boo ng, random forest, 
dec on tree, PLS, KNN, SVR 

4 regress on, 6 
class ca on datasets 

(chem  data) 

Boo ng and random forest are better than 
other alg ms. 

[27] SVR, SVR ensembles, RS 
KNN, r dge regress on 

2 chem cal 
class ca on-type 

datasets 

S ngle SVR and SVR ensembles are better 
than others. 

[28] 

One base learner (mu ayer 
percep on). 

BG, ensemble w h full and 
pa al samples. 

4 chem cal 
on-type 

datasets 

Ensembles w h full samples are better than 
hav ng BG sample ones. 

[29] Dec s on tree, BG, boos ng, 
random forest, SVR 

8 chem cal 
class ca on-type 

datasets 

SVR and random forest are better than the 
other alg ms. 

[30] 
One base learner (C4.5). 

boost ng, RS, random trees, 
BG, random forest 

34 Un vers y of 
Ca orn a - Irv ne 

(UCI) on 
datasets 

All of the ensembles are better than a s ngle 
C4.5, but no algor hm s s gn cantly better 
than BG.  best perform ng algo hm  

RF. 

[3] One base learner (C4.5). 
BG, boo ng, random on 

32 UCI class ca on 
datasets 

On o g datasets: 
boost ng > BG = random on. 

On datasets w class no e, BG e best. 

[31] BG, boo ng, random d 
C4.5 

57 UCI class ca on 
datasets 

Boo ng, random forest, and random d 
trees are better performers than BG. 

5. Conclusions

In machine learning, committee algorithms (ensembles), especially those with classification applications, are
highly popular because they have better performances than single algorithms.

In this study, the comparative performances of algorithm ensembles with drug design datasets in regression
applications were investigated. A drug design dataset collection with 15 regression-type datasets was used for
this purpose. We obtained the performances of the single algorithms and the algorithm ensembles on those
datasets. The combinations of 7 base algorithms and 4 ensemble algorithms were investigated.

In Table 11, conclusions are given in the form of questions that we tried to answer and the answers
obtained from our experiments.
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Table 11. The questions and their answers obtained with the experimental studies on drug datasets.

Question Answer (based on our drug design experiments) 

Do the ensemble algorithms generate 
more successful results than a single 

algorithm? 
Generally, yes. 

How are the most successful ensemble 
algorithms ranked? 

Success ranking in original datasets: AR > BG > RF > RSs > single. 

In dimensionally reduced datasets: RF > RSs > BG > AR > single. 

What is the base algorithm–ensemble 
pair having the best results? 

In original datasets: AR with PLS. 

In dimensionally reduced datasets: BG with PLS. 

Which ensemble algorithm works well 
with which base algorithms? 

In original datasets: RF and RS work well with NN. AR and BG with PLS 
had their best performances. The best single algorithm is PLS.  

In dimensionally reduced datasets: AR, RS, and BG with PLS had their 
best performances. RF works well with NN. The best single algorithm is 

PLS. 

Which base algorithm works well with 
which ensemble algorithms? 

In original datasets: M5P, PLS, and SLR work well with AR. REP and DS 
algorithm with RF, and SVR algorithm with RS, had their best 

performances. 

In dimensionally reduced datasets: M5P and SVR work well with RS. REP 
with BG; SLR and DS with RF; REP, SLR, DS, and NN algorithms with RF; 

and PLS with BG had their best performances. 

What are the similarities of the 
algorithms according to their 

performances? 

The ensemble–algorithm pairs are mainly grouped with the base 
algorithm. This shows that the performance of an experiment is 
determined by the base algorithms, not the ensemble algorithm. 
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[6] J.J. Rodŕıguez, L.I. Kuncheva, C.J. Alonso, “Rotation forest: a new classifier ensemble method”, IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 28, pp. 1619–1630, 2006.

600



AMASYALI and ERSOY/Turk J Elec Eng & Comp Sci

[7] E. Frank, Y. Wang, S. Inglis, G. Holmes, I.H. Witten, “Using model trees for classification”, Machine Learning,

Vol. 32, pp. 63–76, 1998.

[8] B.H. Mevik, V.H. Segtnan, T. Næs, “Ensemble methods and partial least squares regression”, Journal of Chemo-

metrics, Vol. 18, pp. 498–507, 2004.

[9] S.K. Shevade, S.S. Keerthi, C. Bhattacharyya, K.R.K. Murthy, “Improvements to the SMO algorithm for SVM

regression”, IEEE Transactions on Neural Networks, Vol. 11, pp. 1188–1193, 2000.

[10] M.A. Hall, “Correlation-based feature selection for machine learning”, PhD, Department of Computer Science,

University of Waikato, 1998.

[11] ADRIANA.Code, Molecular Networks, Germany; www.mol-net.de.

[12] WEKA Collections of Datasets; www.cs.waikato.ac.nz/ml/weka/index datasets.html.

[13] M. Karthikeyan, R.C. Glen, A. Bender, “General melting point prediction based on a diverse compound dataset

and artificial neural networks”, Journal of Chemical Information and Modeling, Vol. 45, pp. 581–590, 2005.

[14] B.D. Silverman, E. Daniel., J. Platt, “Comparative molecular moment analysis (CoMMA): 3D-QSAR without

molecular superposition”, Journal of Medicinal Chemistry, Vol. 39, pp. 2129–2140, 1996.

[15] D.E. Patterson, R.D. Cramer, A.M. Ferguson, R.D. Clark, L.W. Weinberger, “Neighborhood behavior: a useful

concept for validation of molecular diversity descriptors”, Journal of Medicinal Chemistry, Vol. 39, pp. 3049–3059,

1996.

[16] R. Todeschini, P. Gramatica, E. Marengo, R. Provenzani, “Weighted holistic invariant molecular descriptors”,

Chemometrics and Intelligent Laboratory Systems, Vol. 27, pp. 221–229, 1995.

[17] R. Guha, P. Jurs, “The development of linear, ensemble and non-linear models for the prediction and interpretation

of the biological activity of a set of PDGFR inhibitors”, Journal of Chemical Information and Computer Sciences,

Vol. 44, pp. 2179–2189, 2004.

[18] A. Cammarata, “Interrelationship of the regression models used for structure-activity analyses”, Journal of Medic-

inal Chemistry, Vol. 15, pp. 573–577, 1972.

[19] H. Kubinyi, QSAR: Hansch Analysis and Related Approaches, New York, VCH Publishers/Weinheim, VCH

Verlagsgesellschaft, pp. 57–68, 1993.
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