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Abstract: The transient stability constraint should be taken into consideration for the solution of the optimization

problems in power systems. This paper presents a solution for the transient stability-constrained optimal power flow

(TSCOPF) by a novel approach based on the artificial bee colony algorithm. The formulas of TSCOPF are derived

through the addition of rotor angle inequality constraints into optimal power flow relationships. In this nonlinear

optimization problem, the objective function is taken into consideration as the fuel cost of the system. The proposed

approach is tested on both a WSCC 3-generator, 9-bus system and a IEEE 30-bus system, and the test results obtained

are compared to prove the efficiency and effectiveness of the approach with other approaches in the literature.

Key words: Artificial bee colony algorithm, constrained optimization, optimal power flow, power system, transient
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1. Introduction
The optimal power flow (OPF) problem can be defined as meeting customers’ energy needs with the minimum
cost of energy production. This problem has become more important due to the increasing energy needs of
customers day by day. Many numerical methods are used for solving the problem in the literature. Nonlinear
programming [1], quadratic programming [2], Newton-based techniques [3], and linear programming [4] can
be shown as examples of these methods. There are some certain disadvantages of using numerical methods
in solving this problem. The most important of these are easy donning for the local minimum and starting
point problems. Today, heuristic methods are used to eliminate these disadvantages. The biggest advantage of
heuristic methods is that they can obtain global minimum or optimal solutions close to the global minimum
in a short time. The genetic algorithm (GA) [5], particle swarm optimization (PSO) [6], ant colony algorithm

(ACA) [7], differential evolution (DE) [8], and evolutionary programming (EP) [9] are examples of heuristic
methods.

There are some limitations in the basic OPF problem: equality constraints and inequality constraints
in spite of the power flow equations, and the restrictions inherent in the energy system. Today, the problems
of energy systems have made it necessary for system designers to expand the OPF with different restrictions.
Security constraint [10,11], the harmonic constraint [12,13], voltage stability constraint [14], and the transient

stability constraint [15–17] can be given as examples of restrictions on the issue.
∗Correspondence: ulaskilic@mehmetakif.edu.tr
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The stability of power systems can be defined as reaching a new equilibrium point within certain
limitations after exposure to the distorting effects of a system running at steady state. In stability calculations,
the behavior of the system before, during, and after the disturbance effect is examined. What is expected from
the system to be designed by the designers is that the system synchronism should not be disturbed, even after
both a small and a large disturbance. With prompt switching of the defective lines as a result of a defective
effect, the whole system will continue to work in a synchronized manner in the new state of equilibrium so that
the customers will not have a cut in electricity. The temporary state of the stability constraint is obtained by
including the new working conditions of the system, which will occur after failure, into the OPF problem with
each being a constraint power.

The transient stability constraint OPF (TSCOPF) problem was solved with a control system in [17],

where the method presented was tested for 2 different power systems in 4 different fault conditions. In [18],
the TSCOPF problem was solved using the DE algorithm and the method presented was tested for 3 different
power systems in 5 different fault conditions. For the solution of this problem in [19], EP was used along with
fuzzy logic. The method proposed in this study, on the other hand, has been tested for different fault states in
the IEEE 30-bus test system.

The conventional optimization techniques, which are used for both OPF and TSCOPF, are very sensitive
to initial conditions. Sometimes these techniques are able to converge to local optimum solutions. In some cases,
they are not able to converge to any solution. These troubles are overcome by new population-based heuristic
optimization methods. These methods are PSO [15], the GA [20], DE [18], and the artificial bee colony (ABC)

[21] algorithm. The ABC algorithm was proposed by Derviş Karaboğa. Recently, successful applications of the

ABC algorithm to power systems have attracted attention [22–24] because the ABC algorithm is an efficient,
effective, and fast algorithm for determining the global minimum points of nonlinear and nonconvex problems,
such as the OPF and TSCOPF problems.

In this paper, the ABC algorithm is successfully applied to the TSCOPF problem for the first time.
The detailed formulas of the TSCOPF problem are given in Section 2. The details of the ABC algorithm are
explained in Section 3. The effectiveness and efficiencies of the ABC algorithm that is used for solving the
TSCOPF problem are tested on 2 power systems, the WSCC 3-generator, 9-bus system and the IEEE 30-bus
test system, as given in Section 4. Conclusions and discussion related to simulation results are given in Section 5.

2. TSCOPF formulation

2.1. OPF formulation

The OPF problem is an optimization problem whose mathematical equations are well known, and it is defined
as follows:

Minimize the function of
f(x, u),

such that:
g(x, u) = 0, (1)

h(x, u) ≤ 0.

In this study, the objective function f (x, u) is taken as the total fuel cost, the equality constraints g (x, u) are

taken as the power flow equations, and the inequality constraints h (x, u) are taken as transmission line limits
and other security limits. Vectors x and u , the parameters of these functions, are called the state variable
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vector and control variable vector, respectively. The state variable vector x is given as follows:

xT = [Pslack, VL, Qg] , (2)

where the state variable vector x includes the slack bus active power, load bus voltage magnitude VL , and
generator reactive power Qg . In that case, the control variable vector u is given as follows:

uT = [Pg, Vg, T, Qc] , (3)

where the control variable vector u consists of the active power generation except for the slack bus Pg , generator

terminal voltage magnitude Vg , transformer tap ratio T , and reactive power generation or absorption of the
compensation devices, such as the capacitor and reactor banks Qc , respectively.

2.2. Objective function

The objective function is expressed as the total fuel cost of the entire power system with the fuel cost curve
approximated as a quadratic function of the generator active power output.

fi =
Ng∑
i=1

(
ai + biPgi + ciP

2
gi

)
(4)

Here, fi represents the total fuel cost, Ng represents the total number of generators, Pgi represents the active

power generation of the ith generator, and finally, ai , bi , and ci represent the fuel cost coefficients of the ith

generator, respectively.

2.3. Equality constraints

The equalities in the OPF are defined as equality constraints:

Pgi − Pli − Vi

N∑
j=1

Vj(Gij cos θij + Bij sin θij) = 0 i = 1, ..., N, (5)

Qgi + Qci − Qli − Vi

N∑
j=1

Vj (Gij sin θij − Bij cos θij) = 0 i = 1, ..., N, (6)

where N is the total number of system buses, Pli is the active load of the ith bus, Qli is the reactive load of

the ith bus, Qgi is the reactive power generation of the ith bus, Vi is the voltage magnitude of the ith bus,
Gij is the transfer conductance between bus i and j , Bij is the transfer susceptance between bus i and j ,

and θij is the voltage angle difference between bus i and j .

2.4. Inequality constraints

Active power outputs, reactive power outputs, and generation bus voltages are restricted by their lower and
upper limits, and the generator constraints are given as follows:

P min
gi ≤ Pgi ≤ P max

gi i = 1, ..., Ng, (7)
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Qmin
gi ≤ Qgi ≤ Qmax

gi i = 1, ..., Ng, (8)

V min
i ≤ Vi ≤ V max

i i = 1, ..., N, (9)

where P min
gi , P max

gi , Qmin
gi , Qmax

gi , V min
i , and V max

i are the lower and upper limits of the variables, respectively.

Transformer tap settings are restricted by their lower and upper limits, and the transformer constraints are
given as follows:

Tmin
i ≤ Ti ≤ Tmax

i i = 1, ..., NT, (10)

where NT is the total number of transformers and Tmin
i and Tmax

i are lower and upper limits of the corre-

sponding variables, respectively. The shunt volt-ampere reactive (VAR) compensations are restricted by their
limits and then the shunt VAR constraints are given as follows:

Qmin
ci ≤ Qci ≤ Qmax

ci i = 1, ..., Nc, (11)

where Nc is the total number of compensator devices. Qmin
ci and Qmax

ci are the lower and upper limits of the
corresponding variables, respectively.

2.5. Transient stability constraints

In a power system, the transient stability problem is explained through a range of algebraic equations shown in

Eq. (12). The oscillation equations of ith generator are:

•
δi = ωi − ω0

Mi
•
ωi = ω0 (Pmi − Pei − Diωi)

i = 1, ..., Ng, (12)

where δi is the rotor angle of the ith generator, ωi is the rotor speed of the ith generator, Mi is the moment

of inertia of the ith generator, Di is the damping constant of the ith generator, Pmi is the mechanical input

power of the ith generator, Pei is the electrical output power of the ith generator, and ω0 is the synchronous
speed.

Furthermore, the position of the center of inertia (COI) is defined as follows:

δCOI =

Ng∑
i=1

Miδi

Ng∑
i=1

Mi

. (13)

A simplified criterion for the transient stability is expressed as the rotor angle deviation with respect to the
COI, and hence the inequality constraints of the transient stability are formulated as follows:

|δi − δCOI |max ≤ δmax i = 1, .., Ng, (14)

where |δi − δCOI |max represents the maximum deviation of the ith generator rotor angle from the COI and

δmax is the maximum rotor angle that is allowed, and its value is commonly based on experiences. The value
of δmax is determined by the method of trial and error for both test systems in this study. These values are
different for each system in the literature.
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2.6. The calculation of fitness value

The state variables of the Newton–Raphson method are chosen as the control variables of the ABC algorithm
and the control variables of the Newton–Raphson method are chosen as the state variables of the ABC algorithm.
Thus, the fitness value of the individual is calculated by adding the violation at the control variables to the fuel
cost determined as the result of the Newton–Raphson algorithm. As a result, the fitness value of each bee for
the ABC algorithm can be formulated as follows:

f (x, u) = fi + KV

NP Q∑
i=1

(
Vi − V lim

i

)2
+ KQ

Ng∑
i=1

(
Qgi − Qlim

gi

)2
+ KP

(
Pslack − P lim

slack

)2

+KT

Ng∑
i=1

(
|δi − δCOI |max − δlim

)2
. (15)

V lim
i , Qlim

gi , P lim
slack, and δlim

i are defined as follows:

V lim
i =

{
V max

i ; Vi > V max
i

V min
i ; Vi < V min

i

, (16)

Qlim
gi =

{
Qmax

gi ; Qgi > Qmax
gi

Qmin
gi ; Qgi < Qmin

gi

, (17)

P lim
slack =

{
P max

slack; Pslack > P max
slack

P min
slack; Pslack < P min

slack

, (18)

δlim
i =

{
δmax; |δi − δCOI |max > δmax

0; |δi − δCOI |max < δmax

, (19)

where f (x, u) shows the fitness function; NPQ shows the number of load buses; P lim
slack , V lim

i , and Qlim
gi denote

the violated upper or lower limits of the related variables; and KP , KQ , KV , and KT are the penalty weights

of the active power output of the slack bus, reactive power output of the generator bus, load bus voltage
magnitude, and transient stability limit, respectively. If the constraints are between their upper limits and
lower limits, then the related penalty value is assumed as zero.

3. Artificial bee colony algorithm

The ABC algorithm has been successfully applied in different fields of science such as computer-industrial
engineering, hydraulic engineering, mechanical engineering, and electronic engineering since 2005 [25–28].

The ABC algorithm is a population-based algorithm that was inspired by bees looking for food, and the
flow chart of this is shown in Figure 1. This algorithm is divided into 2 groups consisting of worker bees and
nonworker bees. Nonworker bees consist of onlooker bees and scout bees.
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Enter system data and determine 
the parameters of ABC algorithm

Start

Send the worker bees by Eq. (20) to half of 
the food sources and calculate the fitness value

ite=1

Determine the worker bees through the roulette 
selection in Eq. (22)

Search better food sources by onlooker bees through 
Eq. (21) around the determined worker bees

Calculate the fitness value of onlooker bees, then
if the fitness value is better than the fitness value of the 

determined worker bees Bas= 0, if not Bas = Bas +1

Bas >Limit

Produce scout bees through Eq. (20) 

ite=ite+1

Determine the bees having the best fitness 
value as the worker bees for next iteration

ite>itemax

Finish algorithm

No

Yes

No

Yes

Figure 1. Flowchart of the ABC algorithm.

Inside the algorithm, all of the worker bees are sent to half of the food. After the calculation of the food
amount in this source, a local search is implemented around the food by the onlooker bees. If another source
that has more nutrition is explored, this source is updated as a new food source. If a better food source could
not be found by the onlooker bees or the scout bees following a certain cycle, the onlooker bees are oriented
towards a random food source. Following each cycle, the bees in the population are sorted according to the food
sources they find and the best bees are transferred to the next cycle. When the stopping criterion is ensured,
the algorithm is ended. The initial points for the algorithm and the food sources that the worker bees will fly
to are determined by Eq. (20):

uij = umin j + rand × (umax j − umin j,) (20)

where the parameters umin j and umax j show the minimum and maximum of the variable uj . After the initial
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bee population is produced, the sources that the onlooker bees will fly to are determined by Eq. (21):

vij = min(uij, ukj) + (max(uij, ukj) − min(uij, ukj)) × (rand − 0.5) × 2, (21)

where vij , min (uij, ukj) , and max (uij, ukj) represent the onlooker bee to be produced and the minimum and
maximum of the variables of bees uij and ukj , respectively. The rand value is between 0 and 1. The food

sources that the onlooker bees will settle at are determined by Eqs. (22) and (23). For the selection of the

onlooker bees, roulette wheel selection [29] is utilized. In roulette wheel selection, the probability of the selection
of the bee with high efficiency is higher. The efficiency of a bee within the population in roulette wheel selection
is given in Eq. (22).

Pi =
fiti

NF∑
j=1

fitj

(22)

where fiti and NF show the modified fitness value of the ith solution and the number of the food sources,
respectively. The term of fiti is calculated by Eq. (23).

fiti =
1
fi

, (23)

Worker bees whose sources have come to an end become scout bees and start to randomly search for new
food source nectar, for example, by Eq. (20). There is no guidance for the scout bees when searching for new
food sources. They primarily try to find any kind of food source. The worker bee whose food source nectar has
come to an end or whose profitability of the food source drops under a certain level is selected and classified as
the scout bee.

3.1. Simulation results
In this section, the ABC algorithm proposed for the solution of the TSCOPF problem is tested both on a WSCC
3-generator, 9-bus system and a IEEE 30-bus system. For both of the test systems, a classical generator model
is used for the synchronous generators and a constant impedance model is used for the loads. The software
developed with MATLAB is run with a Core 2 Duo 2.67 CPU and 1 GB RAM. The software used for the
transient stability analysis was given in [30]. In this study, the transient stability analysis is applied to the
whole bee population.

As in many studies in the literature, the ABC algorithm’s stopping criterion is chosen as 100 iterations.
The optimum results are obtained as 75 and 100 iterations for the WSCC 3-generator, 9-bus system and the
IEEE 30-bus system, respectively. When the number of iterations grows too much (>1000 iterations), the
algorithm obtains the global optimum for each attempt, but the time consumed increases, as well. For this
reason, various attempts have been made for different population sizes in the number of chosen iterations.
As a result of the trials of different population sizes, it was detected that the optimum conclusion is reached
immediately with the sizes of 5 and 10 colonies for the WSCC 3-generator, 9-bus system and the IEEE 30-bus
systems, respectively.

3.2. WSCC 3-generator, 9-bus system

The WSCC 3-generator, 9-bus system is shown in Figure 2 and the system data are given in [31]. The fuel cost

coefficients are taken from [17]. The upper and lower limits of all of the generator voltage magnitudes are set at
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1.10 p.u. and 1.00 p.u., respectively. The upper and lower limits of the voltage magnitudes of the other buses
are also set at 1.10 p.u. and 0.90 p.u., respectively. For this test system, the OPF and TSCOPF problems are
solved for 2 fault cases. The step time of the integration is 10 ms for the transient stability simulation and the
simulation period is taken into consideration as 5.0 s. Here, δmax is set to 200◦ for the WSCC 3-generator,
9-bus system.

97

82 3

5 6

4

1

G2 G3

G1

Figure 2. One-line diagram of the WSCC 3-generator, 9-bus system.

Base case: There is no transient stability constraint in this optimization problem. The objective in this
optimization problem is to minimize the total fuel cost of the entire power system to subject the generator
constraints.

The 2 fault cases for the test system are:

Case A: A 3-phase to ground fault at bus 7 and in line 7-5 in the system. The fault clearing time is taken
as 0.35 s; this time is longer than the CCT of 0.162 s.

Case B: A 3-phase to ground fault at bus 9 and in line 9-6 in the system. The fault clearing time is taken
as 0.3 s; this is longer than the CCT of 0.214 s.

For the base OPF, Case A and Case B and the minimum, maximum, and average fuel costs are given in
Table 1. The small differences between the minimum and maximum solutions obtained for these 3 cases show
that the proposed method is quite a strong algorithm in the determination of the global optimum. The results
obtained by the ABC algorithm are compared to those of the DE method in [18], the trajectory sensitivities

(TS) method in [17], and the time-domain simulations (TDS) method in [32], and all of the solutions are given
in Table 2. For each of the 3 cases, it can be seen that lower fuel costs are obtained by the ABC algorithm.
Although the number of variables is low and the searching area is small, the ABC algorithm has attained more
successful solutions than those in the literature.

For each case, the variation of fuel cost against the iterations is shown in Figure 3. The weight of the
total fuel cost in the fitness value rises such that the base case does not contain the transient stability constraint.
Thus, as the iteration number rises, the total fuel cost falls. If the constraints are between their upper and lower
limits, then the related penalty value is assumed as zero. If the transient stability constraint is added to the
optimization problem, then the weight of the total fuel cost in the fitness value falls until the system remains
stable. For case A, the total fuel cost fell after the proposed algorithm attained an optimum at 35 iterations.
For case B, an optimum is attained at 10 iterations. Next, both of the systems remain stable and the total fuel
cost is minimized.
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Table 1. Test solutions for the WSCC 3-generator, 9-bus system.

Case Base case A B
Pg1 + Qg1 (MVA) 107.15-j37.17 117.69-j65.51 121.23-j51.66
Pg2 + Qg2 (MVA) 114.18-j48.64 105.89-j41.88 120.63-j42.72
Pg3 + Qg3 (MVA) 96.74-j60.64 94.23-j56.83 75.94-j56.20

V1 (p.u.) 1.033 1.025 1.019
V2 (p.u.) 1.024 1.070 1.041
V3 (p.u.) 1.028 1.070 1.044

Minimum cost ($/h) 1131.87 1133.18 1137.78
Maximum cost ($/h) 1132.22 1138.8 1146.7
Average cost ($/h) 1132.04 1135.9 1142.2

Table 2. Comparison of total fuel costs for the WSCC 3-generator, 9-bus system.

Case DE [18] TS [17] TDS [32] ABC
Base case ($/h) 1132.30 1132.59 1132.18 1131.87
Case A ($/h) 1140.06 1191.56 1134.01 1133.18
Case B ($/h) 1147.77 1179.95 1137.82 1137.78
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1.135
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1.145

Iteration number
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h)

Base case Case A Case B

Figure 3. The fuel cost variation against the iterations for the WSCC 3-generator, 9-bus system.

The relative rotor angles for Cases A and B are shown in Figures 4 and 5, respectively. It can be seen
clearly that the system still remains stable after the disturbance.
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Figure 4. Relative rotor angles for the fault at bus 7. Figure 5. Relative rotor angles for the fault at bus 9.

3.3. IEEE 30-bus system

The IEEE 30-bus test system contains 41 transmission lines, 6 generators, and 4 transformers, as shown in
Figure 6. The system data were taken from [33] and the data for the generators in the test system are given
in Table 3. The total active load and reactive load of the system is 189.2 MW and 107.2 MVar, respectively.
Here, δmax is set to 50◦ for the IEEE 30-bus system.
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Figure 6. IEEE 30-bus system one-line diagram.

Table 3. Generator data for the IEEE 30-bus system.

Bus number
Active power limits Cost coefficient

Min (MW) Max (MW) a b c
1 0 80 0.0000 2.00 0.02000
2 0 80 0.0000 1.75 0.01750
13 0 40 0.0000 3.00 0.02500
22 0 50 0.0000 1.00 0.06250
23 0 30 0.0000 3.00 0.02500
27 0 55 0.0000 3.25 0.00834

The following fault case is studied for the test system:
Case C: A 3-phase to ground fault at bus 2 and in line 2-5 in the system. The fault clearing time is taken

as 0.18 s. The step time of the integration is at 10 ms for the transient stability simulation and the simulation
period is taken into consideration as 5.0 s.

For the IEEE 30-bus test system, the fuel cost variation against the iterations is shown in Figure 7. Note
that the total fuel cost tends to fall after the proposed algorithm attains an optimum at 10 iterations. The
relative rotor angles are shown in Figure 8 for Case C. It can be seen from Figure 8 that all of the generators
remain stable during the simulation period. The obtained solutions are compared with those in the literature
and all of the solutions are given in Table 4. It can be seen from the results given in the Table 4 that the worst
solution obtained by the ABC algorithm is better than the best solution obtained by the other algorithms. These
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results prove the success of the ABC algorithm for solving the TSCOPF problem. For solving the TSCOPF
problem, the ABC algorithm is faster than the GA by 77.1%, PSO by 70.1%, and EP incorporating neural
network by 21.8%.
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Figure 7. The fuel cost variation against the iterations

for the IEEE 30-bus system.

Figure 8. Relative rotor angles for the fault at bus 2.

Table 4. Comparison of all of the results for the IEEE 30-bus system.

Case C GA [15] PSO [15] EPNN [19] ABC
Pg1 (MW) 41.88 43.63 48.95 42.65
Pg2 (MW) 56.38 58.05 38.41 60.15
Pg3 (MW) 22.94 23.29 23.34 17.96
Pg4 (MW) 37.63 32.49 24.65 24.68
Pg5 (MW) 16.7 17.04 17.61 15.00
Pg6 (MW) 16.53 17.54 38.99 31.64

T1 (buses 6–9) 1.01 1.01 1.01 1.0104
T2 (buses 6–10) 0.95 0.96 0.98 1.0115
T3 (buses 4–12) 1.00 1.01 1.03 0.9822

T4 (buses 27 and 28) 0.97 0.97 1.04 0.9968
Best cost ($/h) 585.62 585.17 585.12 576.755

Worst cost ($/h) 585.71 585.69 586.73 581.980
Average cost ($/h) 585.66 585.34 585.84 579.367

Time (s) 752.3 576.4 220.17 172

4. Conclusions

In this paper, the ABC algorithm is successfully applied for the solution to the TSCOPF problem for the
first time. Here, 2 test systems and 3 fault cases are taken into consideration. For these cases, the TSCOPF
problem is solved by the ABC algorithm. The solutions obtained by the ABC algorithm are compared with
those obtained by other heuristic methods in the literature. According to this comparison, it can be clearly
seen that the ABC algorithm is superior to other algorithms in terms of both the solution time and the fuel
cost. Furthermore, the ABC algorithm reaches the global optimum quickly and effectively. These results show
us that the ABC algorithm can be used to efficiently solve the TSCOPF problem of large power systems. It
can be seen from the obtained optimization results that this algorithm, which was developed in recent years,
can be applied to many problems in power systems.
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