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Received: 14.02.2011 • Accepted: 13.07.2011 • Published Online: 22.03.2013 • Printed: 22.04.2013

Abstract: In this paper, the stability of time-delayed DC motor speed control systems is analyzed. The measurement

devices and communication links used by networked control systems, cause a significant amount of time delays. The

stability boundary of the system in terms of the time delay is theoretically determined and an expression is obtained to

compute the delay margin in terms of system parameters. The delay margin is defined as the maximum amount of time

delay for which the DC motor speed control system is marginally stable. The results indicate that the system becomes

unstable if the time delay exceeds the delay margin at a given set of parameters. Theoretical delay margin results are

verified using the time-domain simulations of MATLAB/Simulink.
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1. Introduction

The time delay in feedback control has become an important issue in recent years with the extensive use
of networked control systems (NCSs) [1–7]. The time delays observed in NCSs, known as network-induced
delays, consist of sensor-to-controller delay and controller-to-actuator delay. Even though the advances in
communication networks have reduced the magnitude of the networked-induced delays significantly, they still
cannot be ignored when designing a control system. Time delays have adverse effects on the control system
dynamics and may cause closed-loop instabilities.

The DC motor control system is a typical example of control systems in which the undesirable impacts
of time delays on the system dynamic are observed [5]. DC motor control systems are stable systems in general
when time delays are not considered. However, inevitable time delays may destabilize the closed-loop system
when the DC motor is controlled through a network [5]. For this reason, time delays must be considered in the
process of a controller design, and methods need to be developed to compute the delay margin defined as the
maximum amount of time delay for a stable operation. The description of the system stability boundary in terms
of time delay also helps us design an appropriate controller for cases in which uncertainty in network-induced
delays is unavoidable. To the best of our knowledge, the stability of networked control DC motor speed control
systems has not been comprehensively analyzed, and in particular, the description of the stability boundary in
terms of the delay margin for a broad range of controller gains has not been reported in the literature.

In stability analysis of NCSs, it is common practice to use continuous-time models of the controller, plant,
and network-induced delays [4,6–8]. Various methods have been reported in the literature to estimate delay
margins of continuous systems with time delays. All existing methods aim to compute the time delay value at
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which the system characteristic equation has purely imaginary roots. There are mainly the following 5 distinct
approaches in the literature: i) the Schur–Cohn method (Hermite matrix formation) [9–11]; ii) a direct method

to eliminate exponential terms in the characteristic equation [12]; iii) the matrix pencil Kronecker sum method

[9–11,13]; iv) Kronecker multiplication and elementary transformation [14]; and v) Rekasius substitution [15–18].
Each of these methods has certain advantages and disadvantages depending on the time-delayed system under
study. One can find a detailed comparison of these methods in [19], illustrating their strengths and weakness.

In our previous work [20], the Rekasius substitution method [15,17], which is a frequency domain approach,
was effectively used to analyze the stability of the time-delayed DC motor speed control system and to compute
delay margins over a large range of controller gains. In this paper, we present an alternative frequency domain
theoretical method reported in [12] to estimate the delay margins of the DC motor speed control system. The
proposed method first transforms the characteristic equation having exponential terms into a regular polynomial
without any exponential terms. This method does not utilize any approximation to remove the exponential
terms in the characteristic equation. For that reason, it is an exact method and the real positive roots of
the new polynomial are exactly the same as the imaginary roots of the original characteristic equation having
exponential terms. Moreover, by using the new polynomial, one can effectively investigate the delay dependency
of the system stability and the sensitivities of crossing roots (root tendency) with respect to the time delay.
This is the significant contribution of the proposed method. An analytical expression is then developed to
compute delay margins in terms of controller gains and DC motor parameters. The comparison of the proposed
method with other methods utilizing Rekasius substitution given in [15,17] indicates that this approach is more
effective and easy to use and to implement. In addition, there is no need to introduce a pseudo-delay or to use
the Routh–Hurwitz stability criterion in employing this method in stability analysis. In our previous work, we
successfully applied this method to the stability analysis of time-delayed electric power systems and generator
excitation control systems to determine delay margins [21,22]. In this paper, the delay margins are computed for
a wide range of controller gains and compared with those obtained by using the Rekasius substitution method
[20]. Finally, the accuracy of theoretical delay margin results is verified using MATLAB/Simulink [23].

2. Time-delayed DC motor speed control system

This section briefly describes the dynamics of the time-delayed DC motor speed control system. Figure 1
illustrates the block diagram of the system. The dynamics of a DC motor driving a load are described by a
differential equation of the mechanical system and volt-ampere equations of the armature circuit [5].

J dωm

dt + Bωm + Tl = Te = Kia

u(t) = va = ea + Raia + Ladia/dt
(1)

Gc(s) G(s)
+

-

PI controller DC motor 

Reference
speed

Motor speedω ref

ω

Bse− τ

Measurement and 
communication delay

Processing
delay

Fse− τ

Figure 1. Block diagram of time-delayed DC motor speed control system.
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Here, u = va represents the armature winding input voltage; ia , Ra , and La denote the current, resistance,
and inductance of the armature circuit; respectively; ea = Kaωm is the back-electromotive-force (EMF) voltage

(i.e. generated speed voltage); ωm is the angular speed of the motor; Te and Tl are the electromagnetic torque
developed by the motor and the mechanical load torque opposing direction;J is the combined moment of inertia
of the load and the rotor; B is the equivalent viscous friction constant of the load and the motor; and K and
Ka are the torque constant and the back-EMF constant, respectively. The transfer function of the DC motor
could be easily obtained as follows:

G(s) =
K

JLa

s2 +
(

Ra

La
+ B

J

)
s + RaB+KKa

JL

. (2)

The proportional-integral (PI) controller is defined by the following transfer function:

Gc(s) = KP +
KI

s
, (3)

where KP and KI represent the proportional and integral gains, respectively. The PI controller is used to
shape the speed response so as to reach the desired value by adjusting the rate of angular speed rise after a step
change and the settling time after initial overshoot.

As shown in Figure 1, all time delays in the feedback loop are lumped together into a feedback delay
(τB) between the output and the controller. This delay represents the measurement and communication delays

(sensor-to-controller delay). The controller processing and communication delay (τF ) (controller-to-actuator

delay) is placed in the feedforward part between the controller and the DC motor. The system characteristic
polynomial is easily determined from

Δ(s, τ) = 1 + GC(s)G(s)e−sτ = 0 (4)

as
Δ(s, τ) = P (s) + Q(s)e−sτ = 0, (5)

where τ = τB + τF and P (s),Q(s) are polynomials in s with real coefficients. These polynomials are given as

P (s) = p3s
3 + p2s

2 + p1s

Q(s) = q1s + q0

, (6)

where
p3 = 1, p2 = Ra

La
+ B

J
, p1 = RB+KKa

JL
, p0 = 0

q1 = KKP

JLa
, q0 = KKI

JLa

. (7)

The location of the roots of the characteristic Eq. (5) must be determined to analyze the stability of the DC
motor speed control system. In the following section, the proposed theoretical method is explained in detail
and a formula to compute delay margins is derived.

3. Stability analysis

3.1. Delay margin definition

In stability analysis of time-delayed systems, it is essential to find conditions on the delay such that the system
will be stable. Similar to the delay-free system (i.e. τ = 0), the stability of the system is determined by
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locations of the roots of the characteristic equation defined by Eq. (5). The characteristic equation in Eq. (5)
clearly indicates that roots are functions of the time delay τ due to an exponential term. It is expected that
locations of some roots will change as τ varies. For asymptotic stability, it is required that all roots of Eq. (5)
be located in the left half of the complex plane. In other words,

Δ(s, τ) �= 0, ∀s ∈ C+, (8)

where C+ denotes the right half plane of the complex plane.
The existence of the time delay τ may give rise to 2 types of asymptotic stability situations depending

on system parameters [10,12]:

i) Delay-independent stability: The system defined by characteristic Eq. (5) is delay-independent stable if

the stability condition of Eq. (8) is satisfied for all positive and finite values of the delay, τ ∈ [0,∞).

ii) Delay-dependent stability: The system defined by characteristic Eq. (5) is delay-dependent stable if the

condition of Eq. (8) is satisfied for some values of delays only in an interval, τ ∈ [0,τ∗) .

When the system is delay-dependent stable, some of the characteristic roots move if time delay τ is
increased starting from τ = 0. Figure 2 shows how some roots move with respect to the time delay. It is clear
from Figure 2 that the system is assumed to be stable for τ = 0, known as a delay-free system. This is a valid
assumption because the speed control system is stable for practical values of system parameters when the total
time delay is ignored. Figure 2 illustrates that a pair of complex roots start moving in the left half complex
plane as time delay τ increases. At a certain finite delay value τ∗ , roots cross the imaginary axis and pass to
the right half plane if the delay is further increased. The time delay value for which the roots are located on
the imaginary axis is known as the delay margin for stability. In other words, the system will be stable for any
given delay less than this margin, τ < τ∗ .

σ

0τ =

0τ =

j

Stable region Unstable region

*τ

cjω
1τ 2τ

1 *τ τ τ= −Δ
2 *τ τ τ= +Δ

1 2*τ τ τ< <

cjω−

Figure 2. Illustration of eigenvalue movement with respect to time delay.
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The first step in the stability analysis of the DC motor speed control system is to determine whether
the system for any given set of parameters is delay-independent stable or not, and if not, to calculate the delay
margin τ∗ . The stability problem of interest is defined as follows:

Given : Time-delayed DC motor speed control system or its characteristic Eq. (5).

Determine: If the system stability depends on the time delay or not; if the system is delay-dependent
stable, compute the delay margin.

The following subsection presents a direct method that allows us to evaluate the delay dependency of
stability and enables us to develop an analytical formula for delay margin computations [12].

3.2. Solution method

It is well known that all of the roots of the characteristic equation of Eq. (5) must be located in the left half
complex plane for a stable system. In the single delay case, the main objective of the stability analysis is to
compute delay margin values τ∗ for various system parameters. Eq. (5) clearly indicates that the characteristic

equation, Δ(s, τ) = 0, is an implicit function of s and τ . For simplicity, it is assumed that a delay-free system

is stable. In other words, all roots of Δ(s, 0) = 0 are in the left half plane. Suppose that the characteristic

equation Δ(s, τ) = 0 has a root on the imaginary axis at s = jωc for some finite values of the time delay τ .

Because of the complex conjugate symmetry of complex roots, the equation Δ( − s, τ) = 0 will also have the
same root at s = jωc for the same value of the time delay τ . Consequently, the problem now reduces to finding
values of time delay τ such that both Δ(s, τ) = 0 and Δ( − s, τ) = 0 have a common root at s = jωc . This
result could be stated as follows:

P (s) + Q(s)e−sτ = 0

P ( − s) + Q( − s)esτ = 0
. (9)

The exponential terms in Eq. (9) could be easily eliminated and the following new characteristic equation is
obtained:

P (s)P ( − s) − Q(s)Q( − s) = 0. (10)

The replacement sby jωc in Eq. (10) leads to the following polynomial in ω2
c [12,21]:

W (ω2
c ) = P (jωc)P ( − jωc) − Q(jωc)Q( − jωc) = 0. (11)

The final form of the new characteristic equation in terms of system parameters is obtained by substituting
P (s) and Q(s) polynomials given in Eqs. (6) and (7) into Eq. (11).

W (ω2
c ) = t6ω

6
c + t4ω

4
c + t2ω

2
c + t0 = 0 (12)

The corresponding coefficients in Eq. (12) are given as

t6 = p2
3, t4 = p2

2 − 2p1p3,

t2 = p2
1 − q2

1 , t0 = −q2
0

. (13)

It is obvious from Eq. (12) that the exponential terms in the system characteristic equation given in Eq. (5) are

now eliminated without using any approximation. For that reason, the positive real roots of Eq. (12) coincide

with the imaginary roots of Eq. (5) exactly. The computation of the real roots of Eq. (12) is easier than the

computation of the imaginary roots of Eq. (5). This is a great advantage since various methods are available to
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determine the real roots of Eq. (12). The delay-dependent stability of the DC motor speed control system could

then be easily analyzed by obtaining the roots of Eq. (12). Depending on these roots, the following situations
may be observed:

i) The new polynomial of Eq. (12) does not possess any positive real roots. In this case, the characteristic

equation of Eq. (5) will not have any roots on thejω -axis. Consequently, the DC motor speed control
system will be delay-independent stable.

ii) The polynomial of Eq. (12) may have at least one positive real root. In this case, the characteristic

equation of Eq. (5) will have at least a pair of complex roots on thejω -axis. As a result, the DC motor
speed control system will be delay-dependent stable.

For a positive real root ωc , the corresponding value of delay margin τ∗ can be easily computed using
Eq. (5) as follows [12]:

τ∗ =
1
ωc

Tan−1

⎛
⎝ Im

{
P(jωc)
Q(jωc)

}
Re

{
−P(jωc)

Q(jωc)

}
⎞
⎠ +

2rπ

ωc
; r = 0, 1, 2, ...,∞. (14)

It must be noted that the new characteristic polynomial of Eqs. (11) or (12) will have only a finite number of

positive real roots for all τ ∈ �+ . The set of these real roots is given as follows:

{ωc} = {ωc1, ωc2, ..., ωcq} . (15)

The number of real roots is affected by both the system order n and the coefficients of the polynomials P (s)

and Q(s) . Moreover, for each real positive rootωcm , m = 1, 2, ..., q , the corresponding delay margin could be

computed by Eq. (14). These delay margins τ∗
m constitute a set of infinitely many delay margins which are

periodically spaced. Let us call this set

{τ∗
m} =

{
τ∗
m1 , τ

∗
m2, ..., τ

∗
m,∞

}
m = 1, 2, ..., q, (16)

where τm,r+1 − τm,r = 2π
ωc

represents the period of repetition. Finally, the system delay margin will be the

minimum of τ∗
m , m = 1, 2, ..., q :

τ∗ = min(τ∗
m). (17)

Once the set of real positive roots of Eq. (12) is computed, it is easy to compute the corresponding delay

margin for each real positive root ωcm by using Eq. (14). The substitution of polynomials P (s = jωcm) and

Q(s = jωcm) given in Eqs. (6) and (7) into Eq. (14) results in the following expression:

τ∗
m =

1
ωcm

Tan−1

(
q0p1ωcm + (q1p2 − q0p3)ω3

cm

(p2q0 − q1p1)ω2
cm + q1p3ω4

cm

)
+

2rπ

ωcm
; r = 0, 1, 2, ...,∞. (18)

For any positive roots of Eq. (11), it is also required to investigate whether the root of Eq. (5) crosses the

imaginary axis with increasing τ at s = jωc . The sign of Re
[

ds
dτ

]
determines the existence of such crossing.

For such crossing to occur, it is necessary that characteristic roots must cross the imaginary axis with a non-zero
velocity or

Re

[
ds

dτ

]
s=jωck

�= 0, (19)
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where Re(•) represents the real part of a complex variable. The sign of root sensitivity is generally called root

tendency (RT) [17].

RT |s=jωc
= sgn

{
Re

[
ds

dτ

]
s=jωc

}
(20)

An expression for the root tendency could be easily derived by taking the derivative of Eq. (5) with respect to
τ :

ds

dτ
=

Q(s)se−sτ

P ′(s) + Q′(s)e−sτ − Q(s)τe−sτ
, (21)

where P ′(s) and Q′(s) denote the first-order derivative of P (s) and Q(s) with respect to s , respectively. Using

Eq. (5), the above expression could be rewritten as:

ds

dτ
= −s

[
P ′(s)
P (s)

− Q′(s)
Q(s)

+ τ

]−1

. (22)

In order to obtain the root tendency, Eq. (22) needs to be evaluated at s = jωc .

RT |s=jωc
= −sgn

[
Re

(
jωc

(
P ′(jωc)
P (jωc)

− Q′(jωc)
Q(jωc)

+ τ

)−1
)]

= −sgn

[
Re

(
1

jωc

(
P ′(jωc)
P (jωc)

− Q′(jωc)
Q(jωc)

+ τ

))]
(23)

= sgn

[
Im

(
1
ωc

(
Q′(jωc)
Q(jωc)

− P ′(jωc)
P (jωc)

))]

It must be emphasized that the root tendency given by Eq. (23) is independent from the time delay τ . This
implies that even though there is an infinite number of values of τ associated with each value of ωc that makes
Δ(jωc, τ ) = 0, the behavior of the roots at these points will always be the same. The RT expression of Eq. (23)

could be further simplified so that the RT information can be deduced trivially from the polynomial W (ω2
c )

[12]. Recall that for s = jωc we have W (ω2
c ) = 0. Then, from Eq. (11), we have Q(jωc) = P(jωc)P(−jωc)

Q(−jωc)
.

Thus,

RT |s=jωc
= sgn

[
Im

(
1
ωc

(
Q′(jωc)Q(−jωc)
P (jωc)P (−jωc)

− P ′(jωc)
P (jωc)

))]

= sgn

[
Im

(
1
ωc

(
Q′(jωc)Q(−jωc) − P ′(jωc)P (−jωc)

P (jωc)P (−jωc)

))]
(24)

= sgn

[
Im

(
1
ωc

(Q′(jωc)Q(−jωc) − P ′(jωc)P (−jωc))
)]

,

since P (jωc)P (−jωc) = |P (jωc)|2 > 0. Finally, using the property Im(z) = z−z̄
2j , for any complex number z ,

we have

RT |s=jωc
= sgn

1
2jωc

[(Q′(jωc)Q(−jωc) − Q(jωc)Q′(−jωc) − P ′(jωc)P (−jωc) + P (jωc)P ′(−jωc))] , (25)
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which finally results in

RT |s=jωc
= sgn

[
W ′(ω2

c )
]
, (26)

where the prime denotes differentiation with respect to ω2
c . The evaluation of the root tendency by Eq.

(26) is one of the most significant features of the proposed method. This expression provides a simple
criterion to find the direction of transition of the roots at s = jωc as τ increases from τ1 = τ∗ − Δτ to
τ2 = τ∗ + Δτ, 0 < Δτ << 1, as shown in Figure 2. If RT = +1 for a root s = jωc , then this root crosses the
imaginary axis from the stable left half plane to the unstable right half plane or vice versa if RT = −1.

For the DC motor speed control system, the root tendency for each crossing frequency could be easily
found by the following equation obtained by taking the derivative of the polynomial given by Eq. (12) with

respect to ω2
c .

RT |s=jωc
= sgn

[
W ′(ω2

c )
]

= 3t6ω
4
c + 2t4ω

2
c + t2 (27)

At this point, it is necessary to compare the proposed method with the one presented in [15,17]. The method

of [17] first utilizes Rekasius substitution [15] to remove the exponential terms in the characteristic equation

of Eq. (5). The elimination of the exponential terms is achieved by using the Rekasius substitution, an exact
substitution given by

e−sτ =
1 − T.s

1 + T.s
, (28)

where T ∈ � represents a pseudo-delay. With the help this substitution, the characteristic equation of Eq. (5)

is transformed into a new polynomial without having any exponential terms similar to one given in Eq. (11).
Moreover, purely imaginary roots of this new polynomial, which could be computed by the Routh stability
criterion, are the same as those of the characteristic equation. Finally, the corresponding delay margin is
determined by [17]:

τ∗ =
2
ωc

[
Tan−1(ωcT ) ± rπ

]
, r = 0, 1, 2, ... (29)

It must be noted that both methods are based on the elimination of the exponential terms in the characteristic
equation using different substitutions that are both exact. Moreover, both methods aim to obtain a new
polynomial not including any exponential terms. In the proposed method, the real roots of this new polynomial,
if any exist, coincide with the imaginary roots ωc of the original characteristic equation exactly. The comparison
of the method of [17] with the proposed one clearly shows that the method of [17] needs the introduction of a
pseudo-delay T and an additional step, the Routh–Hurwitz stability criterion, to compute the pseudo-delay T

and the imaginary roots of the characteristic equation ωc . Additionally, it must be stated that the proposed
method enables us to easily determine whether the system is delay-dependent or delay-independent stable.

4. Theoretical and simulation results

4.1. Theoretical results

In this section, for various values PI controller gains, delay margins are determined using Eq. (18). The accuracy

of theoretical delay margin results are confirmed by using MATLAB/Simulink. The DC motor parameters used

in this paper is as follows [5]: J = 42.6 × 10−6 kg m2 , La = 170 mH, Ra = 4.67 Ω, B = 47.3 × 10−3 N m

s/rad, K = 14.7 × 10−3 N m/A, Ka = 14.7 × 10–3 V s/rad.
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First, we choose typical PI controller gains (KP = 0.3; KI = 1.0 s−1) to demonstrate the delay margin
computation. The process of the delay margin computation consists of the following 4 steps:

Step 1: Determine the characteristic equation of the time-delayed DC motor speed control system using
Eqs. (5)–(7). This equation is found to be:

Δ(s, τ) = (s3 + 28.583s2 + 60.404s) + (608.948s + 2029.826)e−sτ = 0.

Note that for τ = 0 the characteristic equation has roots at s1,2 = −12.547 ± j20.600; s3 = −3.489. The
delay-free system is stable since these roots are located in the left half complex plane.

Step 2: Obtain the W (ω2
c ) polynomial using Eq. (12) or (13), and find its real positive roots ωcm , if it

exists. The polynomial is found as:

W (ω2
c ) = ω6

c + 696.2ω4
c − 3.672x105ω2

c − 4.120x106 = 0.

This polynomial has only 1 positive real root, ωc = 18.944 rad/s .

Step 3: Calculate the delay margin for each positive root found in Step 2 using Eq. (18) and select the
minimum of those as the system delay margin. The delay margin is found as τ∗ = 0.04713 s.

Step 4: Determine the root tendency (RT) for each positive root ωcm using Eq. (27). The RT for

ωc = 18.944 rad/s is computed as RT = +1. This RT indicates that a pair of complex roots moves from

the stable left half plane to the unstable right half plane, crossing the jω -axis at s = ±j18.944 rad/s for
τ∗ = 0.04713 s . As a result, the system becomes unstable.

For a complete theoretical analysis, the effect of PI controller gains on the delay margin is also investigated.
For this reason, the values of PI controller gains are chosen in the ranges of KP = 0.1− 0.9 and KI = 0.1− 3.0

s−1 and delay margins are computed. The Table shows delay margins for various values of PI controller gains.
The following observations could be made about delay margin results. It is clear from the Table that the delay
margin decreases when the integral controller gain is increased for fixed KP values. The effect of KP on the

delay margin has 2 tendencies for a fixed KI . When KI belongs to the interval of KI = 0.1−1.3 s−1 , the delay

margin decreases when KP is increased. On the contrary, when KI lies in the range of KI = 1.4 − 3.0 s−1 ,
an increase is observed in the delay margin with an increase in KP when KP is smaller, whereas it decreases
when KP is larger.

Moreover, comparison of the delay margins presented in the Table with those obtained by the Rekasius
substitution method [20] clearly shows that delay margin differences between the 2 methods are considerably
small. It should be mentioned here that the largest difference between delay margins is observed to be around
0.1% for the same range of PI controller gains presented in the Table. More importantly, the proposed method
is conservative compared to the Rekasius substitution method.

4.2. Verification of theoretical results

The theoretical delay margin results are verified using MATLAB/Simulink. Figure 3 shows the Simulink
model of the time-delayed DC motor speed control system. The box labeled as the DC motor represents
the state-space equation model of the DC motor given in Eq. (1). The box shown as the PI controller is the

Simulink model of the PI controller given by Eq. (3). Two transportation delay blocks are used to include the

measurement/communication delay in the feedback path and the processing delay in the feedforward path. The
box’s motor speed and scope are used to get the speed data and to display their waveform.

389



AYASUN/Turk J Elec Eng & Comp Sci

Table. Delay margins obtained by the proposed theoretical method.

KI (s−1)
τ∗ (s)

KP = 0.1 KP = 0.3 KP = 0.5 KP = 0.7 KP = 0.9
0.1 0.20612 0.05638 0.03167 0.02193 0.01675
0.2 0.18152 0.05540 0.03140 0.02179 0.01671
0.3 0.15808 0.05440 0.03111 0.02167 0.01659
0.4 0.13741 0.05339 0.03083 0.02154 0.01652
0.5 0.11980 0.05237 0.03055 0.02141 0.01645
0.6 0.10497 0.05133 0.03026 0.02128 0.01637
0.7 0.09246 0.05029 0.02997 0.02115 0.01630
0.8 0.08185 0.04924 0.02969 0.02102 0.01623
0.9 0.07280 0.04818 0.02940 0.02088 0.01615
1.0 0.06500 0.04713 0.02910 0.02075 0.01608
1.1 0.05824 0.04608 0.02881 0.02062 0.01600
1.2 0.05233 0.04502 0.02852 0.02049 0.01593
1.3 0.04712 0.04398 0.02822 0.02035 0.01585
1.4 0.04250 0.04294 0.02793 0.02022 0.01578
1.5 0.03838 0.04190 0.02764 0.02009 0.01570
1.6 0.03469 0.04088 0.02734 0.01996 0.01563
1.7 0.03136 0.03986 0.02705 0.01982 0.01555
1.8 0.02835 0.03886 0.02675 0.01969 0.01547
1.9 0.02562 0.03787 0.02645 0.01956 0.01539
2.0 0.02312 0.03689 0.02616 0.01942 0.01532
2.1 0.02083 0.03593 0.02586 0.01929 0.01525
2.2 0.01873 0.03498 0.02556 0.01915 0.01517
2.3 0.01679 0.03405 0.02527 0.01902 0.01509
2.4 0.01499 0.03313 0.02497 0.01888 0.01502
2.5 0.01333 0.03223 0.02468 0.01875 0.01494
2.6 0.01179 0.03135 0.02438 0.01861 0.01487
2.7 0.01035 0.03048 0.02409 0.01848 0.01479
2.8 0.00901 0.02963 0.02379 0.01834 0.01471
2.9 0.00776 0.02879 0.02350 0.01821 0.01464
3.0 0.00658 0.02798 0.02321 0.01807 0.01456

In order to illustrate the verification, PI controller gains are chosen as KP = 0.3; KI = 1.0 s−1 . It is
clear from the Table that the delay margin is τ∗ = 0.04713 s for these PI gains. This theoretical delay margin
result implies that the system will be marginally stable at this delay value. However, using the Simulink model
shown in Figure 3, it is found that the system is marginally stable at τ∗ = 0.04726 s. Figure 4 shows simulation
results for this delay value. The error between the theoretical delay margin and the one obtained by simulation
is 0.2758%, which is evidently negligible. It is clear from Figure 4 that persistent oscillations occur, which
verifies the marginal stability predicted by the theory. When the time delay is less than τ∗ = 0.04726 s, the
speed control system is expected to be stable. Figure 5 presents such a stable simulation result for τ = 0.046
s. On the other hand, when the time delay is larger than τ∗ = 0.04726 s, the system becomes unstable since it
has increasing oscillations, as shown in Figure 6 for τ = 0.048 s.
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Figure 3. Simulink model of the time-delayed DC motor speed control system.
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Figure 4. Motor speed for KI = 1.0s−1, KP = 0.3, and

τ∗ = 0.04726 s: marginally stable operation.

Figure 5. Motor speed for KI = 1.0s−1, KP = 0.3, and

τ∗ = 0.046 s: stable operation.
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Figure 6. Motor speed for KI = 1.0s−1, KP = 0.3, and τ∗ = 0.048 s: unstable operation.
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5. Conclusion

This paper has analyzed the closed-loop stability of a DC motor speed control system that contains time delays
in feedback and feedforward parts. A theoretical method has been used to compute the delay margin values for
stability for various values of the PI controller gains. The accuracy of delay margin results was proven using
time domain simulation capabilities of MATLAB/Simulink. It has been observed that the percentage error
between the theoretical delay margin results and those determined by simulation are negligible. Therefore, the
proposed method is an effective method to estimate delay margins of DC motor speed control systems. The
following future work is planned: i) delay margins will be computed by using time domain approaches such
as the Razumikhin theorem and Lyapunov–Krasovskii functionals, and results will be compared with those
reported in this work; and ii) the delay interval problem will be analyzed.
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