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Abstract: A successful application of a hybrid (mixed Petri net/automaton) approach for the real-time supervisory

control of an experimental manufacturing system was reported recently. The hybrid approach includes a Ramadge–

Wonham (RW) supervisor in the form of an automaton. The reduced RW supervisor offers fewer states for the

programmable logic controller (PLC) implementation of the hybrid controller with less memory requirements, but due to

a problem called the avalanche effect, the PLC implementation of the hybrid controller with the reduced RW supervisor

was not possible. This paper proposes a method to both detect and eliminate the avalanche effect problem for a RW

supervisor in the form of an automaton, which enables the PLC implementation of the hybrid controller with the reduced

RW supervisor. In addition, this paper improves the recently proposed hybrid approach by including the reduced RW

supervisor and the avalanche effect detection and elimination method. The applicability of the improved hybrid approach

is demonstrated by the PLC-based real-time control of an experimental manufacturing system.

Key words: Automata, Petri nets, supervisory control theory, hybrid supervisor, PLC, real-time implementation, ladder

logic diagram

1. Introduction

The control theory concepts for continuous systems were extended to the discrete-event environment with the

introduction of the supervisory control theory (SCT) [1–3]. In the SCT, conditions to be avoided are specified

as a forbidden state problem, an example of which is the simultaneous utilization of some resource by 2 or

more users. In addition, in the SCT, generally the controlled system is required to be nonblocking (namely

that the specified target states, often just the initial state, be maintained as reachable) and to be maximally

permissive, i.e. to permit the occurrence of all events not leading to a violation of the foregoing requirements.

Alternatively, Petri net (PN)-based approaches to supervisory control design have also been considered. This

is because the state-space representation of PNs as a vector addition system can result in a compact system

description. Therefore, the net structure is kept small even though the number of possible markings may become

large. PN models can easily be used for the systematic construction of supervisory controllers and also for the

analysis of various qualitative properties and quantitative performance evaluations [4]. However, in general,

optimal supervisors need not exist within the class of PNs [5] and nonblockingness (e.g., reversibility) is difficult

to achieve by standard PN methods.
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There are mainly 2 types of PN supervisors proposed in the literature: the compiled supervisor and the

mapping supervisor. In the former, the control policy is represented as a net structure, while in the latter, the

control actions (event enabling/disabling) are computed by an on-line controller as a feedback function of the

marking of the system. When fully compiling the supervisor action into a net structure, the following advantages

are obtained [4]: the computation of the control action is faster, and the same PN execution algorithms may

be used for both the original system and the supervisor. In addition, a closed-loop model of the system under

control can be built with standard net composition constructions. It is evident that compiled supervisors are

preferable to mapping supervisors. However, optimal PN-based controllers need not always exist, even though

the counterpart SCT problem may be solvable in the framework of automata [4]. In [6], a set of heuristic

methods was proposed for the PN-based supervisory control of discrete event systems (DESs) together with

the ladder logic diagram (LLD)-based PLC implementations of these proposed methods. The results obtained

in [6] were reported in following works [7–10]. The work reported in [7] showed how to convert PNs into

LLD code and an example system was considered to show the applicability of the proposed method for the

control of industrial systems. In [8], a more systematic method was reported compared to that in [7] in the

design on PN-based control systems. This improvement included the introduction of automation PNs (APNs),

a class of interpreted PNs, which extends the ordinary PNs by assigning sensory information to transitions

and by assigning a control action at some places in the PN. These extensions enable the control engineers

to design PN-based controllers, but the proposed method was still heuristic rather than formal. In [10], an

alternative PN-based method was proposed to address the problem of obtaining a systematic PN controller.

In the computation of the closed-loop control system, an uncontrolled PN model of the system was controlled

by means of enabling arcs. The computation of these enabling arcs includes the reachability graph of the

uncontrolled PN model and the control specifications. However, the problem with the method proposed in [10]

is that it is necessary to duplicate the controllable transitions of the original PN model and it suffers from the

state explosion problem. Optimal PN-based controllers need not always exist, even though the counterpart SCT

problem may be solvable in the framework of automata. In [11], a hybrid approach to the supervisory control of

DESs for forbidden state problems was proposed, which couples SCT (automaton) supervisors to uncontrolled

PN models through inhibitor arcs. This new type of compiled supervisor is effective even for problems whose

optimal PN-based controllers do not exist. The method improves on previous work reported in [9]; in particular:

1) PN reduction techniques are used to initially reduce the computational size; 2) the SCT is used to compute

the supervisor (as an automaton, which will then always exist provided the original problem is indeed solvable;

and 3) the state size of the computed supervisor is reduced (often significantly) by control congruence.

Assuming that an uncontrolled bounded PN model of a (plant) DES and a set of forbidden state

specifications are given, the approach proposed in [11] computes a maximally permissive and nonblocking

closed-loop hybrid model. This method is entirely straightforward logically, graphically, and technologically,

and it becomes a useful alternative to mapping supervisors, especially when an optimal PN-type controller for

the given problem does not exist. The method proposed in [11] is general in the sense that it is not limited to

any special subclass of bounded PNs, such as marked graphs or state machines. Therefore, the method should

be widely applicable and of practical interest. A successful application of a hybrid (mixed PN/automaton)

approach for the real-time supervisory control of an experimental manufacturing system was reported in [12].

The hybrid approach includes a Ramadge–Wonham (RW) supervisor in the form of an automaton. The reduced

RW supervisor offers fewer states for the programmable logic controller (PLC) implementation of the hybrid
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controller, with less memory requirements. However, due to a problem called the avalanche effect, the PLC

implementation of the hybrid controller with the reduced RW supervisor was not possible, as explained in [12].

The PLC-based implementation of supervisors (in automaton form) has been studied by many researchers

[13–23]. In [13–16], the application of the SCT to flexible manufacturing cells and PLC-based implementations

was studied. In [17,21], local modular supervisors and their PLC-based implementations were considered. The

implementation of the supervisors was proposed in LLD code [17] and in sequential function charts [21]. The

main feature of these works is that the control system was used as an interface between the real input–output

signals and the theoretical supervisors [17,19,21]. In [18,22], the conversion of finite state machines (automaton)

to LLD was proposed. The LLD implementation of finite state machines was studied in [20]. In a recent work

[23], a new approach was proposed for the LLD implementation of supervisors. The method of [23] deals mainly

with the assignment of actions (output signals) to the related states of supervisors.

The problems and possible solutions for the PLC implementation of supervisors in automaton form were

discussed in [24] The avalanche effect problem makes the program skip over an arbitrary number of states during

the same PLC scan cycle [4]. Arranging PLC code rungs in the reverse order was proposed as a simple solution

for the avalanche effect problem in [24]. However, this not a general solution and may fail in some cases [25].

In order to solve the avalanche effect problem, a general method based on expressing automata in the logical

domain was proposed in [25]. The disadvantage of the method proposed in [25] is that it requires 2 memory

elements, i.e. Boolean variables, for implementing each state of a supervisor. This is a big problem especially

when implementing a supervisor with a huge number of states in a PLC with very limited memory resources. In

this paper, a new method is proposed for the detection and elimination of the avalanche effect problem. There

are 2 contributions of this paper. In the first, an algorithm is proposed for the detection of the events that cause

the avalanche effect in a given supervisor (automaton). In the second, a very simple and effective avalanche

effect elimination method (AEEM) is proposed.

The purpose of this paper is to improve the hybrid approach of [12] using the reduced RW supervisor

and the avalanche effect detection and elimination method. The applicability of the improved hybrid approach

is demonstrated by the PLC-based real-time control of an experimental manufacturing system.

The remainder of this paper is organized as follows. Section 2 provides preliminary information about

the following: the SCT; APNs (a class of interpreted PNs); token passing logic (TPL) methodology, a technique

to convert interpreted PNs into LLDs for implementation on PLCs; the avalanche effect problem; and the

detection and elimination of the avalanche effect problem The improved version of the hybrid methodology of

[12] is proposed in Section 3. The applicability of the improved hybrid approach is demonstrated by the PLC-

based real-time control of an experimental manufacturing system in Section 4. The hybrid controller proposed

in [12] and the reduced hybrid controller proposed in this paper are compared in Section 5. Finally, conclusions

are given and some future research directions are provided in Section 6.

2. Preliminaries

2.1. Supervisory control theory

The SCT was introduced to extend control theory concepts for continuous systems to the discrete-event

environment [1–3]. In the SCT, a forbidden state problem [3] specifies conditions that must be avoided, typically

the simultaneous utilization of some resource by 2 or more users. In addition, the SCT generally requires the

controlled system to be nonblocking and to be maximally permissive, i.e. to permit the occurrence of all events
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not leading to a violation of the foregoing requirements. DESs evolve on spontaneously occurring events. Let∑
be a finite set of events. The set of all of the finite concatenations of events in

∑
is denoted by

∑∗
. An

element of this set is called a string. The number of events gives the length of the string. The string with no

element is denoted by ε and is called an empty string. A subset L ⊆
∑∗

is called a language over
∑

. For a

string s ∈
∑∗

, s̄ denotes the prefixes of s and is defined as s̄ = {sp ∈
∑∗ |∃t ∈

∑∗
(sp t = s)}. The extension

of this definition to the language prefix closure of a language L is denoted byL . A language L satisfying the

condition L = L is said to be prefix-closed [26,27].

An automaton, denoted by G, is a 6-tuple G = (Q,
∑

, f, Γ, q0 , Qm), where Q is the set of states,
∑

is the finite event set, and f: Q ×
∑
→ Q is the partial transition function. Γ: q → 2

∑
is the active event

function. Γ(q) is the set defined for every state of G and represents the feasible events of q. q0 is the initial

state and Qm ⊆ Q is the set of marked states representing the completion of a given task or operation. A

simple automaton model with 2 states is shown in Figure 1. This automaton has 2 states labeled with q0 and

q1. q0 with a double arrow is the initial (and marked) state, while q1 with an exiting arrow is the marked state

of the automaton. A directed arrow represents the transition functions of the automaton. The labels of the

transitions (e1, e2) correspond to events.

q0 q1

e1

e2

Figure 1. A simple automaton model.

The language generated by G is denoted by L(G) and is defined as L(G) = {s ∈
∑∗

: f(q0 ,s) is defined}.
The language marked by G is denoted by Lm (G) and is defined as Lm (G) = {s ∈

∑∗
: f(q0 ,s) ∈ Qm }. The

DES modeled as automaton G is said to be nonblocking if L(G) = Lm(G). DESs named as A and B can be

composed with synchronous product (parallel composition) operation. The synchronous product of 2 automata

is denoted by A||B and it represents the synchronous behavior of 2 automata. In the resulting automaton,

common events occur synchronously, while the other events occur asynchronously [26,27].

The SCT makes use of formal languages to model the uncontrolled behavior of DESs (plant) and specifi-

cations for the controlled behavior. The objective is to restrict the behavior of the system to a desired behavior,

which is represented by the specifications. This is done by disabling some events to prevent the occurrence of

some undesired strings in the system. The disabling action is accomplished by another simultaneously executing

automaton called the supervisor. The system cannot be forced by the supervisor to generate new events. In

the SCT, events are divided into 2 disjoint sets, controllable events and uncontrollable events. These sets are

denoted by
∑

c and
∑

uc , respectively. The supervisor has no effect on uncontrollable events, which means that

the supervisor cannot disable uncontrollable events. The existence of a supervisor is guaranteed if the desired

language satisfies the controllability conditions. This condition is defined as K
∑

uc ∩ M ⊆ K , where K is

the language that will be generated under the control of the supervisor and M is the language generated by the

uncontrolled system.
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2.2. Automation PNs

PNs are widely used as a formal method for design, analysis, and control of DESs. They were named after Carl A.

Petri, a contemporary German mathematician and computer scientist who introduced a net-like mathematical

tool for the study of communication with automata [28]. Ordinary PNs do not deal with actuators or sensors.

Because of this, it is necessary to define a PN-based controller (APN) that can embrace both actuators and

sensors within an extended PN framework [8]. An APN model is shown in Figure 2. In the APN, sensor

readings can be used as firing conditions at transitions. The presence or absence of sensor readings can be used

in conjunction with the extended PN preconditions to fire transitions. In the APN, 2 types of actuation can be

considered, namely impulse actions and level actions. Actions are associated with places. Formally, an APN

can be defined as follows:

APN = (P, T, Pre, Post, In,En,X,Q,M0), (1)

where P = {p1 , p2 , ..., pn} is a finite, nonempty set of places; T = {tl , t2 , ..., tm } is a finite, nonempty set

of transitions; and P ∪ T 6= ∅ and P ∩ T = ∅ , Pre: (P×T) → N is an input function that defines directed

ordinary arcs from places to transitions, where N is set of nonnegative integers.

Post: (T × P) → N is an output function that defines directed ordinary arcs from transitions to places.

In: (P × T) → N is an inhibitor input function that defines inhibitor arcs from places to transitions.

En: (P × T) → N is an enabling input function that defines enabling arcs from places to transitions.

χ = {χ1 , χ2 , . . . , χm } is a finite, nonempty set of firing conditions associated with the transitions.

Q = {q1 , q2 , . . . , qn} is a finite set of actions that might be assigned to the places.

M0 = P → N is the initial marking.

p1

p2
p3

p4 p5

p6

t1

t 2 t 3 χ3

χ1

χ2

Action

2

2
3

Figure 2. An APN model.

The APN consists of 2 types of nodes called places, represented by circles (©), and transitions, repre-

sented by bars (−−−). There are 3 types of arcs used in the APN, namely ordinary arcs, represented by a directed

arrow (−−→); inhibitor arcs, represented by an arrow, whose end is a circle (−−−◦); and enabling arcs, repre-

sented by a directed arrow, whose end is empty (−−−.). Weighted and directed ordinary arcs connect places to

transitions and vice versa, whereas weighted enabling arcs and inhibitor arcs connect only places to transitions.
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The number of tokens in places represents the current state of the system and the transitions represent events.

Each transition has a set of input and output places, which represent the precondition and postcondition of the

transition. The actions (Q) assigned to the places can be either impulse actions or level actions. Impulse actions

are enabled at the instant when a token is deposited into the place, and level actions are enabled when there

is a token(s) at the place. More than one action may be assigned to a place. Firing conditions in the APN are

recognized as external events, such as sensor readings. A firing condition, χ , associated with a transition, t , is

a Boolean variable that can be ‘0’, in which case the related transition t is not allowed to fire, or it can be ‘1’,

in which case the related transition t is allowed to fire if it is enabled. The marking of the APN is represented

by the number of tokens in each place. Tokens are represented by black dots (•). The movement of tokens

between places describes the evolution of the APN and is accomplished by the firing of the enabled transitions.

The following rules are used to govern the flow of tokens.

Enabling rules: In the APN, there are 3 rules that define whether a transition is enabled to fire. These

preconditions must be satisfied for a transition to fire.

1. If an input place p of a transition t is connected to t with a weighted ordinary arc Pre(p,t), then t is said

to be enabled when p contains at least the number of tokens equal to the weight of the directed ordinary

arc, i.e. M(p) ≥ Pre(p ,t).

2. If an input place p of a transition t is connected to t with a weighted enabling arc En(p,t), then t is said

to be enabled when p contains at least the number of tokens equal to the weight of the enabling arc, i.e.

M(p) ≥ En(p ,t).

3. If an input place p of a transition t is connected to t with a weighted inhibitor arc In(p,t), then t is said

to be enabled when p contains less tokens than the weight of the inhibitor arc, i.e. M(p) < In(p ,t).

Firing rules: In the APN, an enabled transition t can or cannot fire depending on the external firing

condition χ of t . These firing conditions can be leading edge (↑), falling edge (↓), positive level, or zero level of

a sensor reading. Broadly speaking, a firing condition χ may include more than one sensor reading with ”AND”,

”OR”, and ”NOT” logical operators. When dealing with more than one sensor reading as firing conditions, the

logical operators of the firing conditions must be taken into account accordingly. In the special case where χ =

1, transition t is always allowed to fire when it is enabled. When an enabled transition t fires, it removes from

each input place p the number of tokens equal to the weight of the directed ordinary arc connecting p to t . It

deposits, at the same time, in each output place p the number of tokens equal to the weight of the directed arc

connecting t to p . It should be noted that the firing of an enabled transition t does not change the marking of

the input places, which are connected to the transition t only by enabling or inhibitor arcs.

It is also possible to consider timed APNs, as in normal PNs. Ordinary PNs do not include a concept

of time. With this class of nets, it is possible only to describe the logical structure of the modeled system, but

not its time evolution. Due to the need for the temporal requirements of DESs, the concept of time has been

introduced into PNs in a variety of ways. In this paper, the timed-transition PN is considered as described in

[29, p. 94]. A timed-transition APN (TTAPN) is a tuple defined as follows:

TTAPN = (APN,τ), (2)

where the APN is an automation PN and τ is a function from the set of transitions to the set of positive or

zero rational numbers. τ(ti) = T i = timing associated with transition ti . In this case, a token can have 2
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states: it can be reserved for the firing of a timed-transition t i or it can be unreserved. If a timed transition

is enabled, then it is ready to fire. When the firing condition for the transition occurs and holds true for a

specified amount of time (T i), the token of input place to this transition is said to be reserved for T i . When

time T i has elapsed, the transition is effectively fired: the reserved token is removed from the input place and

an unreserved token is put into the output place(s). This is illustrated in Figure 3, where the transition t3 is a

timed-transition with the time delay T3. At the beginning, there is a token in place p1, as shown in Figure 3a.

When transition t2 is fired the token is removed from p1 and a token is deposited in place p2, thereby resulting

in the enabling of timed-transition t3, as shown in Figure 3b. Next, the firing condition χ3 for transition t3

may occur at any moment after this. When the firing condition χ3 occurs and holds true for the time delay

T3, the token required for this firing is reserved, as shown in Figure 3c. When time delay T3 has elapsed, the

transition is effectively fired. The token reserved for firing is then removed from place p2 and an unreserved

token is deposited in place p3, as shown in Figure 3d.

p1

p2

p3

t2 χ2

t1 χ1

t3

χ3

t4 χ4

(t ime delay)
T3

p1

p2

p3

t2 χ2

t1 χ1

t3

χ3

t4 χ4

T3

p1

p2

p3

t2 χ2

t1 χ1

t3

χ3

t4 χ4

T3

p1

p2

p3

t2 χ2

t1 χ1

t3

χ3

t4 χ4

T3

unreserved

token

reserved

token

a) b) c) d)

Figure 3. Timed transition in an APN.

2.3. TPL methodology

The control community all around the world has been very active for the past 2 decades producing PN-based

discrete event control design techniques, especially for manufacturing systems. Generally, PLCs are the preferred

implementation tools for such controllers in today’s modern factories. In addition, LLDs are the most common

and preferred programming languages used in today’s PLCs. Therefore, it was a necessity to be able to convert

the PN-based discrete event controllers into LLDs. To address this need, the TPL concept was introduced

[6–9,30]. For a detailed survey about LLD- and PN-based discrete event control design methods, the reader is

referred to [31]. It can be clearly seen from [31] that the TPL concept is very well established and very well

received by the control community for converting PNs into LLDs. The prime feature of the TPL concept is

that it facilitates the direct conversion of PN-based logic controllers into LLDs. This is achieved by adopting

the PN concept of tokens as the main mechanism for controlling the flow of the control logic. Hence, each

place within the PN corresponds to a counter (or a flag) within the LLD program. Each action at a PN place
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corresponds to an action within the LLD program, and each transition within the PN involving a movement

of tokens corresponds to a simulated movement of tokens between LLD rungs. This simulated movement of

tokens is achieved by deploying separate counters at each place within the LLD program and incrementing and

decrementing these counters to simulate token flow. Thus, each place within the PN has an associated counter

(or a flag), and the current count value of the counter represents the number of tokens that would be at the

corresponding place within the PN. Furthermore, in consonance with the PN approach, if the count value of the

counter associated with the place is nonzero, then any actions associated with that place are activated. Finally,

to complete the PN synergy, if the counter associated with a place is nonzero and a PN-like transition associated

with that place becomes active, then the counter at the place is decremented by 1 and the subsequent place

linked by the output transition is incremented by 1. Moreover, the PLC on delay timers can be readily used

to implement timed-transition PNs. In essence, the PN places are represented by separate counters. The count

value of the counter represents the PN tokens. The counting down and counting up of the counters simulates

the flow of the PN tokens. For safe (1-bounded) PN places, flags (memory bits) can be deployed, in which

case the setting and resetting of the related flags will be used to simulate the flow of the tokens. In theory,

the methodology can cope with any number of tokens and provide a visual description of the LLD program,

which has all of the advantages of a full PN analysis. Furthermore, colored PNs and hierarchical PNs can also

be converted into LLDs using this technique, simply by adding more counters (or flags) to each place. For a

detailed treatment of the TPL concept, the reader is referred to [6].

2.4. Solving the avalanche effect problem

2.4.1. Avalanche effect problem

In the PLC implementation of a supervisor (automaton), states are represented by Boolean variables and

events can be defined as the rising or falling edges of the signals. For such a definition of events, –|P |–
(positive transition sensing contact) and –|N |– (negative transition sensing contact) can be used, respectively.

Some symbols of the IEC 61131-3 LD (ladder diagram) PLC programming language [32] used in this paper are

depicted in Table 1. The conversion of a supervisor into LLD code for PLC implementation is a straightforward

process. From the literature, one can find some well-established methods. The following briefly explains the

method utilized in this paper [23]: a Boolean variable (a memory bit) is assigned to each state of the supervisor.

Initially, the Boolean variable representing the active (initial) state is SET and all of the other Boolean variables

representing the rest of the RW supervisor states are RESET. Next, each transition between the states of the

supervisor is implemented as a separate PLC ladder rung using the SET and RESET commands. When

associating the events with the rising and falling edges of signals, care must be taken not to skip over an

arbitrary number of states during the same scan cycle. This is called the avalanche effect and is a consequence

of the sequential evaluation of the Boolean expressions [24]. For example, consider the automaton shown in

Figure 4. The automaton moves from state q0 to q1 on the occurrence of ‘a’. It is then supposed to move from

q1 to q2 on the new occurrence of ‘a’. If a ‘b’ occurs before another ‘a’, then it moves from q1 to q3. Thus,

this automaton represents 2 strings, ‘aa’ and ‘ab’ [24]. The LLD implementation of this automaton, shown in

Figure 5a, does not mimic this behavior. Rather, the avalanche effect problem causes a direct transition from

q0 to q2 on the same rising edge of signal ‘a’. One simple cure for this problem is to arrange the rungs in

the reverse order [24]. In this particular example, if rungs 2 and 3 of the LLD code shown in Figure 5a are

arranged in the reverse order, as shown in Figure 5b, then the problem is solved. However, this methodology

is highly dependent on the problem at hand and may fail in some cases. As an example, a simple automaton
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is given in Figure 6 [25]. Obviously, event ‘a’ causes the avalanche effect problem: when state q0 is active, an

occurrence of event ‘a’ causes a transition to q1 and then back to q0 in the same PLC scan cycle. Therefore,

the above-mentioned simple method does not solve the avalanche effect problem for this automaton [25].

q0 q1a a

q3

q2

b

Figure 4. An example automaton represents 2 strings, ‘aa’ and ‘ab’ [25].

S

q0M0

R

q1

R

q2

R

q3

S
M0

q0

S

R

q1

q0

P

a

q1

S

R

q2

q1

P

a

q1

S

R

q3

q1

P

b

[q0, a, q1]

[q1, a, q2]

[q1, b, q3]

Init.
1

2

3

4

 

S

q0M0

R

q1

R

q2

R

q3

S
M0

q0

S

R

q1

q0

P

a

q1

S

R

q2

q1

P

a

q1

S

R

q3

q1

P

b

[q0, a, q1]

[q1, a, q2]

[q1, b, q3]

Init.
1

2

3

4

 
a)                                               b)   

Figure 5. LLD implementations of the automaton shown in Figure 4: a) the LLD implementation represents only the

occurrence of a single ‘a’; b) the LLD implementation represents the occurrence of both strings ‘aa’ and ‘ab’.

q0 q1

a

a

Figure 6. An example automaton with the avalanche effect problem [25].

2.4.2. Detection of avalanche effect problem in an automaton

There are a number of software tools to compute RW supervisors. In this paper, it is assumed that a RW

supervisor is given in an automaton form generated using TCT software [33]. In TCT, an automaton is

described in an “.ADS” file. The integer numbers are used for state labels (0, . . . , 2000000) and event labels

(0, . . . , 999), where ‘0’ is used for the initial state. In TCT, the transitions of an automaton are entered as in
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“Exit (Source) State Transition Label Entrance (Target) State” format. For example, 2 0 1 means that there is

a transition labeled with event ‘0’ from state 2 to state 1. As a special example, 1 0 1 means that there is a

self-loop labeled with event ‘0’ on the state labeled with ‘1’. All of the transitions are written as a list at the

end of the file. This transition list can be considered as a matrix. The number of lines of this matrix is equal to

the number of all of the transitions. The row number of this matrix is equal to 3. The 1st row consists of labels

of source states, the 2nd contains labels of events, and the 3rd consists of labels of target states. An example

automaton is shown in Figure 7, whose TCT representation “TEST.ADS” is provided in Figure 8, based on the

following event and state codings:

Table 1. Some symbols of the IEC 61131-3 LD language.

Event coding for the example automaton:

Automaton: a b c d e f
TCT: 1 2 3 4 5 6
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State coding for the example automaton:

Automaton: q0 q1 q2 q3 q4
TCT: 0 1 2 3 4

q 0

a

a

q 1

q 2

q 4q 3

f

e

b

c

aca, f

b

b

d

Figure 7. An example automaton with events ‘a’, ‘b’, and ‘c’ causing the avalanche effect.

Figure 8. The format of an example .ADS file: “TEST.ADS”.

The search algorithm shown in Figure 9 is proposed in [34] to detect events that cause the avalanche

effect.

The main feature of this algorithm is to find at least 2 successive transitions whose events are the

same. The above algorithm was implemented in C code. Next, the C code was compiled and named as

“Av effect detector.exe”. In the code, the .ADS file is read and the transition list is converted into a matrix.

The self-looped transitions, whose source and target states are the same, are ignored because they do not cause
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a state change, i.e. the avalanche effect problem. If there are events causing the avalanche effect, then these

events are reported on the screen, and at the same time, they are written in a log file called “logfile.txt”.

When the “Av effect detector.exe” program was run and the above-mentioned automaton called TEST.ADS

was given as the input to check whether there is an avalanche effect problem in this automaton, the screenshot

of this program was provided by the “Av effect detector.exe”, as seen in Figure 10. This means that there is an

avalanche effect problem in the automaton, shown in Figure 7, represented by TEST.ADS, and events labeled

with “1, 2, and 3”, i.e. events ‘a’, ‘b’, and ‘c’, cause the avalanche effect.

Figure 9. The search algorithm used to detect events causing the avalanche effect.

2.4.3. An efficient method for the elimination of the avalanche effect problem

The avalanche effect problem occurs when a program skips over an arbitrary number of states during the same

PLC scan cycle. The occurrence of an event can be realized in the LLD code by means of the rising or falling

edge of a signal. The rising edge of a signal is detected by comparing the signal between 2 consecutive scan

cycles; if the signal was low in the previous scan cycle and is now high, then a rising edge of the signal has

been detected [24]. In [34], an efficient method was proposed for the elimination of the avalanche effect problem
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Figure 10. The screenshot of the “Av effect detector.exe” program for the input “TEST.ADS”.

when implementing an automaton as LLD. The method is applied only to events that cause the avalanche effect

problem. Other events are treated as usual. The AEEM involves the following 3 steps:

1. After the initialization of the LLD code, SET a Boolean variable Mi with the occurrence of each event

causing the avalanche effect problem (i = 1, 2, . . . , n ; n : the number of events causing the avalanche

effect problem).

2. RESET the Boolean variable Mi on each LLD rung implementing a transition, which includes the event

causing the avalanche effect problem (i = 1, 2, . . . , n).

3. RESET the Boolean variable Mi at the end of the LLD code (i = 1, 2, . . . , n).

Using this method, an event (the rising or falling edge of a signal) is assigned to a memory bit Mi each

time it occurs. When Mi is set, it can only be used once by 1 of the 2 or more transitions causing the avalanche

effect problem, and then it is RESET by the very transition using Mi. If Mi is not used by one of the transitions,

then it is automatically RESET at the end of the LLD code. This is a very simple and effective way of solving

the avalanche effect problem. As an example to show how this method is applied, consider the automaton

shown in Figure 4. In this automaton event ‘a’ is the cause of the avalanche effect. Therefore, the AEEM is

applied only to this event. The LLD code for this automaton obtained using the AEEM proposed is depicted

in Figure 11. In this code, the first rung initializes the automaton by setting q0 and resetting other states: q1,

q2, and q3. The occurrence of ‘a’ M1 is set in rung 2. In rungs 3, 4, and 5, transitions [q0,a,q1], [q1,a,q2], and

[q1,b,q3] are implemented, respectively. As stated before, in this automaton, transitions labeled with ‘a’ are

the cause of the avalanche effect. Hence, M1 is reset at the end of rungs 3 and 4. If M1 is still set, then the last

rung clears the memory bit M1 for another detection of event ‘a’. As another example, consider the automaton

shown in Figure 6. In this automaton, event ‘a’ is the cause of the avalanche effect. The LLD code for this

automaton obtained using the AEEM proposed is depicted in Figure 12. In this code, the first rung initializes

the automaton by setting q0 and by resetting q1. With the occurrence of ‘a’, M1 is set in rung 2. In rungs 3

and 4, transitions [q0,a,q1] and [q1,a,q0] are implemented, respectively. As 2 transitions labeled with ‘a’ are

the cause of the avalanche effect, M1 is reset at the end of rungs 3 and 4. Note that in this particular example,

there is no need to reset M1 at the end of the LLD code, because M1 will be reset either in rung 3 or in rung 4.
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R
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M1= a

 

Figure 11. LLD code for the automaton shown in Figure 4 obtained using the AEEM.
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M1= a

 

Figure 12. LLD code for the automaton shown in Figure 6 obtained using the AEEM.
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2.4.4. Illustrative example

In this section, as an illustrative example, the automaton model consisting of 5 states and 13 transitions shown

in Figure 7 is considered. There are 6 events, namely a, b, c, d, e, and f. As explained before, events labeled with

a, b, and c are the cause of the avalanche effect. Therefore, in the PLC LLD implementation of this automaton,

the AEEM is applied to only these 3 events. The PLC LLD code implementation of this automaton model can
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Figure 13. LLD implementation of the automaton shown in Figure 7.
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be seen from Figure 13. The first rung initializes the automaton by setting q0 and resetting other states q1,

q2, q3, and q4. With the occurrence of ‘a’ (respectively, ‘b’, ‘c’), M1 (respectively, M2, M3) is set in rung 2

(respectively, rung 3, rung 4). In rungs 5, 6, . . . , 17, all of the 13 transitions are implemented. As transitions

labeled with ‘a’ (respectively, ‘b’, ‘c’) are the cause of the avalanche effect, M1 (respectively, M2, M3) is reset

at the end of rungs 5, 8, 12, and 15 (respectively, rungs 6, 7, and 17; rungs 9 and 11). If M1 (respectively, M2,

M3) is still set, then rung 18 (respectively, 19, 20) clears the memory bit M1 (respectively, M2, M3) for another

detection of event ‘a’ (respectively, ‘b’, ‘c’). All of the LLD codes shown in this paper were implemented using

a Siemens S7-300 PLC and they worked properly, as expected.

3. Reduced supervisor-based hybrid approach to supervisory control of DESs

A hybrid approach to the supervisory control of DESs, coupling RW supervisors to PNs was proposed in [11].

The applicability of this hybrid method to the PLC-based real-time control of DESs was then reported in [12].

The hybrid approach to the supervisory control of DESs proposed in [12] is recalled and improved here. In this

paper, the reduced (simplified) RW supervisor is utilized instead of the ordinary one as in [12]. The supervisory

control of a DES based on the hybrid approach with a reduced supervisor is updated and illustrated, as shown

in Figure 14. The architecture consists of 4 parts: a) the DES to be controlled; b) the controller (supervisor);

c) sensor readings, regarded as outputs from the DES and as inputs to the controller; and d) control actions,

regarded as outputs from the controller and as inputs to the DES. The supervisor must guarantee that no

forbidden state will be reached, that the specified target states remain reachable (nonblocking), and that the

controlled behavior is maximally permissive, i.e. the supervisor does not unnecessarily constrain the system

operation and is in this sense ‘optimal’.

Control actions

APN model
Discrete

event

system

(plant)Reduced
auto-net

Inhibitor arcs
(control data)

Control model
(supervisor)

Figure 14. Supervisory control of a DES based on the hybrid approach with reduced auto-net.

The plant and the supervisor are assumed to run concurrently, as follows. The occurrence of an event in

the plant is transmitted to the supervisor as a plant output through sensory feedback, resulting in a supervisor

state change. The supervisor functions as a state-feedback controller, whose enabling/disabling control actions

are output as a plant input, closing the feedback loop. The controlled behavior of the plant will be the subset of

the uncontrolled behavior (i.e. sublanguage of uncontrolled event strings) that survives under supervision. The

controlled model of the plant consists of the uncontrolled plant PN model itself and the controlling reduced auto-

net, coupled together by means of inhibitor arcs, which represent the control data (or logic). The reduced auto-

net (“reduced automaton net”) is a PN-like graphical representation of the reduced RW automaton supervisor,

in which there is only 1 token and all places have a capacity of 1. In the reduced auto-net, as a graphical

object, each state and transition arc of the reduced RW supervisor is shown, respectively, as a PN-like-place
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and a PN-like-transition. Initially, a single token is deposited in the place representing the initial state. The

reduced auto-net represents the controlled behavior of the plant, its transitions represent either controllable or

uncontrollable events, and its role is to track the plant behavior and to implement control (event disabling)

action. For the latter, inhibitor arcs are used. When an event occurs in the plant, the reduced auto-net changes

its state synchronously, in accordance with the location of its single token and the event in question. Transitions

in the plant and the reduced auto-net are synchronized on the basis of shared labels. Because a transition with

a given label may occur in more than one location in the reduced auto-net, the latter is not generally a PN

and quite possibly cannot be represented as such. It is this feature that endows the hybrid representation with

generality and flexibility.

The improved design and implementation steps can be summarized as follows.

1. Assume that an uncontrolled APN model (UAPNM) of a DES, with an initial marking, and a set of

forbidden state specifications are given.

2. Check that the UAPNM is bounded and determine explicit bounds on the place markings.

3. Reduce the UAPNM, if possible, by PN reduction rules.

4. Convert the (reduced) UAPNM and the specifications into equivalent buffer models.

5. Apply the SCT to obtain a RW supervisor, say SUPER, and its control data, say SUPDAT.

6. Apply the SCT to obtain a reduced RW supervisor, say RSUPER, and its reduced control data, say

RSUPDAT.

7. Convert RSUPER into a reduced auto-net representation, say RAUTONET.

8. Obtain the closed-loop (or controlled) reduced hybrid model, say CRHM, by coupling RAUTONET to

UAPNM using inhibitor arcs according to RSUPDAT.

9. Finally, implement the CRHM on a PLC as a LLD.

The boundedness computation in step 2 can be carried out with available PN tools or (in simple cases)

by inspection. The reduction techniques in step 3 are well known and preserve properties such as boundedness,

liveness, and reversibility. For step 4, if place p is bounded in accordance with M(p) ≤ b, say, then p is modeled

by a buffer with capacity b (i.e. b + 1 states). For example, if an APN place has a token capacity of 3, then it

can be represented by 4 states. Step 5 can be performed by standard SCT software; the package in [33] is used

for computing SUPER and SUPDAT by procedures Supcon(.) and Condat(.), respectively. Step 6 is performed

by the package in [33] for computing RSUPER and RSUPDAT by procedures Supreduce(.) and Condat(.),

respectively. The detailed syntax of these steps is provided in the TCT-generated log files for the considered

example. In the last step, it is necessary to check whether there is an avalanche effect problem in the reduced

RW supervisor (automaton). For this, the “Av effect detector.exe” program is used. For the events causing the

avalanche effect, the AEEM is utilized to solve the problem.

4. Real-time control of an experimental manufacturing system by using a reduced supervisor

In this section, an experimental manufacturing system is considered to show the applicability of the proposed

hybrid method with a reduced RW supervisor to low level real-time supervisory control of DESs. The experi-

mental manufacturing system together with the control specifications is taken from [12]. Therefore, the reader

410



UZAM and GELEN/Turk J Elec Eng & Comp Sci

is referred to [12] for the detailed explanations. The first 5 steps are the same as those in [12]. The design steps

follow, starting from Step 6 as shown below.

4.1. Step 6

The SCT is applied to obtain a reduced RW supervisor (RSUP) and its control data (RDAT). To accomplish

this task, the PLANT and the SUPER automata models, and the control data (SUPDAT), are used in the

Supreduce(.) and Condat(.) procedures of TCT software as follows.

RSUP = Supreduce(PLANT,SUPER,SUPDAT) (7,21; slb = 7)

The computed reduced RW supervisor is shown in Figure 15. The reduced control data are obtained as

follows.

RDAT = Condat(PLANT,RSUP) Controllable.

RDAT

The control data are displayed as a list of supervisor states where disabling occurs, together with the

events that must be disabled there.

Control data:

0: 61 71 1: 71 2: 61 3: 61
4: 61 71 5: 61 71 6: 71

0 3

24

16

5

12

22

32

42

52

12,52,61

32

2212

71

71

22
42

52

12 22

52,61

52

Figure 15. The reduced supervisor RSUP.

4.2. Step 7

The depiction RAUTONET of RSUPER is shown in Figure 16.

4.3. Step 8

The final closed-loop (controlled) reduced hybrid model (CRHM), which is nonblocking and maximally permis-

sive, is obtained by coupling RAUTONET to UAPNM by inhibitor arcs according to RDAT. This is simply

done by connecting the inhibitor arcs In(p11, t6), In(p11, t7), In(p12, t7), In(p13, t6), In(p14, t6), In(p15, t6),

In(p15, t7), In(p16, t6), In(p16, t7), and In(p17, t7) from places P = {p11, p12, ..., p17} to the controllable

transitions t6 and t7, as shown in Table 2. The closed-loop (controlled) reduced compiled hybrid model CRHM

is depicted in Figure 17.
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Figure 16. The reduced auto-net (RAUTONET) obtained from RSUP.

Table 2. Implementation of the reduced control data RDAT (control policy) for RSUP by inhibitor arcs.

Control data Inhibitor arc implementation 

0: 61 71  

 

1: 71  

 

2: 61  

 

3: 61  

 

4: 61 71  

 

5: 6 1 71 

 

6: 71  
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Figure 17. The closed-loop (controlled) reduced compiled hybrid model CRHM.

4.4. Step 9

When using a reduced RW supervisor, it is necessary to check whether there is an avalanche effect problem

in the supervisor (automaton) before the implementation step. When the “Av effect detector.exe” program
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was run and the automaton RSUP.ADS, depicted in Figure 15, was given as input, this program provided the

screenshot seen in Figure 18. This means that there is an avalanche effect problem in the automaton, shown in

Figure 15, represented by RSUP.ADS, and thus events labeled with “12, 22, 52, and 61”, i.e. events ‘e12’, ‘e22’,

‘e52’, and ‘e61’, are the cause of the avalanche effect problem. This means that the AEEM must be applied to

these 4 events in the implementation step.

Figure 18. The screenshot of “Av effect detector.exe” program for the input “RSUP.ADS”.

Now the implementation of the controlled model (CRHM) by means of a Siemens S7 300 PLC is

considered. The TPL methodology is used for converting the CRHM into an LLD code. It should be noted

that for proper functioning, the order of the LLD code must be arranged as follows: first, the initial marking

is written; next, the LLD code for the APN model of plant is written; and finally, the LLD code related to the

reduced auto-net is written. This is because after the initial marking is represented as LLD, the APN model

mimics the system behavior through the sensory feedback and changes its state accordingly, and at the same

time, i.e. on the same PLC scan cycle, the current state of the reduced auto-net is updated due to the shared

events. According to the current state of the reduced auto-net and the control policy, if necessary, the behavior

of the APN model is restricted by means of inhibitor arcs. Note that while “on delay timers” are associated only

with the timed transitions in the APN model, the time evolutions of these timers are followed by the respective

events within the auto-net. This improved order of the ladder rungs is slightly different from that proposed in

[12].

As a result, to convert the CRHM into an LLD code, 17 memory bits, namely p1, p2, ..., p17, are used

to represent the places P = (p1, p2, . . . , p17) of the CRHM. On delay timers T1 with a 0.7 s time delay, T2

with a 1.5 s time delay, and T3 with a 1 s time delay are assigned to the timed-transitions t3, t4, and t5 of the

APN model, respectively. After doing these assignments using direct mapping, the LLD code, shown in Figure

19, is obtained. This LLD code was written for a Siemens S7-300 (CPU 319) PLC. The LLD symbols (as used

in this paper) of a Siemens S7-300 PLC are provided in Table 3.

The LLD code is structured in such a way that the network 0 (NW0) initializes the system by means of

the initialization memory bit called “Init”. The APN model is converted into LLD code at the networks from

NW1 to NW5 and NW27, NW28, where networks 1, 2, . . . , 5 and 27, 28 represent the transitions T = (t1,

t2, . . . , t5, t6, t7), respectively. The reduced auto-net is converted into LLD at the networks from NW6 to

NW26, where the networks 6, 7, . . . , 26 represent the transitions T = (t8, t9, . . . , t28), respectively. Finally,

action places p8 and p10 are represented by networks 29 and 30, respectively. By adopting this concept, further

clarity can be added to the system documentation and it is easy to understand and modify the LLD code if
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necessary. Using PC software called Simatic Manager, this LLD code was programmed on a Siemens S7-300

(CPU 319) PLC in the experimental set-up shown in Figure 4 [12]. The LLD code representing the controlled

model, i.e. the supervisor, implemented the control specifications as required and did not unnecessarily constrain

the behavior of the experimental manufacturing system. The physical system performed very well under the

proposed control, as described by the specifications.

The LLD code shown in Figure 19 can be validated using the timing diagrams of the inputs, outputs,

and the variables used within the LLD code, similar to that given in [12]. In order to accomplish such a task,

a scenario can be characterized for the controlled plant to follow the supervisor’s disabling commands and also

to inspect the PLC inputs, the variables used, and the output signals.

Finally, in this section, the implementation of the events, namely ‘e12’, ‘e22’, ‘e52’, and ‘e61’, that cause

the avalanche effect is considered. To eliminate the avalanche effect problem, the AEEM is used. To eliminate

the avalanche effect due to event ‘e12’, the memory bit with the same name, i.e. e12, is set at NW1 when

transition t1 of APN model is fired. The memory bit e12 is then reset at the end of networks 9, 14, 17, and

23. To eliminate the avalanche effect due to event ‘e22’, the memory bit with the same name, i.e. e22, is set at

NW2 when transition t2 of the APN model is fired. The memory bit e22 is then reset at the end of networks

Table 3. Some LLD symbols for the Siemens S7-300 PLC.

LLD symbol Definition 

S Set 

R Reset 

T Timer 

I Input 

Q Output 

M Memory bit 

Normally open contact 

 
Normally closed contact 

 

On delay S5 timer 

S: Start input 

Q: Status of the timer 

TV: Preset time value 

BI: Remaining time value 

BCD: Remaining time value in BCD format 

R: Reset input 

Tr. No.: Number of timers 
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Figure 19. The LLD code implementation of the CRHM.

8, 15, 18, and 22. To eliminate the avalanche effect due to event ‘e52’, the memory bit with the same name,

i.e. e52, is set at NW5 when the timed transition t5 of the APN model is fired. The memory bit e52 is then
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reset at the end of networks 6, 10, 13, 20, and 26. Finally, to eliminate the avalanche effect due to event ‘e61’,

the memory bit with the same name, i.e. e61, is set at NW27 when the controllable transition t6 of the APN

model is fired. The memory bit e61 is then reset at the end of networks 7 and 11. In this example, there is no

need to reset memory bits e12, e22, e52, and e61 at the end of the LLD code, because they will all be reset in

their related networks.

5. Discussion

The reduced RW supervisor with a strictly minimal state size is the control equivalent to the original monolithic

RW supervisor. For example, when comparing the RW supervisor shown in Figure 10 of [12] and the reduced RW

supervisor shown here in Figure 15, it can be seen that they have 12 and 7 states, respectively. From the practical

point of view, it is desirable to implement a supervisor with the least possible number of states, because for

every state it is necessary to use a memory bit. In this respect it is better to implement the closed-loop reduced

model shown in Figure 18 instead of that shown in Figure 12 of [12]. Table 4 is provided to make a comparison

between the hybrid controller proposed in [12] and the reduced hybrid controller proposed in this paper. It can

be seen from Table 4 that the controller obtained with the reduced RW supervisor has fewer transitions and

places. This results in less memory usage (380 bytes compared to 422 bytes) in the PLC implementation of

this controller. However, to implement the controller obtained with the reduced RW supervisor, it is necessary

to use some additional program elements, which in return requires the use of additional memory bytes. If the

number of events causing the avalanche effect problem is too high, then it may be possible to have a PLC

implementation of a controller obtained with the reduced RW supervisor requiring more memory bytes than the

ordinary one. A detailed comparative study is necessary in order to assess the PLC memory usage for different

control scenarios, in which the RW supervisor and the reduced RW supervisor are relatively bigger than those

used in this paper and that in [12].

Table 4. Comparison between the hybrid controller proposed in [12] and the reduced hybrid controller proposed in this

paper.

Total number PLC memory
Hybrid Number of

Number of places of transitions usage
controller transitions

and places (bytes)
Plant + the RW supervisor

from [12] 30 22 52 422
Plant + the reduced RW

supervisor proposed in this paper 28 17 45 380

6. Conclusions and future research

In this paper, an improved hybrid (mixed PN/automaton) approach is proposed. The improvements include

the use of a reduced RW supervisor and the detection and elimination of the avalanche effect problem. The

reduced RW supervisor is utilized in the hybrid model to reduce the high memory requirements in PLC-based

implementations. However, the PLC implementation of the hybrid model with the reduced RW supervisor

results in the avalanche effect problem if there are events appearing on successive transitions within the reduced

RW supervisor. A recently established method is used to both detect and eliminate the avalanche effect problem

successfully. The applicability of the improved hybrid approach has been demonstrated by the PLC-based real-

time control of an experimental manufacturing system.
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A detailed comparative study is planned to be carried out in order to assess the PLC memory usage for

different control scenarios in which the RW supervisor and the reduced RW supervisor are relatively bigger than

those used in this paper and that in [12].

The preliminary results obtained show that it seems to be possible to adopt modular or decentralized

RW supervisors in the hybrid method with even less PLC memory requirements. Therefore, further studies will

be carried out to obtain a hybrid method with modular or decentralized RW supervisors.
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