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Abstract:Correcting the retention time variation and measuring the similarity of time series is one of the most popular

challenges in the area of analyzing capillary electrophoresis (CE) data. In this study, an automated signal alignment

method is proposed by modifying the dynamic time warping (DTW) approach to align the time-series data. Preprocessing

tools and further optimizations were developed to increase the performance of the algorithm. As a demonstrative case

study, the developed algorithm is applied to the analysis of CE data from a selective 2’-hydroxyl acylation analyzed

by primer extension (SHAPE) evaluation of the RNA secondary structure. The time-shift problem is one of the main

components in the analysis of the SHAPE data. The accuracy and execution time of the algorithm are illustrated with

experimental results obtained by applying to different types of data. The experimental results show that the signal

alignment algorithm efficiently corrects the retention time variation. The developed tools can be readily adapted for the

analysis of other biological datasets or time series.
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1. Introduction

Bioinformatics is the application of computer sciences and mathematics to the management and analysis of
complex datasets to aid the solution of biological problems [1]. The alignment of time-scaled and time-shifted

signals is often necessary in the analysis of datasets obtained from biological experiments [2]. Time shifts can
occur when a signal is measured as a function of time for 2 or more datasets with small- or large-scale differences
in the experimental conditions across repeated samples. The differences could be due to some factors including
temperature or voltage changes, instrument imperfections, or variations in the flow rates. Thus, the comparison
of different samples can be complicated by differences in their time scales or differences in the lengths of the
sample vectors.

In order to correct the retention time drift, many different approaches were proposed in the literature.
One of the well-known algorithms to compare 2 discrete signals or time series is dynamic time warping (DTW)

[3]. DTW is based on dynamic programming, which is a method of solving complex problems by breaking

them down into simpler steps [4]. DTW is a fast and efficient method for the alignment of time-dependent

sequences. Although it was originally developed for speech recognition [3], the classical DTW and its different

variations have also been applied to many other fields, such as signature similarity [5], clustering [6], data

mining and information retrieval [7], computer vision [8], and chemical engineering [9]. The details of DTW and
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references to its use in different areas can be found in [10–12]. In addition to DTW, some other approaches were

proposed to correct the retention time drift. Gong et al. [13] used the combination of chemometric resolution and
cubic spline data interpolation to correct the retention time shifts for the chromatographic fingerprints of herbal
medicines. Correlation optimized warping was used to align chromatographic data in [14]. An approach to align
gas chromatography–mass spectrometry was proposed based on dynamic programming and peak similarity in
[15].

The widely used selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE) [16] and hydroxyl
radical nucleic acid probing experiments present important examples of the time-shift problem. Since the
experimental parameters that characterize each capillary may differ, the measured traces across the capillaries
can vary in time, velocity, and intensity. As can be seen from Figure 1, the signals obtained from different
experiments are similar but out of phase. Since each reaction is analyzed using a DNA primer labeled with
a different fluorophore, the dyes alter the electrophoretic migration rates so that traces in the same capillary
have slightly different elution times. The ShapeFinder software [17] was developed and has been widely used to

analyze the SHAPE data. An important part of the analysis of the raw SHAPE capillary electrophoresis (CE)
data is to align all of the traces in the same time scale. ShapeFinder uses several mobility shift tools to correct
the time offsets by initiating the parameters manually. This process is time-consuming to implement (about

15–30 min) and must be optimized for each dataset.

In this work, a new automated signal alignment algorithm is developed by modifying DTW to solve the
shift problems for SHAPE and other nucleic acid chemical probing data obtained by CE. The algorithm infers
whether 2 time series are homologous by calculating the similarity score between them. The algorithm optimally
aligns the 2 time series to maximize the similarity. In addition, preprocessing tools and further optimizations
were developed to increase the performance of the algorithm.

Figure 1. The raw data (sequencing ladders) obtained from 2 different capillaries. Time series X (black) and time series

Y (gray) are similar but out of phase.

2. Materials and methods
2.1. SHAPE data

SHAPE measures the local backbone flexibility at nearly every position in an RNA. The analysis of a SHAPE
experiment is important to extract the quantitative, single nucleotide resolution reactivity information. The
output of a SHAPE experiment resolved by CE is an electropherogram or trace. An electropherogram contains
3 or 4 individual channels that report the fluorescence intensity versus the elution time information, where each
channel corresponds roughly to 1 of the SHAPE reactions. In a SHAPE experiment, there are 3 or 4 individual
channels: plus SHAPE reagent (RX), without SHAPE reagent or background (BG), and 1 or 2 sequencing
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ladders (SLs). The RX, BG, and SLs are labeled with a different fluorophore, and these are then mixed and

loaded onto a single capillary. Unprocessed electropherogram data are exported from ABIF type (.fsa) files that

are generated by CE (Applied Biosystems AB3130 instrument) [16,17].

2.2. Preprocessing

The appropriate and essential preprocessing tools improve the performance of the signal alignment algorithm
significantly. The implemented tools are given below sequentially.

Smoothing: The raw data exported from the experiments have many kinds of noise, such as high and low
frequency, which are the rapid changes in the amplitude from point to point within the signal. The triangular
smooth method [18], which is one of the most common smoothing methods, is used to reduce the noises. The

triangular smooth is like the rectangular smooth, except that it implements a weighted smoothing function [18].
The smooth coefficients are symmetrically balanced around the central point. Since in a SHAPE experiment
the peak is the most important of the measurement objectives, it is important to preserve the peaks and other
features in the signal. Triangular smooth not only reduces the noise but also preserves the peak shapes.

Signal enhancement: After smoothing, some peaks may be distorted. To obtain the peaks more
accurately, a second derivative-based resolution enhancement technique may be applied. In the enhancement
method, the second derivative of the input signal is subtracted from the input. The useful feature of this
procedure is that it does not change the total peak area because the total area under the curve of the derivative
of a peak-shaped signal is zero [18].

Baseline adjustment: Fluorescent background noise causes the baseline in each channel to drift. The
baseline adjustment algorithm is used to remove the background signal and to normalize the baseline. In this
algorithm, the minimum signal intensity points within the specified window size are found and then the baseline
signal is obtained by applying the linear interpolation using the minima points. Finally, the obtained baseline
signal is subtracted from the input signal to adjust the baseline [17].

Normalization: Since the concentrations of the chemicals used in the experiments may vary or because
the detection equipment is imperfect, the experimentally derived data commonly have experimental biases.
Normalization is usually used to remove such biases to compare the experiments. In this study, the commonly
employed zero-mean, unit-variance statistical normalization is used. The mean of the data is subtracted from
each data point and then these differences are divided by the standard deviation of the data to obtain normalized
data [19].

2.3. The theory of classical DTW

The DTW algorithm finds an optimal match between 2 time series. The 2 time series’ data are nonlinearly
warped in such a way that the similar regions are aligned and a minimum distance between them is obtained.
DTW works by warping the time axis iteratively until an optimal match between the 2 sequences is found.
Here, the summary of the theory of classical DTW is given. The details and pseudocodes of the classical DTW
can be found in [10,12]. Classical DTW can be implemented in 3 main steps.

Step 1. Suppose that we have 2 time series X = (x1, x2,, .., xi, .., xN) and Y = (y1, y2,, .., yj, .., yM), of
length N and M , respectively. An N-by-M matrix C called the distance or local cost is created to represent
the distance of each pair of elements of the time series X and Y . In the distance matrix, the (ith , j th) element
of the matrix is the distance between the 2 points xi and yj , and is computed by a function called the distance

or cost function. The most common function used to compute the distance is the Euclidean distance function,
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as shown in Eq. (1).

C(i, j) = d(xi, yj) = (xi−yj)
2 (1)

Step 2. Using the cost matrix, the accumulated cost matrix D is defined as follows. The first row and
first column of matrix D are calculated and then all of the other elements are computed using the following
statement:

D(i, 1) =
i∑

k=1

C(k, 1), for i ∈ [1, N ]

D(1, j) =
j∑

k=1

C(1, k), for j ∈ [1, M ]

D(i, j) = C(i, j) + min{D(i − 1, j − 1), D(i − 1, j), D(i, j − 1)}, for i ∈ [2, N ]andj ∈ [2, M ]

. (2)

Step 3. After obtaining the accumulated cost matrix, the optimal alignment path is found. An optimal
warping path between X and Y is a warping path having a minimal cost among all of the possible warping
paths. A warping path, W , is a contiguous set of matrix elements that assigns the elements of X and Y to
each other. wk = (i, j)k is defined as the k th element of W and

W = (w1, w2, .., wk, ..wK), max(N, M) ≤ K < N + M + 1. (3)

The warping path is typically subjected to several conditions and is obtained by taking into consideration
the following conditions.

• Boundary: The first and last elements of X and Y are matched to each other. The warping path starts
and finishes in the diagonally opposite corner of the accumulated cost matrix D , namely,w1 = (1, 1) and

wK = (N, M).

• Continuity or step size: This condition restricts the allowable steps in the warping path to adjacent
cells. No element in X and Y can be omitted and there are no replications in the alignment. Given that
wk = (i, j), then wk−1 = (i’, j’), where i − i′ ≤ 1 and j − j′ ≤ 1.

• Monotonicity: This limits the warping path from long jumps while aligning the sequences. The following
condition forces the points in W to be monotonically spaced in time. Given that wk = (i, j), then wk−1 =

(i’, j’), where i − i′ > 0 and j − j′ > 0.

The optimal warping path is calculated by satisfying the constraints given above with minimal cost. The
warping path could be found by simple backtracking from wK = (N, M) to w1 = (1,1), using the following
statements:

wk−1=

⎧⎪⎨
⎪⎩

(1, j − 1), if i = 1

(i − 1, 1), if j = 1

argmin{D(i − 1, j − 1), D(i − 1, j), D(i, j − 1)}, otherwise

. (4)

A sample accumulated cost matrix and optimal warping path is illustrated in Figure 2a. Using the warping
path shown as a white line, the signals can be matched as shown in Figure 2b.
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Figure 2. Representation of the classical DTW. a) A warping matrix is constructed and searched for the optimal

warping path to align the signals. The color map represents the value of the accumulated cost matrix. The optimal

warping path is drawn with a white line. b) The result of the alignment using the optimal warping path. Lines represent

the matched data points.

2.4. Subsequence DTW

In many applications, the signals to be compared may have a significant difference in length. Instead of aligning
these sequences globally, a subsequence within a longer signal is found to fit the shorter signal optimally. A
local signal alignment algorithm is used to identify the segment within the longer signal that is the most similar
to the shorter one. The problem of finding the optimal subsequence can be solved by adapting the classical
DTW. Details about the local alignment can be found in [10,20].

Let X and Y be 2 signals, where we assume that the length of X is larger than the length of Y . An
optimal alignment between X and Y can be computed by some modifications in the classical DTW algorithm
described in Section 2.3. The first modification is made in the initialization (Step 2) of the DTW algorithm.
The basic idea is to not penalize the omissions in the alignment between X and Y that appear at the beginning
and at the end of Y . More precisely, the accumulated cost matrix for the first column is defined as:

D(i, 1) = C(i, 1)fori ∈ [1, N ]. (5)

The second modification is done when finding the optimal warping path. Instead of starting in the top-right
corner of the D matrix, the path starts at a location with the minimum value in the last column of D . The
warping continues until all of the data points in Y are matched with a point in X . In other words, the warping
path can be found by simple backtracking from the points wK = (argmin (D(1:N, M)), M) to the j = 1 or
i = 1.

The sample accumulated cost matrix D and warping part with the alignment result are given in Figure
3, where it can be seen that the shorter signal is aligned correctly with a subsequence within the longer one.

2.5. Implemented DTW modifications

Various modifications have been proposed to speed up DTW computations as well as to control the routes of the
warping path in a better way [12]. One of the common DTW variants is to impose global constraint conditions
on an admissible warping path. Two well-known global constraint regions are the Sakoe–Chiba band and the
Itakura parallelogram [3,12]. In this application, the Sakoe–Chiba band, which runs along the main diagonal

and has a fixed (horizontal and vertical) width T ∈ N , is used as a global constraint. The alignment of the
time points can be selected only from the defined region. Moreover, the distance function is not calculated in
all of the data points, but only in a defined region. This yields a lower execution time.
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KARABİBER/Turk J Elec Eng & Comp Sci

Figure 3. The local signal alignment by modified DTW. a) An accumulated cost matrix with an optimal warping

path. Notice that the start and end of the optimal warping path is shown by a white line. b) Result of the local signal

alignment.

The derivative DTW proposed in [11] does not calculate the distances between the intensity of the data
points, but calculates them between their associated first-order derivatives. Since synchronization is based on
the shape characteristics (slopes, peaks) rather than the values, the derivative DTW gives better results than
the classical DTW, especially for the signals that have peaks and baseline drifts. The derivative of a data point
is given in the following equation:

f ′(xi) = ((xi − xi−1) − (xi+1 − xi−1)/2)/2, for1 < i < N. (6)

Since the distance function is used to determine the similarity between the elements of the 2 sequences, the
choice of a suitable local cost or distance function is of crucial importance. In the classical DTW, the Euclidean
distance function is commonly used for the similarity of time points to obtain the cost matrix [10]. Since the

Euclidean distance function computes the distance just using the power of the difference (Eq. (1)), it is not
enough to obtain the optimum cost matrix for the SHAPE data. In order to obtain a better warping path, a
new distance function is proposed. The formula for the newly proposed distance function is:

d(xi, yj) = |xi − yj| × exp(|i − j| × T ) × P. (7)

Here, T is the elution time tolerance parameter, which determines the importance of the elution time to
the distance score. In other words, T determines the growing rate of the exponential function. The T value
may be between 0 and 1. If T = 0, there is no effect of the time on the distance. The time difference penalty
will be more effective for a higher value of T. For the examples shown here, T was 0.05.

In order to calculate the reactivity of RNA using a SHAPE experiment, peaks in the traces should be
aligned correctly. Since the peaks are the most important features of the traces, giving priority to the peak
positions yields better results. If both xi and yj are the peak positions, the distance of these points is decreased

by a factor of 20% (for P = 0.8). Otherwise, P is assigned to 1. Hence, the peak points will have advantages if
they are aligned. Since the derivatives of the signals are used in the proposed DTW, the peak positions can be
found easily by finding the zero-crossing points in the derivative.

At this point, the algorithm for the new distance function is given in Algorithm-1 as a pseudocode. Note
that notations used for the pseudocode in this paper are given as the following. Variables, such asa or total,
contain some scalar values. An array of N elements is denoted like X[1,2,. . . ,N]. X[i] represents the ith element
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of array X and C[i, j] represents the ith row and j th column of the N × M matrix C . General functions,
such as the minimum and absolute value, are written in as capital letters with parentheses. For example,
MAX(X) would return the maximum elements of array X . The arrow (←) represents the assignment. Loops

and conditional statements are written in lowercase and bold letters. Comments that begin with “//” give
information about the code line.

Algorithm-1: New Distance Matrix

INPUT: Derivatives of two time series (X’, Y’) and time tolerance (T)

OUTPUT: Cost matrix C

1: for i ← 1 to N do

2: for j ← 1 to M do

3: C[i,j]= ABS(X’ [i] - Y’ [j]) x EXP(ABS(i− j)*T )

// Control the points for the peak using downward zero crossing

4: if SIGN (X’ [i]) == -1 and SIGN (X’ [i-1]) == 1 then

5: if SIGN (Y’ [j]) == -1 and SIGN(Y’ [j-1]) == 1 then

6: C[i, j] ← C[i, j] x 0.8

2.6. Peak matching using the warping path

The next step is to determine which of the peaks found in different samples have a common origin. Algorithm-2
is used to match a peak in the 1st trace to a peak in the 2nd trace. After finding the optimal warping path, the
peak detection is applied to the data. Peak detection is performed by looking for the downward zero-crossing
in the first derivative of the time-series datasets [18]. If the sign of the derivative changes from positive to
negative, it means that there is a peak at this point. After the peak detection, the peak positions are matched
using the warping path. However, a correlation is used to verify whether these 2 peaks are identical. If the peak
positions in the warping path are matched and the correlation result is above 95%, these peak positions will be
used for the next step. At the end of this process, a matrix containing the peak matching points is obtained.
For further optimizations, the widths of the matched peaks are controlled.

Algorithm-2: Find the peak match points using warping path

INPUT: Signals (X[1,2,..N]) and Y[1,2,...,M]), warping path (WP[[1,2];[1,2,...,K]]

OUTPUT: Matched peaks (MPX,MPY)

// Obtain arrays for the peak positions in X and Y signals.

1: PX← PEAKDETECTION(X), PY← PEAKDETECTION(Y)

2: for i ← 1 to LENGTH(PX) do

3: j ← WP[2,PX[i]]

// Control whether there is a peak in pY corresponding the peak in pX.

4: if (j in PY) == True then

// Use correlation to make sure whether these peaks are similar

5: R ← CORRELATION(X[PX[i]-5 : PX [i]+5], Y[PY[j]-5 : PY [j]+5] )

6: if R >= 0.95 then

7: APPEND(MPX,i) ; APPEND(MPY,j)// Append values to the end of an array.
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2.7. Signal stretch and compress

After obtaining the peak matching points, cubic spline interpolation is used to compress or stretch the signal
to align the signals. In numerical analysis, cubic splines are often used in practice because of the simplicity of
their construction. They produce a curve that appears to be seamless and they avoid oscillation problems in the
curve fit [19]. The objective is to fit a cubic spline for the data points. A typical curve fit involves forming one
equation through all of the points. A spline allows each segment to have a unique equation constraining the
curve fit to the data properties. The cubic spline method avoids oscillation problems in the curve fit connecting
the individual segments. In general, the cubic spline provides a good curve fit for the arbitrary data points [19].
A signal stretch and compress algorithm based on the cubic spline is performed using Algorithm-3 to obtain
the aligned signals.

Algorithm-3: Signal Stretch and Compress

INPUT: The signals X and Y, corresponding matched peak arrays (MPX, MPY)

OUTPUT: Aligned signal (newY[1,2,...,N] )

1: for i←1 to LENGTH(MPY) do

// Calculate length of the consecutive match points in MX and MY

2: d1← MPX[i+1] - MPX[i] ; d2← MPY[i+1] - MPY[i]

3: if d1==d2 then

4: newY [MPX[i] : MPX[i+1]] = Y [MPY[i] : MPY[i+1]]

5: else

// Find the Cubic Spline representation of signal part

6: Coefficient=INTERPOLATE (Y[MPY[i] : MPY[i+1]])

// Create new array of size d1 between MPY[i] and MPY[i+1]

7: array = LINSPACE (MPY[i], MPY[i+1], d1 )

// Calculate new values for newY using array

8: newY[MPX[i] : MPX[i+1]] = Coefficient(array)

2.8. Proposed signal alignment algorithm

In order to improve the signal alignment, some prepressing tools, various modifications for DTW, and further
processes such as Algorithm-2 and Algorithm-3 are employed. The details of the proposed signal alignment
algorithm, which includes 6 main steps, are given in Algorithm-4.

3. Results and discussion

3.1. Aligning signals across capillaries

One of the main challenges with the electrophoresis data is to align the data obtained from different experiments.
Since the parameters used in each experiment, such as the temperature and voltage, are different, data may
vary in time, speed, or intensity. In a SHAPE experiment, different capillaries may have different elution times
and intensities. To overcome this problem, signals should be aligned in terms of the elution time. Since the
sequencing traces are similar, these traces are used to align signals across the capillaries. As can be seen in
Figure 4a, the pattern of the signals is similar, but the elution time and intensity are different from each other.
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Algorithm-4: Proposed signal alignment algorithm

INPUT: Raw data X[1,2,..N] and Y[1,2,...,M]

OUTPUT: Aligned signal (newY[1,2,...,N] )

Step 1 -- Apply preprocessing tools to smooth, enhance, adjust baseline, and normalize
the input signals.

Step 2 -- Compute derivative of the preprocessed signals and obtain cost matrix using
Algorithm-1.

Step 3 -- Obtain accumulated cost matrix using Sakoe--Chiba band, taking into account of
the global constraints

Step 4 -- Obtain optimal warping path from accumulated cost matrix using defined
conditions and the statement given in Step 3 of the theory of classical DTW.

Step 5 -- Obtain peak match using Algorithm-2. Control the width of the consecutive
matched peaks.

Step 6 -- Compress and stretch Y using Algorithm-3 using final matched peaks to get newY.

In order to align the sequencing traces, a DTW-based signal alignment algorithm (Algorithm-4 ) is used.
In order to show the accuracy of the signal alignment algorithm, 4 different sequencing data from 4 different
capillaries are employed. As can be seen in Figure 4a, the signals have a time-shift problem. After applying the
proposed signal alignment algorithm, all of the time-series data are aligned perfectly, as given in Figure 4b.

Figure 4. Signal alignment across capillaries: a) 4 different datasets have time-shift problems; b) result of the proposed

signal alignment algorithm. A signal is selected as a reference and the other sample signals are aligned to the reference

signal.

3.2. Aligning signals within a capillary

In any separation involving multiple dyes linked to DNA, the different dye molecules will alter the relative
speed at which the attached DNA fragments travel through the capillary column. This is primarily caused by
the differing molecular weights of the fluorescent dyes. As a result, the data corresponding to the same DNA
lengths elute at slightly different times [16,17]. In order to align the signals in the capillary, the properties of
the dyes are used. Each dye has a different wavelength and migration time. In a SHAPE experiment, the most
commonly used dyes are VIC, NED, FAM, and JOE. As JOE and FAM have almost the same migration time,
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VIC and NED have almost the same migration time. However, JOE and FAM are faster than VIC and NED.
For example, supposing that FAM is used for the reagent and VIC is used for the sequence, the sequence signal
should be shifted left.

As can be seen from Figure 5a, the amplitude of each peak and the pattern of the signals are completely
different. However, in a SHAPE experiment, the lowest 20% of the peaks in the RX, BG, and SL signals are
similar to each other. Step-5 in Algorithm-4 is modified. Instead of all of the peaks, the lower peaks are
matched. The algorithm is also improved using a shift direction determined by the dye types used for each
reaction. In Figure 5a, a capillary with a RX and SLs is shown. It can be clearly seen that the signals are not
aligned because of different dyes (VIC for reagent, NED for sequencing). After applying the shift correction
algorithm defined above, the signals in the same capillary are successfully aligned, as shown in Figure 5b.

Figure 5. Signal alignment within a capillary: a) the signals in the same capillary with reagent (red) and sequence

signal (green) have different time scale; b) result of the proposed signal alignment.

3.3. Defining region of interest automatically

The other application developed for the SHAPE data analysis is to define a region of interest automatically
using the local signal alignment approach. In fluorescent primer-based sequencing, the sequence data is collected
after the primer peak, which is the first wide peak in a trace (see Figure 6). In order to increase the accuracy

of the next steps, it is useful to remove the data that do not contain any sequence information [17]. In order to
find the same region of interest in traces from different capillaries, the local signal alignment algorithm may be
used.

Since each capillary has the same ddNTP-SL, sequencing traces may be used to select the same region.
After selecting the region of interest in the reference capillary manually, the selected data are used to find the
same region in another capillary. The local peak alignment algorithm is applied using the reference and sample
data. The first and last elements of the warping path are used to define the region of interest in the sample
data.

Figure 6. Representation of a region of interest and identification of a primer peak in a raw trace.
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3.4. Comparison and discussion

The main advantages of the proposed algorithms are accuracy and speed. A comparison of the methods in
terms of the execution time and accuracy is given in the Table. The implemented preprocessing tools increase
the success of the DTW algorithm. In addition to the new distance function, the peak matching algorithm
(Algorithm-2 ) and controlling of the width of the matched peaks reduce the effects of misaligned data points.
The proposed procedure for signal alignment can correct the time-shift problem in an efficient and accurate
way. The developed applications in Sections 3.1 and 3.2 solve the time-shift problems in the analysis of the
SHAPE data analysis challenges successfully.

Table. Comparison of the methods in terms of the execution time for N = M =1000 and the accuracy for over 10,000

data points.

Method Execution time Accuracy
Classical DTW 0.0772 s 87.48%
Modified DTW 0.188 s 91.79%
ShapeFinder 5–10 min N/A

In order to show the accuracy, the developed algorithms were tested on different time-series datasets. In
order to compare the performance of the classical and modified DTW approaches in terms of accuracy, over
10,000 data points from different SHAPE experiments were evaluated. After applying the alignment algorithms
the number of correctly matched data points was calculated to determine the accuracy. The classical DTW
approach was able to achieve only 87.48% accuracy, whereas the proposed approach was 91.79% accurate To
show the accuracy of the warping algorithms, the experimental results of the classical and modified DTW are
given in Figures 7a and 7b, respectively.

Figure 7. Comparison of classical and modified DTW. a) As can be clearly seen, there are many mismatches in the

results of classical DTW. b) The alignment of 2 points in the data is performed more accurately by modified DTW.

In addition, the execution time of the proposed algorithm is incomparable with the algorithms used
in ShapeFinder. Since the signal alignment is performed manually in ShapeFinder, the process can be done
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carefully in 5–10 min, depending on the length of the traces. The execution time of the developed signal
alignment algorithm for 1000 data points is below 1 s. The classical DTW is slightly faster than the proposed
alignment algorithm due to different distance functions. In practical terms, this difference in the execution time
is insignificant, but the accuracy of the proposed signal alignment algorithm is clearly superior. Note that the
time space complexity of DTW is O(NM) in either case. The big O notation is used to show how an algorithm
responds to changes in the input size in terms of the processing time or working space requirements.

4. Implementation

All of the developed methods are implemented using the Python programming language, version 2.6 [21].

The NumPy [22] and SciPy [22] packages, which are not part of the standard Python installation, are used
to manipulate the array and data. NumPy is the fundamental package needed for scientific computing with
Python. The NumPy package contains the array manipulation routines and the SciPy package contains a
variety of scientific packages. In this study, the correlation, standard deviation, and other array manipulation
routines are taken from NumPy and the Cubic Spline is taken from SciPy. Matplotlib [23] is used to draw the
figures. Matplotlib is a Python 2D plotting library that produces quality figures and interactive environments
across platforms. All of the packages are open-source software and can be downloaded from their website for
free.

5. Conclusion
The data generated by CE of nucleic acid fragments can be corrected automatically for shifts in the elution time
using the modified DTW approach. The main advantages of the developed algorithms for the signal alignment
are speed and accuracy. Preprocessing tools and further optimizations were also developed to increase the
performance of the algorithms. The test results prove that the time-shift problems, which are one of the most
important components of the SHAPE data analysis, are solved correctly using the developed algorithms in a
much shorter time. In addition, another challenge in the SHAPE data analysis is solved using the local signal
alignment. These results encourage developing fully automated software to analyze the SHAPE data. As a
result, a new distance function and other algorithmic features make possible the rapid signal alignment and
highly accurate comparisons of complex time-series datasets.
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