
Turk J Elec Eng & Comp Sci

(2013) 21: 864 – 881

c© TÜBİTAK
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Abstract: This paper presents a new approach for the optimal reconfiguration of radial distribution systems in the

presence of reactive power compensators (RPCs). The proposed method is based on the simultaneous reconfiguration

and RPC allocation for the mitigation of losses, equalizing the feeder load balancing as well as improving the voltage

profile in power distribution networks. In this paper, the compensators are the capacitor bank and distribution static

compensator, which is a type of distribution flexible alternating current transmission system device representative of

conventional and modern RPCs. In this regard, the optimal states of the distribution system tie switches are determined

taking into consideration the best size and location of the RPCs. In order to facilitate the algorithm for multiobjective

search ability, the optimization problem is formulated for minimizing fuzzy performance indices. Since the optimization

problem is nonlinear, using intelligent search methods such as the shuffled frog-leaping (SFL) algorithm can overcome the

limitations of conventional analytic methods. In addition, to enhance the performance of the standard SFL, the fuzzy frog-

leaping rule is used in this paper. This algorithm is more accurate and has an efficient convergence property compared to

other intelligent search algorithms. The proposed method is validated using the IEEE 33-bus test system and a Tai-Power

11.4-kV distribution system as a real distribution network. The obtained results indicate that multiobjective simultaneous

placement of RPCs along with reconfiguration can be more beneficial than separate single-objective optimization.

Key words: Optimal reconfiguration, reactive power compensator, network losses, voltage profile, load balancing,

shuffled frog-leaping algorithm, fuzzy system

1. Introduction

Reactive power compensators (RPCs) are generally used to reduce network losses, improve the voltage profile,
and even reduce the unbalance rate of a feeder’s load in distribution networks. The efficiency of these compen-
sators depends to a large extent on their magnitude and location in the network, and any improper placement
may lead to a reduction of their expected performance in the network. Distribution networks include a group of
feeders that are radially connected to each other. Most network feeders have switches by which they connect to
the network or disconnect from it. Generally, 2 types of switches are used for network reconfiguration manage-
ment purposes: normal open and normal close. Network reconfiguration is considered as the process of changing
the topology of the distribution network through varying the positions of the open and close switches. Various
approaches have been proposed for network reconfiguration and defining the optimum capacities for RPCs.
In [1,2], this problem was formulated as a nonlinear program regarding the magnitudes and locations of the

compensators. In [3], the method considered the magnitudes of the compensators as discrete variables and used
∗Correspondence: s esmaeili@uk.ac.ir
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dynamic programming in order to solve the problem in an optimum manner. In [4,5], sensitivity-based methods
were suggested for finding the optimal locations for the capacitors. Some methods were developed based on the
simulated annealing algorithm to define the optimum positions and values for the capacitors [6]. Researchers in

[7–9] employed the genetic algorithm (GA) in order to obtain the defined objects for radial networks. In [10],
an evolutionary programming algorithm was used in order to optimally assign RPCs. The distribution static
compensator (DSTATCOM) is a type of flexible alternating current transmission system (FACTS) device and
is considered to be one of the most important RPCs, connecting to the system in parallel. The primary object
of DSTATCOM is to support the bus voltage by injecting reactive power. It also has the ability to improve
the system’s stability and losses [11,12]. In practice, it is worth mentioning that parallel FACTS devices placed

in distribution buses offer the best advantages by ensuring stable voltages [13,14]. In [15], recent studies on

network reconfiguration carried out for reducing network loss purposes were presented. In [16], reconfiguration
was done in order to reduce network losses and balance feeder loads. Other methods have also been employed
for the optimal reconfiguration of distribution networks, including power flow based on intelligent algorithms
[17], the simulated annealing algorithm [18], the hybrid differential revolution algorithm [19], particle swarm

algorithm (PSO) [20], and improved GA [21], and in [22], a fuzzy multiobjective approach was presented.

Although most of the above-mentioned methods consider the problem of the placement of the RPC and
the reconfiguration problem as 2 separate problems, some recent studies, however, consider them simultaneously
[23,24].

This paper discusses the multiobjective reconfiguration of a system in the presence of DSTATCOM,
which is an innovative approach, and compares the obtained results through this method with the results of the
reconfiguration in the presence of the capacitor. The method uses the shuffled frog-leaping (SFL) algorithm,
which is a combination of PSO and the GA, to solve the problem. The method also employs a fuzzy system
in order to improve the SFL algorithm. There are a number of approaches for solving the multiobjective
optimization problem. Since reconfiguration and RPC allocation placement according to the multiobjective
functions is difficult with an analytical method, a fuzzy logic technique is proposed in this paper to achieve a
trade-off between the objective functions. The multiobjective optimization problem is transformed into a fuzzy
inference system (FIS), where each objective function is quantified into a set of fuzzy objectives selected by
fuzzy membership functions. The proposed algorithm was examined on the IEEE 33-bus and Tai-power 83-
bus distribution systems and the obtained results confirm the ability of this approach in solving the nonlinear
problems and show the effectiveness of the concurrent application of reconfiguration and reactive power planning
in distribution networks.

2. Problem formulation
The objective function is a constrained optimization problem to find an optimal arrangement for the distribution
system and RPC placement in which the value of function F(x) is minimized.

The objective function F(x) consists of 3 goals: reducing the loss, increasing the load balancing, and
improving the voltage profile in distribution systems.

The first term of the objective function reflects losses that are defined by Eq. (1):

Ploss =
nf∑
i=1

ri
P 2

i + Q2
i

V 2
i

, (1)

where P i and Q i are the active and reactive power passing through the feeders, respectively; nf is the number
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of feeders; and r i and V i are the resistance and voltage amplitude, respectively.

The second term of the objective function is considered for reducing the equal load balancing (ELB)

index of the feeders, which is shown in Eq. (2).

ELB =
∑
Fj

(
IFj

IFavg

)2

, (2)

Here, IFj is the current passing through feeder j and IFavg is defined by Eq. (3):

IFavg=
1
nf

nf∑
j=1

IFj . (3)

The third term of the objective function reflects the improvement of the voltage profile, which is shown by Eq.
(4):

IV =
|Vi−V ref.i|∑

i∈LB

, (4)

where LB is the collection of all of the load buses, and V i and Vref.i are the voltage magnitude and the nominal

or reference voltage at load bus i, respectively.

The different terms of the objective function are in various ranges, and so a fuzzy system is employed in
order to balance these terms.

2.1. Membership function for terms of the objective function

Clearly, the different terms of the objective function have different dimensions. Hence, it is necessary to make a
simple structure to compare these terms during reconfiguration and RPC placement. For achieving this purpose,
a fuzzy framework is used for the objective function variables. Each variable has a membership function (μ)
in this fuzzy structure that determines the rank and effectiveness of its variable. The membership values for
each variable are between zero and unity in the fuzzy domain and may be different for each element. Hence, it
becomes possible to compare the variables in this domain [25].

The membership function is formulated as given in Eq. (5) and is depicted in Figure 1.

μfi (X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, f i(X) ≤ fmin
i

fmax
i −fi(X)

fmax
i −fmin

i

, fmin
i ≤ fi(X) ≤ fmax

i

0, fmax
i ≤ fi(X)

(5)

The F(x) parameter is also defined as the index of the system’s real power losses, or the equal load balancing of

the feeders or improvement of the maximum loading. In order to determine the maximum (fmax
i ) and minimum

(fmin
i ) values of the F(x) parameter, the proposed method uses the best and worst solutions, individually

optimized for each objective function.
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Figure 1. Fuzzy system for making compromises among different terms of the objective function.

3. DSTATCOM model

Due to its topological structure and controllability, the DSTATCOM used in this paper has the ability to operate
in the voltage or power control modes. If the voltage control mode is considered, a DSTATCOM can impose
the connected bus voltage into the indicated values. However, in the power control mode, a DSTATCOM
can generate the specified reactive power with respect to the bus voltage. Since the steady-state operation
principles of a DSTATCOM are similar to those of a STATCOM structure, which is used in transmission
networks, a STATCOM model is appropriate for the power flow analysis of a DSTATCOM. In this condition,
the DSTATCOM acts like a source of reactive power connected to a bus with a load equal to PLi+ jQLi .
From a load flow calculation point of view, the performance of a DSTATCOM installed in bus i in the voltage
or power control mode can be modeled like a new PV or PQ bus j with zero active power, respectively. For
more accurate modeling of a DSTATCOM, it is necessary to consider its steady state losses, such as inverter
and coupling transformer losses. For this purpose, the coupling transformer can be modeled using its leakage
reactance (XT ) and resistance (RT ). The illustrated model is depicted in Figure 2. The transformer loss will

be calculated at each iteration of the load flow analysis [26,27].

RT + jXT
Bus jBus i

PV bus
or

PQ bus
with P=0

PLi + Q Li

Figure 2. DSTATCOM load flow model.

4. Optimization procedure

In order to investigate the capability of the proposed fuzzy-SFL method, the results obtained by this method
have been compared with those obtained through conventional SFL and well-known PSO methods. In addition,
the convergence properties and best fitness values of these methods are compared and discussed through single-
objective and multiobjective formulation for most useful cases. In the next sections, the SFL, fuzzy-SFL, and
PSO methods are introduced concisely.

4.1. SFL algorithm

The SFL method is a metaheuristic iterative search algorithm that is based on the memetic evolution of a set
of frogs when looking for food. The first proposal for the SFL method was introduced by Eusuff et al. in 2006
[28]. The object of presenting this algorithm was to obtain an algorithm by which complex problems could be
handled with no need for mathematical formulations. It could be said that this algorithm is a combination of
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the memetic algorithm (MA)-based GA and PSO. Indeed, it is generated through mixing the advantages of the
MA and PSO algorithms.

In this method, the initial population is divided into several separate groups. Each group contains the
same number of frogs. This algorithm has 2 search techniques based on this grouping: a) a local search technique
in which each frog gets a better position to find food, i.e. the best solution, through information exchange; and
b) the process of information exchange among the memeplex, by which the results of all of the memeplexes

obtained through local searches are compared with each other [29].

In each memeplex, the frogs with the best and the worst fitness are called Lb and Lw , respectively.
Moreover, the frog with the best fitness out of all of the memeplexes is considered as Lg . Next, a process

similar to PSO is performed to improve only the frog with the worst fitness (not all of the frogs) in each

iteration. In a suitable manner, the location of the frog with the worst fitness is adjusted as follows [29]:

D = r × (Lb − Lw), (6)

L = L + D;−Dmax < D < Dmax, (7)

where D is the change in the frog’s position, L is the location of the frogs, r is a random number between 0
and 1, and Dmax is the maximum allowed change in a frog’s position. If this process outputs a better solution,
it substitutes for the worst frog. Otherwise, the calculations in Eqs. (6) and (7) are done over again. In
addition, to make an opportunity for the random generation of the improved information, random virtual frogs
are produced and replaced in the population if the local search cannot achieve better solutions, respectively,
in each iteration. After a number of iterations, the different groups come together and share their ideas with
each other through a shuffling process. The local search algorithm and the shuffling processes continue until
the specified convergence criteria are met. The aim of the overall process is to find global optimal solutions.

The steps of this algorithm proceed as follows:

1. The initial population is generated randomly.

2. The frogs are divided into several groups. Each group has n frogs.

3. The local research proceeds as follows. At first, within each group, the frogs with the best and the worst
solutions are recognized. Moreover, the frog that has the best solution within the population is also
recognized. Next, the position of the worst frog is corrected towards the best frog within each group.

4. Step 3 is repeated for a predefined number of iterations.

5. Following the improvement of the positions of the frogs, the new population is sorted from the best to the
worst solution.

6. If the stop condition of the algorithm is met, the algorithm is ended; otherwise, it goes to step 2.

Figure 3 shows the general flowchart of this algorithm.
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Figure 3. General flowchart of the SFL algorithm.
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4.2. Fuzzy-SFL algorithm description

In this paper, the authors propose the implementation of a hybrid fuzzy-SFL algorithm for distribution re-
configuration and VAr planning with multiobjective optimization. In the conventional SFL algorithm, due to
imperfect perception [30], the worst frog cannot exactly place the best frog’s position, and because of the inexact
action, the worst frog cannot leap right to its goal position. Considering these uncertainties, and taking into
account the fact that the worst frog could leap over the best one, a modified frog leaping rule can be defined as:

L(new) = L + M × D. (8)

In this paper, a simple rule is used to determine the value of M using the fuzzy theory. For this purpose,
the membership function of the M index is selected as a generalized semibell-shaped built-in membership
function, which is formulated as given in Eq. (5):

M =

⎧⎨
⎩

Dmax√
DT D

D > Dmax or D < −Dmax

1 −Dmax ≤ D ≤ Dmax

, (9)

where Dmax is the highest permitted distance of one jump.

4.3. PSO algorithm

PSO is a population-based algorithm that uses a population of individuals to investigate the favorable region
of the search space. With this particular context, the population is considered as a swarm and the individuals
are considered as particles. Widespread application of PSO for solving the optimization problem is due to its
fast convergence properties and its capability of finding the global optimum, in which a great number of local
optimum points may exist. In addition, this algorithm has easy programming and can adapt to constrained
problems [31].

For a fair comparison, PSO parameters such as the number of populations and iterations have been
selected in accordance with the SFL algorithm. In this regard, and also preventing explosion of the swarm, the
highest permitted velocity is considered as 4 times the variable number.

5. Multiobjective optimization based on fuzzy system

In the next step, the fuzzy theory is employed to balance the ranges of different terms of the objective function
changes, by which all of the objective functions are combined with each other in the form of a FIS, using expert
knowledge.

Hence, a multiobjective optimization problem will be converted into a single-objective one. To achieve
this purpose, at first, the value of each objective function, which is considered as an input in the FIS, is divided
into several regions using fuzzy membership functions. Next, relations between the inputs and the final output,
i.e. the final objective function that wants to optimize it, are made through the appropriate rules [32].

In this algorithm, it is possible to select different membership functions and different rules, which may
change the final objective function, which in turn leads to obtaining different solutions. Since in this method
the object-combining procedure is carried out based on verbal-linguistic variables, it would be more realizable
to users compared to weight-based combining methods.

Figures 4–7 show the membership functions of the inputs and outputs of the fuzzy system. Tables
1–3 show the fuzzy rules that were employed for defining the optimum location of the compensator while
simultaneously carrying out the reconfiguration process.
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Figure 4. Membership function for P loss . Figure 5. Membership function for ELB index.
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Figure 6. Membership function for IV index. Figure 7. Membership function for the output of the

fuzzy system.

Table 1. Fuzzy rules when the ELB index is bad.

IV
G A B

Ploss

G G B EB
A A VB EB
B B EB EB

Table 2. Fuzzy rules when the ELB index is medium.

IV
G A B

Ploss

G EG A VB
A VB B EB
B G EB EB

For the case study in Table 3, when the ELB index is bad for low P loss and IV is good, the level of
fitness is extremely good. In these sections, B, A, G, VB, EB, VG, EG, and EX stand for bad, average, good,
very bad, extremely bad, very good, extremely good, and excellent, respectively.
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Table 3. Fuzzy rules when the ELB index is good.

IV
G A B

Ploss

G EX A VB
A EG A VB
B VG VB EB

6. Solution algorithm by fuzzy-SFL

Since the introduced multiobjective problem for reconfiguration and RPC allocation in radial distribution
systems is a nonlinear optimization problem with increased numbers of local optima, it is necessary to solve the
problem using a very robust and precise algorithm to find global optimum solutions in a minimum processing
time. The plan is to discover the optimum combination of the tie switch states, RPC location, and size for
mitigating power loss and improving equal load balancing of the feeders and voltage profile. Therefore, the
variables including the tie switch states, size, and location of the RPC are arranged in a variable string.

Figure 8 shows the problem-solving block diagram using the SFL algorithm. The stop condition of this
algorithm is met when, after some limited iterations, we see no improvement in the final solution.

Generation of initial population including open switch
location and location and value of compensator

Generation of corresponding network

Using SFL algorithm for generation of new population

Definition of the value of objective function

Run load flow program for radial distribution system

Yes
No

Read data of distribution system (bus, load, and branch)

Print output results

End

START

Stop condition is met

Figure 8. Proposed algorithm and computational flowchart.

7. Results

The proposed reconfiguration and RPC allocation algorithm using the fuzzy-SFL method has been developed
and implemented in MATLAB 2010b.

Because of distribution network characteristics such as the radial structure and high R/X ratio, a
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forward/backward sweep-based power flow [33,34] is used for the distribution system analysis during the
compensation and reconfiguration.

The effectiveness of the proposed multiobjective optimization method for this particular problem is
illustrated using 2 case studies. Case study 1 was prepared for a single feeder 33-bus IEEE distribution system
and case study 2 is for a network from the Taiwan power company (TPC) with 11 feeders and 83 buses. The
results and discussions are presented through 5 different cases in each example.

At the beginning, in Case 1, the system is estimated under normal operating conditions. In Case 2,
the system is reconfigured without compensating. In Case 3, the processes of the system reconfiguration
and capacitor placement are carried out simultaneously. Similarly, in Case 4 the processes of the system
reconfiguration and the DSTATCOM placement are carried out simultaneously and the DSTATCOM is used in
its voltage control mode. Finally, in Case 5, the processes of the system reconfiguration and the DSTATCOM
placement are carried out simultaneously and the DSTATCOM is used in its power control mode.

7.1. Case study 1

The first example is shown in Figure 9. This 33-bus, 12.66-kV test system consists of 37 branches that are
equipped with 5 tie switches. The system has total load including 3.17 MW and 2.3 MVAr, while it is supposed
to be constant. The other information for this test system can be found in [35]. The power flow calculation is
performed using Sbase = 100 MVA and Vbase = 12.66 kV. Since this case study is a small distribution network,
only a single RPC is considered for placement.

71 2 3 4 5 6 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8

1 9 2 0 2 1 2 2

2 3 2 4 2 5
2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3

(3 7 )

(3 5 )

(3 3 )

(3 4 )

(3 6 )

Bus
Normally closed switches
Tie-lines

Figure 9. The IEEE 33-bus test distribution system.

The results obtained through these cases are shown in Tables 4 and 5; Figure 10 shows the voltage profile
of the network in various exploiting conditions.

As it is shown in the results for Case 2, only by reconfiguration can a decrease in the optimal fitness
from 0.67 (base case) to 0.398 be obtained. However, in Case 3, which is dedicated to both a capacitor bank
installation and reconfiguration simultaneously, the optimal fitness decreases to 0.301. In Case 4, which is
dedicated to both a DSTATCOM in its voltage control mode installation and reconfiguration simultaneously,
the optimal fitness decreases to 0.261. This is because, unlike the capacitor, the output reactive power of a
DSTATCOM is independent from the voltage of the power system. This advantage implies that a DSTATCOM
is a more proper tool than a capacitor. In Case 5, which is the same as Case 4 except that the DSTATCOM is
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used in its power control mode, the optimal fitness decreases to 0.255. It seems that the results are better than
those in the voltage control mode because there is no need to force the connected bus voltage to a specified
value; however, in the voltage control mode, the system voltages are more appropriate than in the power control
mode. Since reconfiguration and RPC allocation change power flow paths in the network, both can reduce
power loss and improve the voltage profile as well as the load balancing.

Table 4. Comparison of results (case study 1).

Case 1 Case 2 Case 3 Case 4 Case 5
Active losses (kW) 202.5 151.4 114.0 118.1 115.8

ELB 67.71 58.07 60.78 50.91 48.06
IV 1.7 1.328 1.0887 0.8379 0.9815

Worst bus voltage (p.u.) 0.9131 0.9318 0.9244 0.9423 0.9461

Tie switches
33, 34, 35, 6, 8, 12, 7, 9, 14, 11, 28, 30, 7, 10, 14,

36, 37 36, 37 31, 37 33, 34 32, 37
RPC location (bus no.) - - 30 10 7

RPC rating (MVA) - - 1.1237 1.1102 0.9947

Table 5. Comparison of results in percent (case study 1).

Case 2 Case 3 Case 4 Case 5
Loss reduction (%) 25.23 43.7 41.68 42.81

ELB improvement (%) 14.23 10.23 28.81 29.02
IV improvement (%) 21.88 35.96 50.71 42.26

Increment in worst voltage (%) 2.04 1.23 3.19 3.61
No. of tie switches changed 3 4 3 4

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1
1.01

1             6            11           16           21            26           31

V
ol

ta
ge

 (
p.

u.
)

Bus No.

Case� 1 Case� 2 Case� 3 Case 4 Case�  5

Figure 10. Voltage magnitude in different cases of case study 1.

From the results of the 33-bus test system, it can be seen that the RPC has the effect of improving the
optimal fitness over the feeders in this particular case, and the topological structures of the optimum network
without the RPC are different from those with the RPC. Based on the 33-bus system with the RPC, the
proposed DSTATCOM installation in this paper has lower optimal fitness than the method proposed in the
capacitor bank installation.

Now the proposed fuzzy-SFL method is compared with other methods, the SFL and PSO. In Table 6, the
setting parameters for the fuzzy-SFL and SFL methods are depicted. The number of memeplexes (NM) is set to

5; the number of frogs in each memeplex (NFM) is equal to 30; the number of iterations in each memeplex (NIM)
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is selected as 50, and the number of iterations is set to 150. In order to have a fair comparison, the considered
parameters for the PSO are the same as those of the fuzzy-SFL method. The results are shown in Table 7,
where it can be seen that the proposed method gives the best configuration. In Figure 11, the convergence
characteristics of the aforementioned evolutionary algorithms are depicted. As is shown, the fuzzy-SFL method
has better performance than the others because of the lowest optimal fitness (0.255) in comparison with the

SFL (0.285) and PSO (0.318) methods, which confirms the ability of this algorithm. It is obvious that the
SFL and PSO methods cannot find the optimum solution in a specified number of iterations. Furthermore, the
convergence behavior of the fuzzy-SFL method was found to be more reliable in comparison to the SFL and
PSO methods because it does not get trapped in local optimum points. In order to investigate the effect of each
objective function on the other objective functions, a single-objective problem based on the loss minimization
is solved and the results are shown in Table 8. Although it can be seen that the PLoss and IV index values are
decreased, the LBI index value has been increased in comparison with the multiobjective solution. It is obvious
that the results of the multiobjective solution, which consider all of the objective functions with the appropriate
weights, have better performance than the single-objective cases. The proposed multiobjective method was not
considered, and so the comparison of the obtained results with other references is impossible. However, for the
method evaluation, the single-objective results for Case 2 are compared with those obtained in [15] and [36], as
is shown in Table 9.

0 50 100 150
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Iteration

B
es

t f
itn

es
s

Fuzzy-SFL
SFL
PSO

Figure 11. Convergence characteristics of case study 1, Case 5.

Table 6. Results obtained from various methods (case study 1, Case 5).

Fuzzy-SFL SFL PSO
Optimal fitness 0.255 0.285 0.318

Active losses (kW) 115.8 128.1 130.2
ELB 48.06 47.91 53.76
IV 0.9815 0.8379 1.0678

Worst voltage (p.u.) 0.9461 0.9423 0.9240
Tie switches 7, 10, 14, 32, 37 8, 14, 31, 33, 37 6, 10, 14, 31, 37

RPC location (bus no.) 7 10 30
RPC rating (MVA) 1.6647 1.5102 1.2281

Table 7. SFL algorithm parameters.

NM NFM NIM Iterations
5 30 50 150
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Table 8. Single-objective results for minimization of power loss (case study 1).

Case 1 Case 2 Case 3 Case 4 Case 5
Active losses (kW) 202.5 139.9 101.0 112.0 98.9

ELB 67.71 77.24 64.79 54.73 62.83
IV 1.7 1.0758 0.9339 0.6932 0.9540

Worst bus voltage (p.u.) 0.9131 0.9413 0.9545 0.9377 0.9538
Tie switches 33, 34, 35, 7, 9, 14, 7, 9, 14, 6, 9, 34, 7, 9, 14,

36, 37 28, 32 37 36, 37 32, 37
RPC location (bus no.) - - 30 14 28

RPC rating (MVA) - - 1.0702 1.401 1.1074

Table 9. Comparison of results of the 33-bus test system (Case 2).

Methods Tie switches Total power loss (kW) Loss reduction (%)
Base case 37, 36, 35, 34, 33 202.5 -

Proposed fuzzy-SFL 7, 9, 14, 28, 32 139.9383 0.3090
ACS 7, 9, 14, 28, 32 139.9383 0.3090
AS 37, 32, 14, 9, 7 163.2949 0.1936
GA 36, 34, 33, 28, 9 146.3209 0.2774

7.2. Case study 2

The next example is a real distribution network from the TPC, which is shown in Figure 12. This practical
11.4-kV system with 11 feeders is equipped with 83 sectionalizing switches and 13 tie switches. The total

Bus
Normally closed switches
Tie-lines

A

B

C

D

E

F

K

J

I

H

G

S/S 1 S/S 2

1 5

(84)

8

9

10

55 53 47

(96)

64

5660

6572

7376

7783
(91)

22

43 46

(94)
32

To 11
(86)

34

38 41 42

(95)

4039
(92)

(93)

11 12 13

14

(89)
To 43

(86)

16

18 20

21

23 24(90)

26

28 29

(85)

(87)

(88)

Figure 12. The Taiwan Power Company distribution system.
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system load, which is considered as balanced and constant, is 28.35 kW and 20.7 kVAr. Other information can
be derived from [37]. The power flow calculation is performed based on Sbase = 100 MVA and Vbase = 11.4.
In this case, 2 RPCs are considered for installation because of the larger scale order compared to case study 1.

The results obtained through these cases are shown in Tables 10 and 11, which reveal that the optimal
reconfiguration in the presence of the DSTATCOM will lead to a reduction of the network’s loss, improvement
of the voltage profile, and the improvement of equal load balancing of the feeders.

Table 10. Comparison of results (case study 2).

Case 1 Case 2 Case 3 Case 4 Case 5
Active losses (kW) 532 484.4 447.8 408.5 402.8

ELB 140.35 133.73 131.40 128.80 126.85
IV 2.55 2.38 1.63 1.22 1.49

Vorst voltage (p.u.) 0.9285 0.9479 0.9481 0.9557 0.9532

Tie switches

84, 85, 86, 7, 13, 34, 39, 7, 13, 34, 39, 7, 13, 34, 39, 7, 13, 34, 39,
87, 88, 89, 54, 62, 86, 87, 42, 54, 62, 55, 62, 72, 42, 55, 72,
90, 91, 92, 89, 90, 91, 92, 72, 83, 86, 83, 86, 89, 86, 89, 90,

93, 94, 95, 96 95 89, 90, 92 90, 92, 95 91, 92, 96
RPC location (bus no.) - - 61 61 63

RPC rating (MVA) - - 2.3173 2.4410 2.13
RPC location (bus no.) - - 20 79 20

RPC rating (MVA) - - 2.57 2.58 2.71

Table 11. Comparison of results in percent (case study 2).

Case 2 Case 3 Case 4 Case 5
Loss reduction (%) 8.95 15.83 23.21 24.2857

ELB improvement (%) 4.71 6.38 8.23 9.6188
IV improvement (%) 6.67 36.08 52.16 41.5686

Increment in worst voltage (%) 2.09 2.11 2.93 2.6602
No. of tie switches changed 6 9 8 7

Figure 13 shows the voltage profile of the network in various exploiting conditions. Based on the following
figures, it is obvious that the optimal reconfiguration in the presence of the DSTATCOM is the optimum method
for reaching our objectives.
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Figure 13. Voltage magnitude in different cases of case study 2.
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Table 12. Results obtained from various methods (case study 2 , Case 5).

Fuzzy-SFL SFL PSO
Optimal fitness 0.3008 0.3014 0.3125

Active losses (kW) 402.8 402.7 409.6
ELB 126.85 126.81 124.5021
IV 1.49 1.50 1.6554

Worst voltage (p.u.) 0.9532 0.9530 0.9488

Tie switches
7, 13, 34, 39, 42, 7, 13, 34, 39, 42, 7, 13, 34, 39, 41,
55, 72, 86, 89, 55, 72, 86, 89, 61, 84, 86, 87,
90, 91, 92, 96 90, 91, 92, 96 89, 90, 91, 92

RPC location (bus no.) 63 61 53
RPC rating (MVA) 2.13 2.2611 2.2883

RPC location (bus no.) 20 79 79
RPC rating (MVA) 2.71 2.6930 2.6797

Table 13. Single-objective results for minimization of power loss (case study 2).

Case 1 Case 2 Case 3 Case 4 Case 5
Active losses (kW) 532 469.8 423.9 410.5 398.3

ELB 140.35 137.16 135.61 131.01 130.9532
IV 2.55 2.31 1.84 1.2468 1.94

Vorst voltage (p.u.) 0.9285 0.9532 0.9532 0.9557 0.9532

Tie switches

84, 85, 86, 87, 7, 13, 34, 39, 7, 33, 55, 61, 7, 13, 34, 39, 7, 13, 34, 39,
88, 89, 90, 91, 42, 55, 62, 72, 83, 86, 40, 54, 61, 41, 55, 62,
92, 93, 94, 95, 72, 83, 86, 88, 89, 90, 72, 86, 89, 72, 83, 86,

96 89, 90, 92 92, 93, 95 90, 91, 92 89, 90, 92
RPC location (bus no.) - - 83 79 18

RPC rating (MVA) - - 2.0456 2.1942 2.31
RPC location (bus no.) - - 53 55 51

RPC rating (MVA) - - 2.1942 1.5769 1.56

From the results of the TPC case study, it can be seen that the RPC has the effect of a loss reduction
improvement over the feeders in this particular case, and the topological structures of the optimum network
without the RPC are different from those with the RPC.

In order to compare the proposed fuzzy-SFL, SFL, and PSO techniques in case study 2, based on our
simulation results shown in Table 12 and Figure 14, the difference in the loss reduction between the fuzzy-SFL
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Figure 14. Convergence characteristics of case study 2, Case 5.
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and SFL methods is very small. Since the reconfiguration problem does not have an infinite optimal search
area, the fuzzy-SFL and SFL methods can achieve almost the same optimal solution if the algorithm iterations
are large enough.

In a similar way as in Case 1, the single-objective results for the TPC distribution system are presented
in Table 13. As is shown, the power loss index is decreased in spite of the ELB index in comparison with the
multiobjective solution. For the method evaluation, the single-objective results for Case 2 are compared with
those obtained in [15] and [36]. The method evaluation is shown in Table 14.

Table 14. Comparison of results of Tai-power system (Case 2).

Methods Tie switches Total power loss (kW) Loss reduction (%)

Base case
84, 85, 86, 87, 88, 89, 90,

531.99 –91, 92, 93, 94, 95, 96

Proposed fuzzy-SFL
7, 13, 34, 39, 42, 55, 62,

469.81 0.116972 ,83, 86, 89, 90, 92

ACS
7, 13, 34, 39, 42, 55, 62,

469.81 0.116972, 83, 86, 89, 90, 92

AS
7, 13, 33, 39, 54, 61, 71,

516.53 0.029086, 89, 90, 91, 92, 95

GA
7, 33, 55, 61, 72, 83, 86,

470.09 0.116388, 89, 90, 92, 93, 95

8. Conclusion

This paper discusses an appropriate method for optimal multiobjective reconfiguration of distribution networks
in the presence of RPCs. In this paper, the compensators used are a capacitor bank and DSTATCOM. At
first, the objective function is defined with the following objectives: a) improvement of the voltage profile, b)

reduction of the network losses, and c) improvement of the equal load balancing of the feeders. In order to solve
the optimization problem for different cases, the fuzzy-SFL algorithm is used in this paper. In this study, the
searching performance of the fuzzy-SFL algorithm is improved due to a new frog-leaping rule that considers
uncertainties. The proposed algorithm was examined on 33- and 83-bus distribution test systems. The obtained
results show that accurate placement of even small ratings of the DSTATCOM simultaneously with the optimal
reconfiguration of system will lead to an improvement of the voltage profile, a further reduction of the losses,
and improvement of the equal load balancing of the feeders. To investigate the validity of the results and the
effectiveness of the fuzzy-SFL algorithm, the problem has also been solved with the SFL and PSO algorithms
for an appropriate case.
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