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Abstract: In this paper, the sliding mode control (SMC) scheme of single time-scale brushless DC motor (BLDCM)

is investigated. The SMC method consists of 2 sections. To simplify the directive of the stability of the controlled

single time-scale BLDCM in the sliding mode, first a special type of PI switching surface is adopted. Second, the SMC

controller is obtained to guarantee the occurrence of the PI switching surface. The effectiveness of the theoretical analysis

is evaluated by numerical simulations. Thus, the numerical results are used to show the verification and trustworthiness

of the proposed method.
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1. Introduction

Chaos is defined as an aperiodic long-time behavior arising in a deterministic dynamical system that exhibits a
sensitive dependence on initial conditions [1]. A key element of deterministic chaos is the sensitive dependence
of the trajectory on the initial conditions. This, the basic characteristic of chaotic behavior, is due to the
internal structure of the systems. However, chaotic behavior may lead to undesirable effects and may need to
be controlled.

Many researchers have endeavored to find new ways to suppress and control chaos more efficiently. So
far, many researchers have presented different types of controllers and control methods, e.g., linear state error
feedback control [2,3], sinusoidal state error feedback control [4], variable substitution (or replacing variable)

control [5,6], variable structure control [7,8], nonlinear feedback control [9], active control [10], and adaptive

control [11] have been successfully applied to chaotic systems.

In recent years, brushless motors have been used as a viable choice for motion control applications,
such as in electric propulsion, robotics, or aerospace. The advantages of brushless motors when compared
with conventional DC motors have caused increasing interest. This interest was provided with the elimination
of the physical contact between the mechanical brushes and commutators. Among the numerous types of
brushless motors, the brushless DC motor (BLDCM) is the one with the highest potential in high-performance
applications. Therefore, BLDCMs are widely used in industrial applications. Hemati, Ge and Chang, and
Ge et al. [12–15] used the bifurcation theory to study BLDCMs. Their studies showed that these kinds of
machines experience chaotic oscillations. These undesirable chaotic oscillations need to be eliminated. Sliding
mode control (SMC) is especially preferred by many researchers due to its capability to tolerate disturbances and
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dynamic model uncertainties [16–23]. Thus, the SMC controller is designed as a nonlinear controller to eliminate
the undesirable chaotic oscillations. Herein, the control of the chaotic system of a BLDCM is investigated by
SMC terms.

This paper presents the chaos control of a single time-scale BLDCM by means of SMC. This work is
organized as follows. In Section 2, the mathematical model of a single time-scale BLDCM is given. In Section
3, the chaos control of a single time-scale BLDCM chaotic system is investigated. In Section 4, numerical
simulations are provided to confirm the validity of the method. Finally, in Section 5, the conclusions are given.

2. Mathematical model of single time-scale BLDCM

A BLDCM is an electromechanical system. The equations for the electrical and mechanical dynamics of a
BLDCM were described by Hemati [12] and Ge and Chang [13]. The system equations for the BLDCM are
transformed via Park’s transformation and take the following form:

i̇q = 1
Lq

[−Riq − nw (Ldid + kt) + vq]

i̇d = 1
Lq

[−Rid − nwLdiq + vq]

⎫⎬
⎭ , (1)

and the electromagnetic torque can be rewritten as follows:

T (iq , id) = n [ktiq + (Ld − Lq) iqid] , (2)

where iq , id are the quadrature axis and direct axis currents; vq , vd are the quadrature axis and direct axis
voltages; Lq , Ld are the fictitious inductance on the quadrature axis and direct axis; R is the winding resistance;

n is the number of permanent pole pairs; and kt =
√

3/2ke , where ke is the permanent magnet flux constant.

The system equations are transformed to a compact form through a single time-scale transformation
[14,15]. Hence, the equations in compact forms, with a greatly reduced number of parameters, were obtained

by Ge et al. [15]. After this transformation by Ge et al. [15], the system equations of the BLDCM take the
following form:

ẋ1 = vq − x1 − x2.x3 + ρ.x3

ẋ2 = vd − δ.x2 + x1.x3

ẋ3 = σ (x1 − x3) + η.x1.x2 − TL

⎫⎪⎬
⎪⎭ , (3)

where vq = 0.168, ρ = 60, vd = 20.66, δ = 0.875, η = 0.26, TL = 0.53, and σ = 4.55.

In Figure 1, the phase portraits of the BLDCM system, given in Eq. (3), are presented. Figure 1a shows
x1 – x3 and Figure 1b shows x1 – x2 . In Figure 2, the time responses of the state variables of the BLDCM
system are given.

3. SMC design for chaos control of a single time-scale BLDCM

The proposed BLDCM chaotic system is described in Eq. (3). Thus, the controlled chaotic system of the single
time-scale BLDCM is attained as follows:

ẋ1 = vq − x1 − x2.x3 + ρ.x3 + u1

ẋ2 = vd − δ.x2 + x1.x3 + u2

ẋ3 = σ (x1 − x3) + η.x1.x2 − TL + u3

⎫⎪⎬
⎪⎭ , (4)
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Figure 1. σ = 4.55 for the phase portraits of the uncontrolled BLDCM system: a) x1 – x3 and b) x1 – x2 .
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Figure 2. σ = 4.55 for the time series of the uncontrolled BLDCM system.

where u1 , u2 , and u3 are control signals.
e = x − xd, (5)

where e = [e1e2e3]T is the tracking error vector. The error dynamics may be written as below:

ė = ẋ − ẋd = Ax + Bg + Bu − ẋd, (6)

where A is the system matrix, B is the control matrix, and g represents the system nonlinearities plus the

parametric uncertainties in the system. The control problem is to get the state x = [x1 x2 x3 ]T to track a

specific time-varying state xd = [xd1 xd2 xd3 ]T in the presence of nonlinearities.

A =

⎡
⎢⎣

−1 0 ρ

0 −δ 0

σ 0 −σ

⎤
⎥⎦ ; B =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ ; g =

⎡
⎢⎣

vq − x2.x3

vd + x1.x3

−TL + η.x1.x2

⎤
⎥⎦
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Now, a time varying proportional plus integral (PI) sliding surface s(e, t) ∈ R3 is defined by the scalar equation

s = s(e, t) as:

s = Ke −
∫ t

0

K (A − BL) e(τ )dτ , (7)

where K ∈ R3×3 , which must satisfy det(KB) �= 0, is a gain matrix, and L ∈ R3×3 , which must have a stable

A-BL, is a gain matrix; namely, the eigenvalues λi(i=1,2,3) of the matrix A-BL are negative (λi| < 0). It is well

known that when the system operates in the sliding mode, the sliding surface and its derivative must satisfy
s = ṡ = 0 [24,25]. The equations may be written as below:

ṡ = KBg + KBLe + KBu + KAxd − Kẋd = 0. (8)

Since KB is nonsingular, the equivalent control in the sliding mode is given by:

ueq = −[ĝ + Le]− (KB)−1[KAxd − Kẋd], (9)

where g is not exactly known but is guessed as ĝ , and the estimation error on g is presumed to be restricted by
some known function G, such that ‖g − ĝ‖ ≤ G . In addition, it reveals that the stability of the systems in the
sliding motion can be guaranteed just by selecting an appropriate matrix L using any pole assignment method.
To ensure the achievement of reaching the condition indicated in Eq. (8), a control law is proposed as:

u = ueq − (KB)−1
[
ε + ‖KBG‖

]
sign(s), (10)

where ε > 0.

4. Numerical simulations for chaos control of a single time-scale BLDCM

Eq. (3) is rewritten with the numerical values as follows:

ẋ1 = 0, 168− x1 − x2.x3 + 60.x3

ẋ2 = 20, 66− 0, 875.x2 + x1.x3

ẋ3 = 4, 55. (x1 − x3) + 0, 26.x1.x2 − 0, 53

⎫⎪⎬
⎪⎭ , (11)

where the A, B, and g matrices are gained as follows:

A =

⎡
⎢⎣

−1 0 60

0 −0.875 0

4.55 0 −4.55

⎤
⎥⎦ ; g =

⎡
⎢⎣

0.168− x2x3

20, 66 + x1x3

−0.53 + 0.26x1x2

⎤
⎥⎦ ; B =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ .

Here, the gain matrix K is chosen as K = diag (1, 1, 1), such that KB = diag (1, 1, 1) is nonsingular.

The desired eigenvalues of the matrix A-BL are taken as P = [–5 –5.001 –5.0001]. The gain matrix L is found
as follows, using the pole placement method:

L =

⎡
⎢⎣

4 0 60

0 4, 1260 0

4, 55 0 0, 451

⎤
⎥⎦ .
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As a result, the matrix K( A-BL ) is computed as K( A-BL ) = diag (–5, –5.001, –5.0001). The PI
switching surfaces are obtained as follows:

s1 = e1 −
∫ t

0
5e1 (τ ) dτ

s2 = e2 −
∫ t

0
5.001e2(τ )dτ

s3 = e3 −
∫ t

0
5.0001e3(τ )dτ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (12)

For this numerical simulation, the initial points of the system are employed as [x1 (0), x2 (0), x3 (0)] = [3.63,

56.02, 0.29]. The constant controller coefficient ε is selected as ε =5. The reference states xd1 , xd2 , xd3 are
selected as xd1 = xd2 = xd3 = xd . Therefore, the control signals may be attained as:

u1 = [−4e1 + 60e3 − 59xd + ẋd+x2x3−sign (s1) (ε + |x2x3−0.168| )−0.168]

u2= [−4.126e2+0.875xd+ẋd−x1x3−sign(s2)( (ε+ |x1x3+20.66|−20.66]

u3= [−0.4501e3−4.55e1+ẋd−0.26x1x2−sign(s3)( (ε+ |0.26x1x2−0.53|+0.53]

⎫⎪⎬
⎪⎭ . (13)

The reference states are taken as xd = 0, and the state vectors x1 , x2 , and x3 converge to 0 quickly after the
control signals are activated at time t = 0, as shown in Figure 3. Figure 3a shows state vectors x1 , x2 , and
x3 , and Figure 3b shows control signals u1 , u2 , and u3 . The reference states are taken as xd = 1sin(2.4t), and
the state vectors x1 , x2 , and x3 converge to xd quickly after the control signals are activated at time t = 0,
as shown in Figure 4. Figure 4a shows state vectors x1 , x2 , and x3 , and Figure 4b shows control signals u1 ,
u2 , and u3 .
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Figure 3. σ = 4.55 and xd = 0 for the controlled BLDCM system with SMC after t = 0 s: a) time response and b)

applied control signals.
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Figure 4. σ = 4.55 and xd = sin(2.4t) for the controlled BLDCM system with SMC after t = 0 s: a) time response

and b) applied control signals.

5. Conclusions

In this paper, an effective control technique has been suggested to stabilize the chaos of a single time-scale
BLDCM chaotic system. A SMC law was applied using a PI switching surface. Hence, it was found that the
stability of the error dynamics in the sliding mode is easily ensured by the PI switching surface. The designed
SMC controller is rather satisfactory for a nonlinear controller to eliminate the undesirable chaotic oscillations.
The related Figures in Figures 3a and 4a show the control of state vectors for different reference states. Figures
3b and 4b show the control signals providing the control of the state vectors. In this paper, the proposed
SMC controller can be used in similar DC machines, i.e. a permanent magnet DC motor. Finally, numerical
simulations are provided to show the effectiveness of the proposed method. The obtained results are satisfying
in view of this.
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