
Turk J Elec Eng & Comp Sci

(2013) 21: 913 – 923

c© TÜBİTAK
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Abstract: This paper proposes a biogeography-based optimization algorithm to enhance the voltage stability of a power

system. It computes the optimal quantity of reactive power support with a view to place the static VAR compensator at

the most appropriate nodes. The scheme inflicts an effective management of VAR resources in the process of improving

the voltage profile and reducing the network losses. It includes the results of IEEE 30-node system to illustrate the

feasibility of the approach.
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1. Introduction

Voltage instability, characterized by a monotonic voltage drop that is slow initially and becomes abrupt after
some time, is triggered either by some kind of disturbances or an increase in reactive power demand that is
beyond the capability of the system. It has been realized that major blackouts were caused by voltage instability.
It is therefore necessary to predict the occurrence of voltage instability and carry out corrective measures with
a view toward ensuring stable operation [1,2].

Static VAR compensators (SVCs) and other flexible alternating current transmission system (FACTS)
devices have been installed in power systems to provide reactive power support. The determination of the node
location for such devices and the amount of reactive power support is of great significance for reducing the real
power losses in addition to enhancing voltage stability (VS). It also increases the available transfer capacity of
the transmission lines, thereby improving the feeder voltage profile. Several methods for solving this problem
have been suggested in the literature [3–11].

Numerous methods for prevention of voltage instability using FACTS devices in power systems were
surveyed in [3]. An operation strategy involving SVCs for improving voltage profile and minimizing real power

loss reduction was suggested in [4]. A bacterial foraging-based algorithm was used to improve the voltage

stability limit and to reduce the loss by optimally placing the unified power flow controller (UPFC) in [5]. An
operation scheme based on a UPFC in order to ensure security through the line over load control and low voltage
control was given in [6]. A method for installing a UPFC with the view of enhancing the VS margin under

contingent conditions was presented in [7]. A strategy for maintaining reactive power reserve with the view of
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avoiding voltage collapse was presented in [8]. An analytical procedure for minimizing voltage deviations in

order to indirectly enhance VS was proposed through reactive power compensation in [9]. A particle swarm

optimization (PSO)-based algorithm was suggested in [10] to ensure voltage security by controlling the reactive
power and node voltages. An adoptive immune algorithm for the reactive power optimization was outlined in
[11].

Recently, a biogeography-based optimization (BBO) algorithm was suggested for solving optimization

problems [12]. It was developed based on the theory of biogeography, studying the geographical distribution of
biological species. In this approach, the islands or habitats are modeled to represent problem solutions, and the
immigration and emigration of species between islands denote sharing of features between solutions. It has been
applied to several optimization problems, such as optimal reactive power control [13], economic load dispatch

[14], and power flow [15].

A novel BBO-based algorithm for enhancing VS in power systems through optimal placement of SVCs is
detailed in this paper. The algorithm has been tested on the IEEE 30-node system and the results are offered.
The paper is divided into 4 segments. Section 1 gives the introduction, Section 2 explains the BBO algorithm,
Section 3 explains the proposed strategy, Section 4 discusses the results, and Section 5 gives the conclusions.

2. Biogeography-based optimization

BBO, as suggested by Dan Simon in 2008 [12], is a stochastic optimization technique for solving multimodal
optimization problems. It is based on the concept of biogeography, which deals with the distribution of species
that depend on different factors such as rainfall, diversity of vegetation, diversity of topographic features, land
area, and temperature. A larger number of species are found in favorable areas compared with those in a less
favorable area. An island that is geographically isolated from other areas is defined as a habitat and is said
to have high habitat suitability index (HSI) if it is suited as a residency for living organisms. The problem

variables that define islands are called suitability index variables (SIVs). A large number of species on high
HSI islands emigrate to neighboring islands with fewer numbers of species and share their characteristics with
those islands. For this reason, habitats with low HSI have a high species immigration rate. The immigration
and emigration process helps the species in the area with low HSIs to gain good features from the species in
the area with high HSIs and makes the weak elements into strong. It also allows the retaining of good features
of species in the areas with high HSIs. The rates of immigration (λ) and emigration (μ) are the functions of
the number of species in the habitat. Figure 1 shows the immigration and emigration curves indicating the
movement of species in a single habitat.

 

  oS               maxS     Species count 

  maxE   

  Rate    

     maxI   
 immigration λ

 emigration μ  

 

Figure 1. Species model of a single habitat.
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In BBO, an island with high HSI represents a good solution and vice versa. The poor solutions for
islands with low HSIs accept many new features from good solutions of islands with high HSIs and improve
their quality. However, the shared features of the good solution still remain in the high HSI solutions. The
concept of immigration and emigration is mathematically represented by a probabilistic model, which relates
the probability Ps(t) such that a habitat contains exactly S species at time t with that of the probability

Ps(t + Δt) at time(t + Δt), as:

Ps(t + Δt) = Ps(t) (1 − λs Δt− μs Δt) + Ps−1 λs−1 Δt + Ps+1 μs+1 Δt. (1)

In case the time Δt turns out to be small, the probability of more than one immigration or emigration can be
ignored, in which case the limit of Eq. (1) as Δt →0 yields the following equation.

Ṗs =

⎧⎪⎨
⎪⎩

−(λs + μs)Ps + Ps+1 μs+1; S = 0

−(λs + μs)Ps + Ps+1 μs+1 + Ps−1 λs−1; 1 ≤ S ≤ Smax

−(λs + μs)Ps + Ps−1 λs−1; S = Smax

(2)

The equation for emigration rate μk and immigration rate λk for k number of species is developed from Figure
1 as follows.

μk =
Emax

n
(3)

λk = Imax

(
1 − k

n

)
(4)

When Emax = Imax , the immigration and emigration rates can be related as:

λk + μk = Emax. (5)

The concept of BBO is based on the mechanisms of migration and mutation, as discussed below.

2.1. Migration

A population of islands, each denoting a candidate solution, can be represented as vectors of SIVs, which are
used to compute the HSI. An island with low HSI indicates an inferior solution and vice versa. The immigration
and emigration rates of each island probabilistically control the sharing of features between islands through a

habitat modification probability, P mod . The λ is probabilistically used to decide whether or not to modify
each SIV of the chosen island. μ is then used to select which of the islands among the population of islands will
migrate randomly chosen SIVs to the selected island. The principle of elitism is used for retaining the islands
with the highest HSI from entering the next generation with a view toward avoiding the damaging of the best
islands.

2.2. Mutation

The cataclysmic events of any island are modeled through mutation of SIVs, whose mutation rates are deter-
mined from species count probabilities. The likelihood of the existence of a solution for a given problem is
indicated by the probability of each species count, Ps , of Eq. (2). An island mutates with other islands if the
respective Ps is very low and vice versa. An island with a very high or very low HSI has less chance to produce
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a more improved solution, but with a medium HSI it has a better chance to produce a more improved solution
in the later stage. The mutation rate of each island can be evaluated using the following equation:

m(S) = mmax

(
1 − Ps

P max

)
. (6)

This mutation scheme tends to increase diversity among the population, avoids the dominance of highly probable
solutions, and provides a chance of improving the low HSI solutions even more than they already have been.

3. Proposed strategy

The proposed BBO-based strategy determines the optimal locations and the amount of reactive power support
required to enhance the VS by maintaining the voltage profile near 1.0 per unit and minimizing the system’s
real power loss. The problem control variables are the node locations for SVC placement and the amount of
VAR support. This section describes the formulation of the problem and a BBO-based solution procedure for
enhancing VS.

3.1. Problem formulation

The node currents and voltages of a power system can be related through node impedance matrix as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1

V2

...
Vk

...
Vnb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z11 Z12 · · · Z1k · · · Z1nb

Z21 Z22 · · · Z2k · · · Z2nb

...
...

...
...

Zk1 Zk2 · · · Zkk · · · Zknb

...
...

...
...

Znb1 Znb2 · · · Znbk · · · Znbnb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1

I2

...

Ik

...

Inb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

The current injection at node-k can be computed from the specified node powers as

Ik =
(

Pk + jQk

Vk

)∗
, (8)

where
P k = PGk − PLk,

Qk = QGk − QLk.

Substituting Eq. (8) into the kth row of Eq. (7),

Vk = Zk1

(
P1 + jQ1

V1

)∗
+ · · ·+ Zkk

(
Pk + jQk

Vk

)∗
+ · · ·+ Zknb

(
Pnb + jQnb

Vnb

)∗
. (9)

If the SVCs are connected at multiple node locations given by a set of nodes Φ, then Eq. (8) can be modified
as:

Vk =
∑
i∈Φ

−jαki Qsvc
i + βk, (10)
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where

αki =
Zki

V ∗
i

and βk =
nb∑
i=1

Zki

(
Pi + jQi

Vi

)∗
. (11)

Using the load flow solution as the initial solution, Eq. (10), which relates the state variables and control
variables, can be iteratively solved for new node voltages and for additional reactive power support Qsvc to be
provided in the network. The reactive power injection of each SVC is constrained by its capacity as:

Qsvc−min
k ≤ Qsvc

k ≤ Qsvc−max
k . (12)

The location and the quantity of VAR support by SVCs are so adjusted that the net voltage deviation of all
nodes with respect to nominal node voltage of 1.0 per unit is minimum besides reducing the system loss. The
net voltage deviations and system loss can be mathematically expressed as:

ΔV =
nb∑
i=1

(|Vi| − 1)2, (13)

Ploss =
nl∑

i=1

Gi

(
|Vm|2 + |Vn|2 − 2 |Vm| |Vn| cos θmn

)
, (14)

where
θmn = ∠Vm − ∠Vn.

The HSI function of the proposed strategy can be formulated by blending Eqs. (13) and (14) as:

Max HSI = 1/(ΔV + η Ploss). (15)

3.2. Representation of BBO variables

If there are nc SVCs to be placed, then the problem variables can be represented in matrix form as shown in
Figure 2. BLk values are so generated that they represent load nodes, as SVCs are not placed at PV nodes.

BL1 BL2 BL3 · · · BLnc

Qsvc
1 Qsvc

2 Qsvc
3 · · · Qsvc

nc

Figure 2. Representation of control variables.

The problem variables contain both integer value for representing BLk and real values to denote Qsvc
k ,

but the BBO algorithm deals with real numbers. Therefore, the BLk value is rounded off to the nearest integer
value to represent a node location.

3.3. Repair algorithm

It is undesirable to fix 2 or more SVCs at a node. During the iterative process, there is a possibility that a
solution point contains the same node number for 2 or more SVCs. If this happens, it may be corrected by the
following repair mechanism.

• Alter any 1 SVC’s node location by generating a random number to represent another load node.

• Repeat the above step until no 2 SVCs’ node locations are the same.
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3.4. Fitness function

The BBO searches for the optimal solution by maximizing a fitness function, denoted by HSI, which is formulated
from the objective function, Eq. (8), involving net voltage deviations and system loss as shown below.

MaxHSI =
1

1 + Φ
(16)

3.5. Stopping criterion

The process of generating a new population can be terminated either after a fixed number of iterations or if
there is no further significant improvement in the global best solution.

Start 

Read power system data 

Choose BBO parameters such as ,nh  
,neh ,maxI ,maxE ,modP ,maxm

,maxIter ,maxm λ , and μ 

Carry out NR load flow  
and obtain bus voltages 

Randomly generate SIVsof each habitat that 
represent BL  and svcQ

 
values to form habitat 

matrix and set iteration counter 0=i  

For each habitat, 
solve Eq. (10) iteratively for bus voltages 
by substituting SIVs and evaluate HSI  

Identify neh  elite habitats having highest 
HSI  and retain them as is without 

making any modifications 

Perform migration 
probabilistically on those SIVs  

of nonelite habitats. 

Update the species count 

probability 
.
sP using Eq. (2) 

Perform mutation operation 
probabilistically on those 

nonelite habitats 

Optimum is reached. Carry out NR 
load flow  by substituting  of the 
best habitat and compute the net 

voltage deviations and real power 
loss 

1+= ii  
Is 

maxIteri ≤  
? 

Stop 

Yes 

No 

Figure 3. Flow chart of the proposed method.

3.6. Solution process

An initial population of habitats is generated by assigning a random vector that contains BL and Qsvc within
their respective limits to every individual in the population. The HSI is calculated by considering SIVs of each
habitat and the migration and mutation operations are performed for nonelite habitats with a view toward
maximizing the HSI. The iterative process is continued until convergence. The flow of the proposed strategy is
shown in Figure 3.
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4. Simulations

The proposed BBO-based strategy is tested on the IEEE 30-node test system with SVCs, whose lower and
upper limits are –100 and 150 MVAR for different load levels, which are obtained by multiplying the base load
power by a constant multiplication factor. NR load flow technique [16] is used to obtain node voltages before

the optimization process. The results are compared with those of genetic algorithm (GA)- and PSO-based

approaches (see Appendix) using the same fitness function of Eq. (16) in respect to the net voltage deviation,
system real power loss, node location, and quantity of reactive power support. The various parameters used in
the BBO algorithm are listed in Table 1.

Table 1. BBO parameters.

Parameters Chosen value
nh 50
neh 2

P mod 1
Maximum values forλ and μ 1

Mutation probability 0.005

The node voltages after optimization by BBO, PSO, and GA at base load and at 110% and 120% of
base load are graphically displayed in Figures 4, 5, and 6, respectively. It is clearly indicated that the proposed
method provides a better voltage profile. The system loss incurred by the 3 methods at the different load levels
are compared in Figures 7, 8, and 9, which show that the proposed method offers the lowest power loss when
compared to that of GA- and PSO-based strategies.

The net voltage deviations at 3 load levels, realized after optimization by the 3 methods, are given in
Table 2. It is interesting to note that the proposed method offers lower net voltage deviations than the other 2
methods. Among the other 2, the PSO-based method is better in view of minimizing the net voltage deviations.

The node location for placement of SVCs, the amount of VAR support, and the execution time by the
3 methods at 120% load level are compared in Table 3. Though all 3 methods choose different nodes for SVC
placement, the proposed method gives the optimum location, which requires the lowest VAR support of the
methods and the lowest computation time.

The converging characteristics of the 3 methods are shown in Figure 10. It is clear from the curves
that the proposed method quickly converges and the performance is better than that of GA- and PSO-based
strategies.
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Figure 4. Voltage profile at base load. Figure 5. Voltage profile at 110% of base load.
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Figure 10. Convergence characteristic of BBO, PSO, and GA.

Table 2. Comparison of voltage deviations.

Type
Net voltage deviation (per unit)

Base load 110% load 120% load
BBO 0.001 0.095 0.002
PSO 0.066 0.138 0.142
GA 0.1068 0.142 0.15

Table 3. Comparison of results at 120% of base load.

Type
SVC size

Location
Execution

(MVAR) time (s)
BBO 143 4 1.52077
PSO 150 21 1.555065
GA 149 6 1.543682

5. Conclusion

A new BBO-based algorithm for enhancing voltage stability by placing the SVC at the most appropriate node
and computing the optimal quantity of reactive power support has been proposed. The simulation results
have clearly illustrated that the proposed strategy requires the lowest VAR support, minimizes net voltage
deviations, reduces system losses, offers better a voltage profile, and takes the lowest computation time and
makes it suitable for practical implementations as compared to the other 2 methods.
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Appendix

A.1. Genetic algorithm

The GA is a heuristic optimization technique based on the process of natural evolution involving the mechanics
of natural selection and natural genetics. A chromosome in binary form is usually used to represent a candidate
solution. A set of chromosomes, called a population, migrates towards a better set of solution by simulating “the
survival of the fittest” criterion of Darwinian evolution among chromosome structures. The evolution usually
starts from a population of randomly generated individuals and proceeds in generations. In each generation,
the fitness of every individual in the population is evaluated, after which multiple individuals are stochastically
selected from the current population and modified to form a new population through reproduction, crossover,
and mutation operators [17]. The process is continued by treating the new population as the current population
until either a maximum number of generations is reached or there is no change in the fitness for a specified
number of generations. The GA-based strategy used in this article encodes the variables given in Figure 2 in
binary form to represent chromosomes and uses the fitness function given by Eq. (9).

A.2. Particle swarm optimization

Particle swarm optimization (PSO) is a population-based naturally inspired optimization technique based on

swarm intelligence [18]. A candidate solution can be represented as particle X(t) in an n-dimensional search
space. A population of m particles is initialized with random guesses in the search space. These particles fly
around in a multidimensional search space with velocity V (t). There are 2 best positions, denoted as particle

best, X∗(t), and global best, X∗∗(t). Particle best is the best position each particle has achieved so far and
global best is the best position the swarm has seen achieved so far. These particles communicate with other
particles in the swarm and adjust their positions and velocity based on the 2 good positions using the following
function.

Vj(t) = w(t).Vj(t − 1)
+k1σ1

{
X∗

j (t − 1) − Xj(t − 1)
}

+k2σ2 {X∗∗(t − 1) − Xj(t − 1)}
j = 1, 2, · · · , n (A.1)

X(t) = X(t − 1) + V (t) (A.2)

Here, j = 1, 2, · · · , n and k2 are constants, and σ1 and σ2 are random numbers in the range (0,1).

The inertia constant w(t) is gradually decreased during the iterative process using the following relation.

w(t) = η ·w(t − 1) (A.3)

The iterative procedure is continued up until the desired conditions are satisfied. However, the process
can be terminated either if there is no appreciable change in the global best solution in the successive iterations
or the maximum number of iterations are reached. The PSO strategy used in this article represents each particle
to denote the control variables given in Figure 2 and uses the fitness function given by Eq. (9).

Nomenclature

BBO Biogeography-based optimization
BLk Node location for the placement of the

kth SVC
Emax Maximum emigration rate

FACTS Flexible AC transmission systems
GA Genetic algorithm
Ik Current at node k
Imax Maximum immigration rate
Itermax Maximum number of iterations
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mmax Mutation probability
nh Number of islands
n Total number of species in the islands
nc Number of compensators (SVCs)
nb Number of nodes
neh Number of elite islands
nl Number of lines
PSO Particle swarm optimization
Ps(t) Probability that the islands contain

exactly S species at time t
Pk&Qk Real and reactive power injection,

respectively, at node k
PGk&QGk Real and reactive power generation,

respectively, at node k
PLk&QLk Real and reactive load, respectively,

at node k

Ṗs Species count probability
P mod Islands modification probability
Ploss System real power loss

Qsvc
k Reactive power support by kth SVC

Qsvc−min
k Lower reactive power limit of kth SVC

Qsvc−max
k Upper reactive power limit of kth SVC

SV C Static VAR compensator
S Species in the islands
t and Δt Time and change in time, respectively
UPFC Unified power flow controller
V S Voltage stability
Vk Voltage at node k
Zkj Element of node impedance matrix

corresponding to kth row and kth
column

λ and μ Immigration and emigration rates,
respectively

η Constant weight
Subscripts m Terminal nodes of line i
and n
ΔV Net voltage deviations
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