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Abstract: The optimal receiver for detecting direct sequence code division multiple access (DS-CDMA) signals suffers

from computational complexity that increases exponentially with the number of users. Several suboptimal multiuser

detectors (MUDs) have been proposed to overcome this problem. Due to the nonlinear nature of the decision boundary

of the optimal receiver, it is known that nonlinear receivers outperform linear receivers. Radial basis function (RBF)

MUD is a nonlinear suboptimal receiver that can perfectly approximate this decision boundary and it needs no training

since it is fully determined when the spreading codes of all users and the channel impulse response (CIR) are known.

However, the RBF MUD suffers from structural complexity since the number of hidden nodes (center functions) in its

structure increases exponentially with the number of users. In this study, we propose a new method to minimize the

number of center functions of the RBF MUD using a genetic algorithm (GA) and the least mean squares (LMS) algorithm.

With simulations performed in AWGN and multipath channels it is shown that the proposed method immensely reduces

the complexity of the RBF MUD with a negligible performance degradation.

Key words: DS-CDMA, radial basis function multiuser detector (RBF MUD), genetic algorithm (GA)

1. Introduction

Code division multiple access (CDMA) is a spread spectrum-based access method that has played a significant
role in cellular and personal communication systems in the last decade. This access method assigns unique
spreading codes to different users, allowing multiple users to communicate simultaneously using the same
frequency band. Spread spectrum communication has become popular due to its advantages, including jamming
and interference resistance, signal hiding, good multipath performance, secure communications, and improved
spectral efficiency over other access methods [1]. Of the many spread spectrum-based multiple access schemes

available, the most widely used one is the direct sequence CDMA (DS-CDMA). In DS-CDMA, the transmitter
multiplies each user’s information bits by a unique signature waveform.

The conventional detector (CD) for DS-CDMA passes the received signal through a bank of filters matched
to the user’s unique signature waveform, signs the output, and decides on the information bits. Here, each user
is treated separately as a signal and the others are considered as interference or noise. This interference is
commonly called multiple access interference (MAI). In single user detection, due to MAI, there is a problem
called the “near-far effect”, which refers to the case where users near the receiver supply more power to the
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receiver than those far from it [2]. Thus, several power control techniques are proposed to overcome the near-far

effect [3].

There is a second approach, called joint multiuser detection, where information of multiple users is
used jointly to detect the information of a particular user. Here, MAI is treated as a part of the information
rather than noise [4]. Optimum multiuser detection offers superior performance over CD in terms of near-far
resistance with the cost of computational complexity, which increases exponentially with the increasing number
of users. In a real-life CDMA system, there is a very large number of users, which makes the optimum detector
(OD) impractical and very expensive to implement. Thus, many researchers have tried to develop suboptimal
detectors with reasonable computational complexities, near-far resistance, and performances close to that of the
OD. Decorrelating detector (DECD) is one of these suboptimal detectors that is linear and near-far resistant and

it has a computational complexity proportional to the number of users [5, 6]. DECD introduces performance
improvement over the conventional detector in terms of MAI but it also introduces a problem called noise
enhancement [2]. Moreover, almost all linear suboptimal receivers perform badly with short spreading codes

due to the ill-conditioned empirical correlation matrix. Several blind algorithms that utilize regularization [7]

to overcome this problem have been proposed [8, 9, 10].

It is known that nonlinear receivers outperform linear receivers since the optimal decision boundary in
DS-CDMA is nonlinear [11]. The multistage detector (MSD) is a nonlinear detector that improves each stage’s

estimate by subtracting the estimate of the MAI obtained by the previous stage [2, 12]. Performance of an
MSD can reach that of the OD but it highly depends on the initial estimate, which is usually provided by CD
or DECD.

In addition to the aforementioned traditional suboptimal MUDs (CD, DECD, and MSD), many other

suboptimal detectors that utilize a genetic algorithm [13], neural networks [7], and machine learning [7, 14] have
been proposed.

Genetic algorithm (GA) is an alternative method for the solution of highly nonlinear problems and it

mimics the natural selection and survival of the fittest [13, 15, 16, 17, 18]. A GA-based multiuser detector

(MUD) was first proposed in [19]. In this work, initial values of the possible user bit sequences are obtained
from other detectors, like CD or DECD, and good initial guesses are required for the detector to achieve a
good performance. The GA-based receiver that is proposed in [20] is assisted by a local search algorithm that
improves the initial guess of the population. In this work, simulations are done under the assumption that the
channel impulse response (CIR) is known for the multipath case. A receiver that uses the GA to jointly estimate
both the CIR and the transmitted data bits for all users in a synchronous DS-CDMA system is introduced in
[21] and this work is applied to the asynchronous case in [22]. In both studies, the proposed detectors can reach

the single user performance. However, since the input of the GA-based detectors in [21, 22] is assisted by U
matched filters, where U is the number of users in the channel, the receivers are not perfectly near-far resistant.
In [23] it was shown that embedding the MSD algorithm into the GA as a genetic operator improves the

performance of GA-based receivers and provides faster convergence. Authors of [24] made several modifications
to the classical GA in terms of parent selection and mutation operation; then they applied this modified GA to
the MUD problem in DS-CDMA. It was shown in the paper that the performance of the modified GA MUD
is better than that of the classical GA MUD. In [25] a novel μ-GA with a very low complexity is proposed
for both DS-CDMA multiuser detection and CIR estimation. A control on the diversity of the population is
achieved by an entropy-guided method that adjusts the probabilities of the genetic operators at each iteration.
The performance of the detector is close to that of the single user detector.
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The authors of [26] designed a nonlinear MUD based on neural networks. In [26], 2 structures employing

multilayer perceptrons (MLPs) were proposed for the demodulation of spread spectrum signals in Gaussian
channels. Nonlinear detector structures based on MLPs or polynomial series may provide near-optimum
performance but they also suffer from high complexity [27, 28]. Several other machine learning-based nonlinear

receivers use generative modeling [29, 30, 31, 32] and discriminative modeling [26, 27, 28, 33, 34].

Radial basis function multiuser detector (RBF MUD) was originally introduced in [27] and further

investigated in [35, 36, 37, 38]. An RBF MUD needs no training since it is fully determined when the spreading
codes of all users and the CIR are known. This is a realizable downlink scenario since a simple and yet efficient
way of detecting the CIR is to send a pilot tone to the receiver. The main drawback of the RBF MUD is
its structural complexity. When the number of users is large, the RBF MUD becomes impractical since its
structural complexity increases exponentially with the number of users. A preprocessing method was proposed
in [35] to reduce the complexity of the RBF MUD and the resultant RBF MUD was named a preprocessing-

based (PPB) receiver. This work was further investigated in [39]. Performance analysis of RBF MUD and PPB

RBF MUD for ULTRA-TDD was reported in [37] and it was shown that these receivers achieve low bit error

rates (BERs) even for time-variant multipath propagation channels like pedestrian and vehicular environments.

The number of neurons in the hidden layer of a radial basis function network (RBFN) may become excessive,
even equal to the number of training samples due to the training process. This problem spawned an area of
research on optimization of RBFN structures. One particular tool to optimize the structures of RBFNs is GA.
The common approach is representing the network as a string and optimizing the structure by applying genetic
operators to these strings [40]. In [41] a different method is introduced where, instead of each string representing
a network, the whole population represents one network. Many methods that aim to optimize the RBFN with
GA are well documented in [40]. A method for reducing the number of neurons (centers) in the hidden layer

of RBF MUD using GA is proposed in [38]. By discarding the low-contribution centers, the complexity of the

receiver is reduced from O(2LU) to O(P ), where U is the number of users, L is the number of taps in the
multipath fading channel, and P is the GA’s population size. However, the performance of the receiver highly
depends on the training set and BER reaches an error floor very quickly with the increasing SNR rates.

In this paper, a novel method that reduces the number of centers in RBF MUD using GA on AWGN
channels proposed by the authors in [46] is detailed and its extension to the multipath channels is discussed.

Instead of eliminating low-contribution centers as was done in [35], our method starts with a small subset of
centers whose members are randomly selected from the set of all possible centers. Then the location of each
center in DS-CDMA space is allowed to change in every dimension at each iteration by applying the genetic
operators. This new method also searches for the best variance value for each center. It starts with an initial
value that is equal to noise variance; then it optimizes the variance of each center simultaneously as it searches
for the best center location. Although the resultant RBF structure has significantly fewer centers in comparison

with 2U , it can still reach close to the single user performance. Simulations in both additive white Gaussian
noise (AWGN) and multipath fading channels show that the flexibility of the location and variance of each
center function enable the resultant structure to represent the DS-CDMA space almost perfectly, and make the
proposed GA assisted RBF MUD achieve near-optimum performance. The receiver can easily be implemented
with an additional overhead of a short training sequence.

This paper is organized as follows. Brief explanations of RBFN and GA are presented in Section 2, while
DS-CDMA channel model and structure of the RBF MUD and generation of the super-center vectors are given
in Section 3. Section 4 describes the proposed method and gives the definition of the GA assisted RBF MUD.
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Computer simulation methods and the results are presented in Section 5. Finally concluding remarks are given
in Section 6.

2. Preliminaries

The following 2 subsections provide basic information about tools that have been used in our work. First, the
structure and operation of the RBFN will be summarized and then some basic terminology about GA will be
introduced.

2.1. Radial basis function networks

A radial basis function network (RBFN) is a type of neural network that uses radial basis functions as the
activation function. Originally, the RBFN was developed for data interpolation in a multidimensional space
[42, 43] and it has been used in a wide range of areas like time series prediction, function approximation, control
theory, and communications.

An RBFN consists of 3 layers as shown in Figure 1. The input layer connects the network to the
environment, while the second layer applies a nonlinear transformation from the input space to the hidden
space. In most applications, the hidden space has a higher dimension than the input space. The output layer
sums the outputs of the basis functions after suitable weighting. The output of the RBFN is defined with the
following equation:

y =
N∑

i=1

wiφ(||x− ci||) (1)

where x is the input vector, wi is the weight of the ith basis function output’s path, N is the number of
neurons in the hidden layer, and φ(·) is a radially symmetric function with ci as its center. Hence, the vector
ci is usually called the center. The most common basis function used in the RBFN’s is the Gaussian kernel
given as:

φ(ζ) = exp
(
− ζ2

2σ2

)
(2)

where σ2 is the variance that controls the radius of the influence of the basis function, and ζ2 is the Euclidean
distance between the input vector and the center vector.

Many methods have been proposed to determine the parameters of an RBFN. The most common method
is grouping the training samples with k-means algorithm, selecting the centers from the means, and using the
least mean squares (LMS) algorithm to determine the weights in the third layer.

2.2. Genetic algorithm

Genetic algorithm (GA) [13, 44] is a stochastic search method based on the laws of natural selection, biological
evolution, and genetics that operates as an entirely different optimization procedure among other optimiza-
tion methods (calculus-based techniques, enumerative techniques, etc.) In general, a basic GA consists of 3
operations: selection, genetic operation, and replacement. Figure 2 shows the flow diagram of a simple GA.

In GA, the population consists of a group of chromosomes where each of them represents a candidate
solution to the problem. A chromosome is a string of numbers; usually it is a vector of binary digits. The initial
population may be generated randomly or manually if there is an initial guess about the solution. At each
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Figure 1. Architecture of a radial basis function network

iteration, all of the chromosomes are evaluated and their fitness values are calculated. According to their fitness
values, a probability of selection is assigned to each of them. A particular group of chromosomes (parents) are

selected and genetic recombination (crossover) is applied to pairs of parents to generate offsprings. Some of the
offsprings are mutated with a pre-defined probability and a new population whose chromosomes would be the
parents of the next generation is created.

The GA cycle ends when a desired criterion is satisfied. This criterion may be defined as the number
of generations and/or a desired fitness value. Due to this simulated evolution, the chromosome with the best
fitness value in the final population can become a highly evolved solution to the problem.

3. Definitions

In this section, channel models and detector structures are defined for both RBF MUD for AWGN channel and
RBF MUD for the multipath channel.

Population

Parent
Mating

Offspring

Fitness
Function

Fitness Value

Fitness Value

Selection

Crossover / Mutation

Replacement

Figure 2. Simple genetic algorithm cycle
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3.1. RBF MUD for AWGN channel

3.1.1. Channel model
Our system consists of U independent users. DS-CDMA signals transmitted by these users are assumed to be
bit and chip synchronous. Each user transmits DS-CDMA signals with equal power, which is normalized to 1.
The modulation scheme of the system is BPSK. The equi-probable data bit, which is transmitted by user u

in the k bit interval, will be denoted by Du(k) and is either +1 or –1. The unique spreading code of length
N , which is assigned to user u , will be denoted by Su and each chip in the spreading code will be denoted by
Su,n, n = 1, 2, ..., N and is either +1 or –1. The received signal at chip rate in the presence of AWGN is given
by:

y(kN + n) =
U∑

u=1

Du(k)Su,n + g(kN + n) (3)

where g(kN + n) is the added noise component with the variance σ2
n = N0/2, and N0/2 is the double-sided

noise power spectral density.

Since the user’s transmitted bits are synchronized, we may write the vector representation of chip level
expression y(kN + n) of the received signal by

y(k) =
[
y(kN + 1) y(kN + 2) · · · y(kN + N)

]T (4)

This vector representation provides better understanding of how the RBF MUD operates. Vector y(k)
is supplied to the input layer of the RBF MUD at symbol rate.

3.1.2. Structure of the detector
The RBF MUD needs a set of M basis functions (centers) as shown in Figure 3. The basis function used in
the RBFN is the Gaussian kernel:

φm(y(k)) = exp
(
−||y(k) − cm||2

2σ2

)
(5)

where cm, m = 1, 2, ...,M are the center vectors of length N in AWGN, M is the number of center vectors

that are introduced by the RBF MUD for each 2U possible received signal, and U is the number of users in the
Gaussian channel. Since the vector set cm, m = 1, 2, ..., M contains all of the possible received signal vectors,

y(k), these centers are also called super-centers. Variance of the Gaussian center function, σ2 , equals variance

of the added noise component, σ2
n .

The output layer of the RBF MUD consists of linear weights denoted by wm,u, m = 1, 2, ..., M . The

outputs of the center functions are linearly weighted by wm,u , summed up, and fed into a sign operator, resulting

in the detected symbol for user u , D̂u :

D̂u(k) = sgn

(
M∑

m=1

wm,uφm(y(k))

)
(6)

where y(k) is the vector of length N containing the DS-CDMA signal of U users distorted by AWGN. The
weights, wm,u , in the output layer of the RBF MUD are chosen from the code matrix. Generation of the code
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Figure 3. Structure of the radial basis function multiuser detector (RBF MUD)

matrix, which comprises all combinations of all users, and super-center matrix which has super-center vectors
as its rows, will be explained in the following section.

3.1.3. Generation of super-center and code matrices

The super-center matrix, C , contains all possible received DS-CDMA signals of U users in AWGN channel,
and is derived using the formula:

C = DS (7)

where S is the U × N matrix, comprising the spreading codes of length N of all U users and expressed as
follows:

S =
[
ST

1 ST
2 · · · ST

U−1 ST
U

]T (8)

where Su is the N × 1 spreading code vector of user u .

In Eq. (7) D is the M × U code matrix, which contains all possible bit combinations as its rows where

M = 2U and is expressed as follows:

D =

⎡
⎢⎢⎢⎢⎢⎣

−1 −1 · · · −1
−1 −1 · · · +1
...

...
. . .

...
+1 +1 · · · −1
+1 +1 · · · +1

⎤
⎥⎥⎥⎥⎥⎦ (9)

Thus, Eq. (7) can be written in the expanded form:

C = DS =

⎡
⎢⎢⎢⎢⎣
−ST

1 − ST
2 − · · · − ST

U−1 − ST
U

−ST
1 − ST

2 − · · · − ST
U−1 + ST

U

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
+ST

1 + ST
2 + · · ·+ ST

U−1 − ST
U

+ST
1 + ST

2 + · · ·+ ST
U−1 + ST

U

⎤
⎥⎥⎥⎥⎦ (10)

1140
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Each row in Eq. (10) represents a center vector of the RBF MUD and the weight wm,u in Eq. (6) must be

selected from the mth row and uth column of matrix D [27].

3.2. RBF MUD for the multipath channel

3.2.1. Channel model

It can be seen from Figure 4 that a number of L − 1 head chips of a sequence in the multipath environment is
affected by the previous transmitted sequence, and a number of L−1 tail chips will affect the next transmitted
sequence. This problem is called inter-chip interference (ICI) and in commercial CDMA systems RAKE receivers

[45] are used in combating the ICI.

Figure 4. Inter-chip interference in multipath channel

It is possible to model the multipath channel using a finite impulse response (FIR) structure with L

taps [2]. In conventional CDMA systems, the base station transmits a pilot tone and the receiver estimates the
channel response by monitoring this tone. Let the channel be a stationary L tap with the impulse response

Hch(z) = h1 + h2z
−1 + · · ·+ hLz−L+1 ; then the received signal at chip rate becomes

y(kN + n) = h1

U∑
u=1

Du(k)Su,n + h2

U∑
u=1

Du(k)Su,n−1 + · · ·+ hL

U∑
u=1

Du(k)Su,n−L+1 + g(kN + n) (11)

where g(kN + n) is the added noise component with the variance σ2
n = N0/2, and N0/2 is the double-sided

noise power spectral density. The vector representation of chip level expression y(kN +n) of the received signal
becomes

y(k) =
[
y(kN − L + 2) · · · y(kN + 1) y(kN + 2) · · · y(kN + n)

]T (12)

where y(k) is a vector of length N + (L − 1).

3.2.2. Structure of the detector

The structure of the RBF MUD for the multipath channel is same as that of the RBF MUD for the AWGN
channel as shown in Figure 3. The basis function used is again the Gaussian kernel

φm(y(k)) = exp
(
−||y(k) − cm||2

2σ2

)
(13)
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where cm, m = 1, 2, ..., M are the center vectors of length N + (L − 1), N is the length of the spreading
sequences, L is the number of taps of the multipath channel, M is the number of center vectors that are

introduced by the RBF MUD for each 23U possible received signal, and U is the number of users in the
channel.

3.2.3. Generation of super-center and code matrices

In order to construct the super-center matrix for the multipath channel, the L-tap impulse response Hch of
the channel has to be known at the detector. As discussed before, we have to deal with ICI in a multipath
environment. It is possible to realize the convolution of the spreading sequences with the channel impulse
response using matrix algebra in order to combat ICI while constructing the RBF MUD that operates in the
multipath environment.

The super-center matrix for the multipath channel is defined in [33] as

CMP = SMPHT (14)

where H is an (N + L− 1) × 3N Toeplitz matrix constructed using the CIR vector Hch , and N is the length

of the spreading sequence. The first N − L + 1 column in H is zero. The SMP in Eq. (14) is the Hadamard

product of extended code matrix DMP and U × 3N matrix comprising the spreading sequences of length N

of all U users for the previous, current, and next symbols; thus

SMP = DMP •
[
S S S

]
(15)

where S is defined in Eq. (8) and • is the Hadamard product operator. The extended code matrix DMP is

a 23U × 3U matrix containing all possible bit combinations of previous, current, and next symbols for the U

users as it rows and it can be partitioned into 3 sub-matrices in order to simplify the notation

DMP =
[
DP DC DN

]
(16)

where DP , DC , and DN are 23U × U matrices representing the previous, current, and next code matrices
respectively. By substituting Eqs. (8) and 16 into Eq. (15) we have

SMP =
[
DP DC DN

]
•

[
S S S

]
=

⎡
⎢⎣DP

⎡
⎢⎣
ST

1
...

ST
U

⎤
⎥⎦ DC

⎡
⎢⎣
ST

1
...

ST
U

⎤
⎥⎦ DN

⎡
⎢⎣
ST

1
...

ST
U

⎤
⎥⎦
⎤
⎥⎦ (17)

Each row in the matrix CMP represents a center vector of the RBF MUD for the multipath channel and the

weight wm,u in Eq. (6) must be selected from the mth row and uth column of matrix DC [27].

4. Method
4.1. Definition of the problem

The RBF MUD uses all the centers in the super-center matrix C in Eq. (10) to achieve the optimum performance

[35]. However, the number of rows in matrix C (which is also the number of centers in the RBF MUD) is equal

to 2U , where U is the number of users in the channel. When the number of users in the channel is large,
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the structure of RBF MUD gets too complicated since its number of centers increases exponentially with the
number of users, U . Thus, a need for structure optimization of this detector arises.

The method proposed in [38] gives the idea that it is possible to represent the DS-CDMA space by less

than 2U basis functions. The problem is to find the best center locations and variation values of the basis
functions. Another problem is determining the minimum number of centers to be used. These optimization
problems can be solved by a GA. In other words, the structure of the RBF MUD can be optimized using a GA.
In this paper a method that reduces the number of centers of RBF MUD by optimizing its center locations and
variations is proposed. The method uses GA as the optimization tool. The optimized RBF MUD will be named
as “GA assisted RBF MUD” or shortly “GA RBF MUD” hereafter.

4.2. GA Assisted RBF MUD

In the traditional RBF MUD, there are M = 2U centers for the AWGN case, and M = 23U centers for the

multipath case. However, each center has a variance that is equal to the variance of the added noise, σ2
n . In

GA assisted RBF MUD, the center vectors are not chosen from the set of super-center vectors. Furthermore,
the variance of each center can take any value.

It is possible to reduce the number of centers of RBF MUD by allowing the center locations to be anywhere
in the DS-CDMA space and setting different variance values to different basis functions. By doing so, the RBF
MUD can cover the whole space with a smaller number of centers, with a negligible performance degradation
in terms of BER. In the GA RBF MUD the center vectors of the proposed RBF MUD are not chosen from the
set of super-centers:

c′k �= cm; k = 1, 2, ...,K; m = 1, 2, ..., M (18)

where c′k is the kth center vector of the GA RBF MUD and cm is the mth super-center vector of the traditional
RBF MUD.

In the original definition of RBF MUD [27] and in related works [35, 37, 38], the variations of all the

centers has been chosen to be constant and equal to the noise variance, σ2
n :

σ2
m = σ2

n ∀m, m = 1, 2, ..., M (19)

where M = 2U is the number of centers and U is the number of users in the channel. The variances of Gaussian
basis functions of the GA RBF MUD are different from each center:

σ2
i �= σ2

j , i �= j, 1 ≤ i < j ≤ K (20)

This flexibility of the proposed method lets a center represent more than one super-center, which leads to
a considerable amount of performance increase in terms of structural complexity, especially when the number
of users, U , is large.

4.3. Structure Optimization of RBF MUD for the AWGN Channel

The optimization procedure starts with a randomly selected small subset of super-center vector set as initials.
In other words, the K × N matrix C′ is generated by selecting from the rows of M × N matrix C in Eq.

(10). Initial variances of centers are set to be equal to the noise variance, σ2
n , since this is the case for the

original RBF MUD. Then center vector locations and variances of each center function are optimized to get
better BER’s by using a GA.
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Each member of the population is formed as follows:

Ip,i =
[
c′1,i c′2,i · · · c′K,i σ2

1,i σ2
2,i · · · σ2

K,i

]
(21)

where p = 1, 2, ..., P is the member index, P is the population size, and i is the generation number. Each
member of a chromosome is selected to be a real number. As can be seen in Eq. (21), each member of the
population represents a different RBF MUD structure. At each generation of the GA, the RBF MUD structures

defined by each member of the population are formed up and tested with an input set of 104 samples. The
fitness function of each member is defined as:

f = 1 − BER (22)

where BER is the bit error rate of the RBF MUD whose structure is defined by the associated member. Thus,
the GA minimizes BER while maximizing the fitness function. At each iteration, the members with the best
fitness function are selected. Then GA operators like crossover and mutation are applied to these members and
a new and evolved population is generated.

Since the optimized locations of the center vectors are different from the locations of the super-center
vectors, the weight values in the output layer of the RBF MUD, wm for m = 1, 2, .., M cannot be determined
from the columns of the code matrix D . Thus, the weight values are calculated by using the least mean squares
(LMS) algorithm for each member at each iteration of the GA. When the algorithm terminates, the member
with the best BER is selected to be the centers and variances of the RBF MUD and associated weights calculated
by the LMS become the weights of the output layer of the RBF MUD.

4.4. Structure optimization of RBF MUD for the multipath channel

The method for optimizing the RBF MUD structure in the multipath channel is similar to the one in AWGN. It
is possible to generate K×(N +L−1) matrix C′ again by randomly selecting from the rows of M ×(N +L−1)

matrix CMP in Eq. (14).

Since the dimension of the input space is greater than that of AWGN, it is expected that the GA will
require a larger population size, and number of iterations. Again, the weight values are calculated by using the
LMS algorithm for each member at each iteration of the GA.

5. Simulations

5.1. AWGN channel

A DS-CDMA system with 20 users having Walsh spreading codes of length 32 in a nondispersive channel

distorted by AWGN is simulated. A number of 104 equi-probable bits for training and 107 bits for testing are
generated for each user. As explained in Section III, code matrix D and super-center matrix C are generated
for U = 20 and N = 32. Each member (chromosome) in the initial population of GA is formed as follows:

Ip,0 =
[
c′1,0 c′2,0 · · · c′K,0 σ2

1,0 σ2
2,0 · · · σ2

K,0

]
(23)

where cx,0, x = 1, 2, ...,K , vectors are selected randomly from the rows of super-center matrix C . Each row of

matrix C is selected only once in the same chromosome. Initial variance values in Eq. (23), σ2
y,0, y = 1, 2, ...,K ,

are set to be equal to the variance of the added noise component, σ2
n .
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Not only the transmitted data of a selected user but also the transmitted data of all the users in the
channel are detected in both the train and test stages of our simulations. This is done by updating the weights
of the RBF MUD, which are calculated at each iteration of the training stage and at the beginning of the testing
stage by the LMS algorithm for that particular user.

The parameters that may have significant effect on the performance of the GA RBF MUD are tested in
the simulations. These parameters are as follows: number of centers used in the structure, initial population,
number of generations produced by the GA, mutation probability of the GA and population size (number of

members in the population) of the GA. RBF MUD and GA parameters used in the tests are presented in the
Table. Note that in the Table in all cases, population type is double vector, i.e. elements of the chromosomes
are real numbers with double precision; the function that selects parents of crossover and mutation children is
stochastic and its distribution is uniform; and the algorithm that is used to create crossover children is scattered.
The function that produces mutation children is stochastic and its distribution is uniform in 1 of the 4 cases and
it is Gaussian in the rest. Effects of these parameters on the performance of the RBF MUD will be explained
in the following subsections in the light of the simulation results.

Table. Genetic algorithm parameters used in different tests.

Test for Test for Number Test for Test for
Number of Number of Mutation Population

Centers Generations Probability Size
Number of Centers 20, 60, and 80 40 40 40
Population Type Double Vector Double Vector Double Vector Double Vector
Population Size 40 40 40 20, 40, and 60
Selection Function Stochastic Stochastic Stochastic Stochastic
Selection Function Uniform Uniform Uniform Uniform

Gaussian Gaussian Uniform Gaussian
Crossover Function Scattered Scattered Scattered Scattered
Mutation Probability Shrink:0.75; Shrink:0.75; 0.001, 0.1, Shrink:0.75;

Scale:0.5 Scale:0.5 and 0.5 Scale:0.5
Crossover Probability 0.8 0.8 0.8 0.8
Number of Generations 50 50 and 200 50 50

5.1.1. Number of centers

Three GA assisted RBF MUD’s with different number of centers were simulated. Numbers of centers are
selected to be 20, 60, and 80. In order to operate at optimum performance, an RBF MUD needs 220 centers
to support 20 users. Thus, increasing the number of centers would improve the performance of the receiver.
BER versus Eb/N0 plot for the GA assisted RBF MUD having a different number of centers is given in Figure
5a, where K is the number of centers of the GA RBF MUD. As can be seen in Figure 5.a, K = 80 gives the
best performance, where this result meets the theoretical assumption stating the performance improvement due
to the increase in the number of centers. When K = 20, the receiver is unable to provide a near-optimum
performance. However, due to the flexible structure of the proposed receiver, even in the case of 20 centers, its
BER performance is about 1 dB better than the performance of the receiver proposed in [35], which forms an
RBF MUD by selecting the most influential super-centers as the centers.

The RBF MUD needs 220 centers to operate, while the method proposed in this work reduces this number
to 80. The complexity reduction ratio is a considerable amount, about 1/13, 000 on a rough calculation.
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Figure 5. Simulations results of (a) test for number of centers, (b) test for initial population, (c) test for mutation

probability, (d) test for population size in the AWGN channel.

5.1.2. Initial population and number of generations

The performance of the GA depends on the choice of initial population. The GA provides better performance if
the algorithm is started with an initial population whose members are close to the solution to the optimization
problem. In our case, the members in the population represent the center vectors and variance values of the
basis functions that form the RBF MUD. Thus, the method would converge to an optimum structure faster if
the initial population were set close to the final structure. Hence, we start the GA with an initial population

whose members are formed by randomly selecting the centers from a number of 220 super-centers. In Figure 5b,

1146



TORUN and GÜRKAN KUNTALP/Turk J Elec Eng & Comp Sci

BER versus Eb/N0 plots are shown for the RBF MUD’s, which are optimized by the GA starting with different
initial populations. In this test, the GA is terminated when the number of generations reaches 50. It is seen in
Figure 5b that starting with the first and third initial populations has led the GA to generate RBF MUD’s that
have performances identical to each other and better than that of the RBF MUD that was generated by the GA
started with the second initial population. However, starting with the same initial population and terminating
the GA at 200 generations instead of 50, the resultant optimized RBF MUD provided the identical performance
with the other RBF MUD’s. Thus, the effect of the initial population on the performance of the resultant RBF
MUD can be eliminated by letting the algorithm generate more populations.

5.1.3. Mutation probability

The recommended mutation probability range in the literature [13] is 10−3 − 10−2 . Since our strings (members

in the population) are represented by real numbers and no encoding is used, the space that is needed to be
scanned is real valued and there are an infinite number of locations for a center to be located. Hence, we
would need a high mutation probability to search the space effectively. According to Figure 5c, the GA with
a mutation probability close to the upper recommended limit, 0.05, generated an RBF MUD with the best
performance. A probability that is less than the recommended lower limit, 0.0005, or a probability that is much
greater than the upper limit, 0.5, ends up with an RBF MUD of worse performance.

5.1.4. Population size

In the GA, increasing the number of members in the population to be evolved decreases the probability of the
algorithm being stuck at local maxima. In this test, populations of different sizes are generated and optimized
via the GA. The algorithm is stopped at the same number of generations for each population. Observing Figure
5d, we may conclude that a GA evolving a population of greater size would generate an RBF MUD with better
performance.
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100
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P e
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Figure 6. Simulation results in multipath channel. (a) Effect of number of centers. (b) Effect of number of iterations.

Increasing the number of iterations provides better results as expected.
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5.2. Multipath channel

The number of centers for the RBF MUD supporting 10 users in a 3-tap multipath fading channel are reduced
to 20, 60, and 100. It can be seen in Figure 6a that the proposed method reduced the number of centers from

230 to 100 with a slight performance degradation. When K = 20 and K = 60 the detector is unable to
provide a near-optimum performance. If we consider the case for K = 100, the complexity reduction ratio is a

considerable amount, i.e. about 1/107 on a rough calculation. Performance loss in the new detector is about 1

dB for a BER of 10−3 .
In Figure 6b the bit error rate performances of 2 RBF MUD’s where one of them is generated after

50 iterations of GA and the other is generated after 150 iterations are shown. We may conclude that the
performance of the optimized RBF MUD may be increased further if we let the GA run more iterations.

Note that due to the structural complexity of the RBF MUD, a time-invariant multipath channel is used
in the simulations with the channel impulse response given as

Hch(z) = 0.3482 + 0.8704z−1 + 0.3482z−2 (24)

6. Conclusion

We proposed a new method to reduce the complexity of the RBF MUD by minimizing the number of center
functions using a GA. By determining the optimal values of the centers and the variances of the radial basis

functions through the GA, we managed to reduce the complexity of the RBF MUD from O(2U) to O(K),
where K is a predetermined number of centers, at the expense of negligible performance degradation compared
to the single user receiver. Increasing the number of centers, population size, and number of generations will
make the performance of the GA assisted RBF MUD approach the optimum performance of the traditional

RBF MUD, which has a complexity of O(2U ).

7. Acknowledgment

The authors would like to thank Dr Mehmet KUNTALP for his insightful reviews.

References

[1] P. Jung, P.W. Baier, A. Steil, “Advantages of CDMA and spread spectrum techniques over FDMA and TDMA in

cellular mobile radio applications”, IEEE Trans. Veh. Tech., Vol. 42, pp. 357–364, 1993.

[2] J.G. Proakis, Digital Communications, New York, McGraw-Hill, 2001.

[3] F. Babich, F. Santucci, R. Graziosi, “Performance of error control schemes for fading channels with power-control

and MAI”, Proc. IEEE Vehicular Technology Conference, Vol. 1, pp. 318–322, 2004.

[4] S. Verdu, “Minimum probability of error for asynchronous Gaussian multiple access channels”, IEEE Trans. Inform.

Theory, Vol. IY-32, pp. 85–96, 1986.

[5] R. Lupas, S. Verdu, “Linear multi-user detectors for synchronous code-division multiple access channels”, IEEE

Trans. Inform. Theory, Vol. 35, pp. 123–136, 1989.

[6] R. Lupas, S. Verdu, “Near-far resistance of multi-user detectors in asynchronous channels”, IEEE Trans. Commun.,

Vol. 38, pp. 496–508, 1989.

[7] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1996.

[8] S. Liu, J. Wang, “Blind adaptive multiuser detection using a recurrent neural network”, Proc. International

Conference on Communications, Circuits and Systems, Vol. 2, pp. 1071–1075, 2004.

1148
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