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Abstract: Conventionally, FACTS devices employ a proportional-integral (PI) controller as a supplementary controller.

However, the conventional PI controller has many disadvantages. The present paper aims to propose an on-line self-

learning PI-derivative (PID) controller design of a static synchronous series compensator for power system stability

enhancement and to overcome the PI controller problems. Unlike the PI controllers, the proposed PID controller has a

local nature because of its powerful adaption process, which is based on the back-propagation (BP) algorithm that is

carried out through an adaptive self-recurrent wavelet neural network identifier (ASRWNNI). In fact, the PID controller

parameters are updated in on-line mode using the BP algorithm based on the information provided by the ASRWNNI,

which is a powerful and fast-acting identifier thanks to its local nature, self-recurrent structure, and stable training

algorithm with adaptive learning rates based on the discrete Lyapunov stability theorem. The proposed control scheme

is applied to a 2-machine, 2-area power system under different operating conditions and disturbances to demonstrate its

effectiveness and robustness. Later on, the design problem is extended to a 4-machine, 2-area benchmark system and

the results show that the interarea modes of the oscillations are well damped with the proposed approach.

Key words: Adaptive control, flexible AC transmission systems, power system control, power system stability, self-

recurrent wavelet neural networks

1. Introduction

Power systems can be studied as highly nonlinear large-scale dynamic systems [1]. Electromechanical oscillations

occur when the power system is subjected to disturbances. Power system stabilizers (PSSs) are conventionally

employed for power system oscillation damping. However, they have many disadvantages; they can be adversely

affected by the voltage profile while the system is operating at a leading power factor. Moreover, during a severe

disturbance, their suppressing ability may be degraded [2,3].

The recent development of power electronics has attracted more attention to the use of flexible AC

transmission system (FACTS) devices in power systems with the aim of damping the oscillations and improving

the dynamic stability of the power system [4–11]. The suitably controlled FACTS devices can provide good

damping to both the interarea and the local mode oscillations of a multimachine power system.

Conventionally, FACTS devices employ a proportional-integral (PI) controller as a supplementary con-

troller [12]. The PI controller is used in a wide range of industrial applications due to its simple structure

and low cost. However, the PI-type controller has many disadvantages, which are more highlighted when the

controlled object is highly nonlinear. In this situation, the PI controller is almost a deficient controller, and
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its deficiency is mainly related to its tuning method as the first problem and its static nature as the second

problem.

To overcome the first problem, many different parameter tuning methods have been presented for PI/PI-

derivative (PID) controllers. A survey conducted up until 2002 was given in [13,14]. These methods are generally

modifications of the frequency response method proposed by Ziegler and Nichols [15]. Numerous analytical-

based works were also presented in order to tune the PI/PID parameters [16–18]. Robust and optimal control

methods were also proposed to design the PI/PID controllers [19–23]. Recently, as other alternatives to PID

tuning, modern heuristic optimization techniques such as simulated annealing [24], the evolutionary algorithm

[25], particle swarm optimization [26], and chaotic optimization [27] have been given much attention. Most of

these works propose a fixed-gain PI/PID controller with an unappealing static nature (the second problem).

The present paper aims to propose an on-line self-learning PID (OLSL-PID) controller for a static

synchronous series compensator (SSSC) for power system stability enhancement and to overcome the PI

controller problems. Unlike the PI controllers, the proposed PID controller has a local behavior because of

its powerful adaption process, which is based on the back-propagation (BP) algorithm. During the adaption

process, the Jacobian of the plant is also needed. Generally, 2 control strategies can be used to evaluate the

Jacobian, ‘direct adaptive control’ and ‘indirect adaptive control’. In this paper, it is calculated based on

the indirect adaptive control theory. An on-line identification algorithm is therefore required to evaluate the

Jacobian on-line.

Multilayer perceptron (MLP) networks, based on the gradient descent (GD) training algorithm with static

learning rates, are used by many researchers for the identification of synchronous generators [28–32]. However,

MLPs have some drawbacks due to their inherent characteristics [33]. They have a global nature due to their

use of the continued activation function. This global nature slows the speed of learning and results in the

essence of the local minimum. Recently, wavelet neural networks (WNNs), which absorb the advantages such

as the multiresolution of the wavelets and the learning of the MLP, were used to identify the nonlinear systems

[34–38]. The WNN is suitable for the approximation of unknown nonlinear functions with local nonlinearities

and fast variations because of its intrinsic properties of finite support and self-similarity [39]. Aside from these

advantages, the WNN has a shortcoming; due to its feed-forward network structure, it can only be used for

static problems. Hence, self-recurrent wavelet neural networks (SRWNNs), which combine such features as the

dynamics of the recurrent neural network and the fast convergence of the WNN, were proposed to identify the

nonlinear systems [33–40].

In this article a SRWNN is thus used as an identifier to adapt the PID controller parameters. Moreover,

the GD method using adaptive learning rates (ALRs) is applied to train all of the weights of the adaptive

SRWNN identifier (ASRWNNI). The proposed control scheme is applied to a 2-machine, 2-area power system

under different operating conditions and disturbances to demonstrate its effectiveness and robustness. Nonlinear

simulation results are also presented to highlight the promising features of the proposed controller. Later on,

the design problem is extended to a 4-machine, 2-area system and the results show that the interarea modes of

the oscillations are well damped with the proposed approach.

The reminder of the paper is organized as follows: the 2-machine, 2-area power system model is presented

in Section 2. The design of the OLSL-PID controller is described in Section 3. The SRWNN structure and

its application to the adaptive identifier design are presented in Section 4. The convergence analysis for the

ASRWNNI is provided in Section 5. The simulation results are discussed in Section 6. Section 7 gives the

conclusion with a brief summary of the simulation results.
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2. The 2-machine, 2-area power system with SSSC

To assess the effectiveness and robustness of the proposed approach, a 2-machine, 2-area power system equipped

with a SSSC, shown in Figure 1, is considered. It consists of 2 generators and 1 major load center of

approximately 2200 MW at bus 3, which is modeled using a dynamic load model where the active and reactive

power absorbed by the load is a function of the system voltage. Each generator is equipped with a PSS. A

100-MVA SSSC is also installed at bus 1, in series with line L1 . The system data are given in Appendix A.

SSSC

2G
1G

1L

2-2L

3L

Dynamic Load Load 1

Load 2

Load 3

2T 1T

2-1L

Bus 3 Bus 1

Bus 2

Bus 4

Figure 1. The 2-machine power system with SSSC.

3. OLSL-PID controller design

In this paper, an adaption law based on the BP algorithm is used to tune the PID gains in on-line mode. The

general structure of the control system is shown in Figure 2. The PID output is the control action u(n). To

tune the PID controller gains, it can be considered as a single layer perceptron (SLP) neural network with the

linear activation function ‘purelin’. Figure 3 represents the PID controller based on the neural network. Hence,

the PID controller gains can also be considered as the weights of the SLP neural network.
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( )y n−

( )1y n^

^
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+

PID

ASRWNNI
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( )dy n
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Figure 2. Control system structure.
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Figure 3. The PID controller based on the neural network.

These gains can therefore be updated on-line using the BP algorithm. To select the optimal control

signal, the following cost function can be considered:

Jc (n) =
1

2
[y (n)− yd (n)]

2
=

1

2
e2c (n) , (1)

where y(n) is the plant output and yd(n) is the desired plant output, both at time step n . To minimize the

cost function in Eq. (1), the PID controller gains are adjusted on-line using the GD method. The GD method

may be defined as:

W i
c (n+ 1) =W i

c (n) + ηic

(
− ∂Jc(n)

∂W i
c (n)

)
, (2)

where for Wc =[Kp,Ki,Kd ] and ηc =[ηKp , ηKi , ηKd ], W i
c and ηic , respectively, represent an arbitrary gain

and the corresponding learning rate in the PID controller. The partial derivative of the cost function in Eq. (1)

with respect to W i
c is:

∂Jc (n)

∂W i
c (n)

=

[
ec (n)

∂y (n)

∂u (n)

]
∂u (n)

∂W i
c (n)

. (3)

The components of the weighting vector are also as follows:

∂u (n)

∂Kp
= ec, (4)

∂u (n)

∂Ki
=

∫ tcurrent

0

ec.dt, (5)

∂u (n)

∂Kd
=

d

dt
ec, (6)

where ∂y(n)/∂u(n) in Eq. (3) is the plant Jacobian in each time step n . Regarding what has been mentioned

so far, the ASRWNNI is used to evaluate the Jacobian on-line. Adjustment of the cycle of the OLSL-PID for

each time step n is given in Appendix B.

4. The ASRWNNI

As mentioned before, the Jacobian of the plant is needed during the adaption process. In this section, the

SRWNN is adapted to design an adaptive plant identifier. This identifier can then be used to evaluate the

Jacobian on-line, based on the indirect adaptive control theory.
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4.1. The SRWNN structure

The detailed structure of the SRWNN, consisting of 4 layers with Ni inputs, 1 output, and Ni × Nw mother

wavelets, is shown in Figure 4 [40]. Layer 1 is an input layer. Layer 2 is a mother wavelet layer. Each node

of this layer has a mother wavelet, with the first derivative of a Gaussian function φ(x) = x× exp(–0.5 ×x2)
as a mother wavelet function, and a self-feedback loop. Each wavelet (wavelon) φij is derived from its mother

wavelet φ as follows:

Layer 4

Layer 3

Layer 2

Layer 1

y

1x
iNξ

1

11Ζ θ− 1

,ω ιΝ ΝΖ θ−
11ϕ ,1 ιΝϕ 2, ιΝϕ ,Ν Νω ι

ϕ
21ϕ ,1Νω

ϕ

∏ ∏∏1ψ 2ψ
ωΝ

ψ

1w

∑

2w w
wN

Figure 4. The SRWNN structure.

ϕij (zij) = ϕ (zij) , ∀zij = ((uij − tij) /dij) , (7)

where tij and dij are the wavelet translation factor and the dilation factor, respectively. The subscript ij

indicates the j th input term of the ith wavelet. Moreover:

uij (n) = xj (n) + ϕij (n− 1) θij ,

where θij shows the weight of the self-feedback loop. Layer 3 is a product layer. The nodes in this layer are

given as follows:

ψi =

Ni∏
j=1

ϕ (zij) =

Ni∏
j=1

[
(zij) exp

(
−1

2
z2ij

)]
. (8)

The network output is finally calculated as:

y (n) =

Nw∑
i=1

wiψi, (9)

where wi is the connection weight between the product nodes and the output nodes.
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4.2. Application of the SRWNN for the plant identification

The ASRWNNI, based on the series-parallel method [41], can be represented as:

xI = [y (n) , y (n− 1) , ..., y (n− p) , u (n) , u (n− 1) , ..., u (n− q)], (10)

ŷ (n+ 1) = fI (xI) , (11)

where ŷ(n+ 1) is the predicted speed deviation at time step n+ 1 and xI is the input of the ASRWNNI.

Moreover, p and q indicate the number of past output and past input state variables, respectively. Here, both

p and q are chosen to be 1. Our goal is to minimize the following quadratic cost function in both on-line and

off-line modes:

JI (n) =
1

2
(y (n)− ŷ (n))

2
=

1

2
eI (n)

2
. (12)

Using the GD method, the weight values of the SRWNN are adjusted as follows:

W i
I (n+ 1) =W i

I (n) + ηi
(
− ∂JI (n)

∂W i
I (n)

)
, (13)

where for WI =[tij , dij , θij , wi ] and ηI =[ηt , ηd , ηθ , ηw ], WI and ηiI , respectively, represent an arbitrary

weight and the corresponding learning rate in the SRWNNI. The partial derivative of the cost function with

respect to W i
I is:

∂JI (n)

∂W i
I (n)

= eI (n)
∂eI (n)

∂W i
I (n)

= −eI (n)
∂ŷ (n)

∂W i
I (n)

.

The components of the weighting vector are as follows:

∂ŷ (n)

∂tij (n)
= wiψi

(
−1

dij

)(
1

zij
− zij

)
, (14)

∂ŷ (n)

∂dij (n)
= zij

(
∂ŷ (n)

∂tij (n)

)
, (15)

∂ŷ (n)

∂θij (n)
= − (ϕij (n− 1))

(
∂ŷ (n)

∂tij (n)

)
, (16)

∂ŷ (n)

∂wi (n)
= ψi. (17)

Hence, this identifier can be used for calculating the system sensitivity in each time step n as:

∂y (n+ 1)

∂u (n)
≈ ∂ŷ (n+ 1)

∂xI

∂xI
∂u (n)

. (18)

From Eq. (10), ∂xI /∂u(n) can be written as [42]:

∂xI
∂u (n)

= [0 0 , ..., 1 f1 (z) , ..., fq (z)]
T
, (19)

where fi(z) = z−i , and

∂ŷ (n+ 1)

∂xI,j
=

Nw∑
i=1

wi×ψi

(
1

dij

)(
1

zij
− zij

)
. (20)
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5. Convergence analysis for the ASRWNNI

It is important to find the optimal learning rate in an on-line mode because despite the fact that the convergence

is guaranteed for the small values of the learning rate, it should be noted that the speed is very slow. Moreover,

the algorithm becomes unstable for the big values of the learning rate; thus, in this section, the convergence

analysis of the proposed identifier is presented by several theorems.

Theorem 1. Let ηiI be the learning rate for the weights of the ASRWNNI; let g i
max be defined as gimax =

maxn||gi (n) || , where gi(n) = ∂ŷ(n)/ ∂W i
I and || . || is the usual Euclidean norm in ℜn ; then the convergence

is guaranteed if ηiI is chosen as:

0 < ηiI < 2/
(
gimax

)2
. (21)

Proof. See Appendix C.

Theorem 2. Let ηwI be the learning rate for the weight wI of the ASRWNNI. Next, the convergence is

guaranteed if the learning rate satisfies 0 < ηwI < 2/N w .

Proof: See Appendix D.

Theorem 3. Let ηtI , η
d
I , and ηθI be the learning rates of the translation, dilation, and self-feedback weights

for the ASRWNNI in the indirect adaptive control structure, respectively. The convergence is guaranteed if the

learning rates satisfy:

0 < ηtI <
2

NwNi

[
|d|min

|w|max × 2 exp (−0.5)

]2
, (22)

0 < ηdI <
2

NwNi

[
|d|min

|w|max × 2 exp (0.5)

]2
, (23)

0 < ηθI <
2

NwNi

[
|d|min

|w|max × 2 exp (−0.5)

]2
. (24)

Proof: See Appendix E.

Remark 1. The maximum learning rate that guarantees the most rapid or optimal convergence corresponds

to [33]:

ηw,max
I =

1

Nw
, (25)

ηt,max
I =ηθ,max

I =
1

NwNi

[
|d|min

|w|max × 2 exp (−0.5)

]2
, (26)

ηd,max
I =

1

NwNi

[
|d|min

|w|max × 2 exp (0.5)

]2
. (27)

It should be noted that in all of the studies in this section, the assumption was that the network’s data

are not normalized. Obviously, the obtained equations should be generalized for when the data have been

normalized.
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6. Simulation results and discussion

6.1. Preliminary

In this section, simulation studies are conducted for the example power system subjected to both severe and

small disturbances under different operating conditions. The results are presented in 3 cases and 2 operating

points, as shown in the Table.

Table. Operating conditions.

Cases P1 Q1 P2 Q2 Pdynamicload Qdynamicload

OP1 0.7619 –0.0478 0.7509 0.0513 1.5711 0.0718
OP2 0.8589 0.0539 1 0.0750 1.9981 0.1076

These cases are also as follows: first without a controller (NC), second with the fixed-gain PI controller,

and third with the OLSL-PID controller. The PI controller is initially tuned, carefully. Afterwards, its

parameters are kept unchanged for all of the performed tests. The PI gains are given in Appendix F.

The single-line block diagram of the SSSC control system with an OLSL-PID controller is shown in

Figure 5.

qREFV

qV

12 0dω −Δ =

PWM

Modulator

12
ω∧Δ

12
ω∆

PID Controller

− +

ASRWNNI

TDLTDL

U max

min

β −
+

α 1/β1/

dI

12 0dω −∀ Δ =( )12 12 dc
e ω ω

−
= Δ −Δ

Injected Voltage

Regulator

DC Voltage

Regulator

DC REFV −

DCV

θ

VSC Pulses

PID Controller

d-ConvV

q-ConvV

Figure 5. Single-line diagram of the SSSC control system with an OLSL-PID controller.

Our simulation studies show that a 2-order identifier is accurate enough to calculate the Jacobian of the

example power system on-line, meaning that the ASRWNNI has 4, 32, 8, and 1 neurons at the input, mother

wavelet, wavelet, and output layers, respectively. It should be noted that the input and output signals of the

ASRWNNI are scaled to the range of [–1, 1] using parameters α and β (here α = 0.15 and β = 0.007).

First, the ASRWNNI is trained off-line over a wide range of operating conditions and disturbances.

During this phase, the input and the desired output of the ASRWNNI are [∆ω(n − 1), ∆ω(n − 2), u(n-1),

u(n -2)] and ∆ω(n), respectively. Later on, the ASRWNNI is placed in the system, as shown in Figures 2 and 5.

During this phase, the input and desired output of the ASRWNNI are [∆ω(n), ∆ω(n−1), u(n), u(n−1)] and
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∆ω(n + 1), respectively. Furthermore, the on-line training of the ASRWNNI is performed in every sampling

period using the BP algorithm with ALRs.

The difference in the speed deviations of the generators in the 2 areas (ω1 − ω2) is chosen as the control

input of the PID in this paper. All of the PID gains are initially set to those of the conventional PI controller.

Eventually, the PID controller is placed in the system and its parameters are updated in on-line mode using

the BP algorithm, based on the information provided by the ASRWNNI.

For the adaptive controller implementation, a sampling rate is also needed. Such factors as the ability

of controller, the ability of controller’s adaption law, the complexity of the plant, and so on have effects on

the selection of the sampling rate. Hence, the sampling rate selection problem does not follow any systematic

approaches; it is based on trial and error. In this paper, based on our trial-and-error studies, a sampling rate

of 40 Hz is selected.

6.2. Nonlinear time-domain simulation

6.2.1. The results at OP1

To assess the effectiveness of the proposed controller under transient conditions, the 3-phase fault of a 10-cycle

duration at bus 1 is selected as the first disturbance. The results include the system responses and identifier

performance, as presented in Figure 6. It is evident from the results that the OLSL-PID provides better damping

performance than the PI controller, significantly improving the transient stability performance of the example

power system thanks to intelligent variations of its gains, while the ASRWNNI provides a promising tracking

performance.
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Figure 6. System responses to a 3-phase to ground fault at bus 1 in OP1 .
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The second disturbance is a 10% step decrease in the terminal voltage reference of G1 at time 0.5 s.

The system returns to its original condition at time 5 s. Figure 7 shows the system responses and identifier

performance.
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condition in OP1 .
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It can be observed that the proposed controller provides the best performance, damping out the os-

cillations with a considerable speed. It is also evident that the proposed identifier can track the plant very

satisfactorily thanks to its self-recurrent local structure and, likewise, its stable training algorithm. The intel-

ligent changes in the learning rates are another interesting part of the results. The identification error is also

provided in Figure 8. From the Lyapunov stability theorem, VI(t) is expected to have a negative gradient at all

times; however, due to the continual control effort, this is practically impossible. In Figure 8 it can be observed

that, in the beginning stages of the identification process, the gradient of VI(t) is negative. This is because the

controller output is absent in these stages, and the identifier learning rates are successfully founded by the ALR

algorithm and the identifier makes efforts to minimize the off-line training error. Following the fault striking,

the PID gains are suddenly changed and the raised control signal is applied to both the plant and the identifier.

Sudden changes of the control signal cause the identifier performance to be degraded, and, consequently, the

VI(t) cannot maintain its negative gradient. However, it should be noted that during the control process, the

ALR helps the identifier to track the plant with the minimum possible error. At the end of the control process,

the control signal is reduced again, and the VI(t) is effectively decreased with a negative gradient.

6.2.2. The results at OP2

To test the robustness of the proposed controller, the system loading condition is changed to OP2 . A 3-phase

fault of a 10-cycle duration at bus 1 is selected as the first proposed disturbance. The results, including the

system responses and identifier performance, are presented in Figure 9. The second disturbance is a 10% step

decrease in the terminal voltage reference of G2 at time 0.5 s. The system returns to its original condition at

time 5 s. Figure 10 shows the system responses and the identifier performance.
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Figure 9. System responses to a 3-phase to ground fault at bus 1 in OP2 .
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Again, it is clear from all of the results presented in this section that the proposed approach provides

the best control performance for different types of disturbances at different operating points of the system,

significantly improving the stability performance of the system despite a considerable change in the system’s

operating point. It can therefore be concluded that the OLSL-PID controller and the ASRWNNI have acceptable

robustness to the operating condition.

 

0 1 2 3 4 5 6 7 8 9 10
-8

-6

-4

-2

0

2

4

6

8
x 10

-5

NC
PI Controller
OLSL-PID Controller

0 1 2 3 4 5 6 7 8 9 10
0

50

100

K
p 

V
a
ri

a
ti

o
n
s

0 1 2 3 4 5 6 7 8 9 10

4

5

6

K
i V

a
ri

a
ti

o
n
s

0 1 2 3 4 5 6 7 8 9 10
-0.2

0
0.2
0.4
0.6

time, s

K
d 

V
a
ri

a
ti

o
n
s

0 1 2 3 4 5 6 7 8 9 10
2550

2552

2554

0 1 2 3 4 5 6 7 8 9 10

1.996

1.998

2

0 1 2 3 4 5 6 7 8 9 10

0.27

0.2705

time, s

0 1 2 3 4 5 6 7 8 9 10
-8

-6

-4

-2

0

2

4

6
x 10

-5

A
S

R
W

N
N

I 
P

e
rf

o
rm

a
n
c
e

 

ASRWNNI
PLANT

η
,  θ

,m
ax

η
,

=
 t

,m
ax

η
,  d

,m
ax

η
,  w

,m
ax

ω
1
,ω

2
p
u

Figure 10. System responses to a 10 % step decrease in the voltage reference of G2 and the return to the original

condition in OP2 .

The identification error to a 10% step decrease in the voltage reference of G2 and the return to the

original condition are provided in Figure 11. Here again, it can be observed that VI(t) has a negative gradient

in the beginning stages of the identification process and the off-line training error is minimized. However,

following the fault striking, due to the sudden changes of the PID gains, the identifier performance is degraded,

and consequently the VI(t) cannot maintain its negative gradient. At the end of the control process, the VI(t)

is effectively decreased with a negative gradient.

6.3. Extension to 4-machine, 2-area power system

6.3.1. The 4-machine, 2-area power system with SSSC

A 4-machine, 2-area study system installed with a SSSC, shown in Figure 12, is considered. Each area consists

of 2 generator units. The rating of each generator is 900 MVA and 20 kV. Each of the units is connected through
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transformers to the 230 kV transmission line. There is a power transfer of 413 MW from area 1 to area 2. Each

generator is equipped with a PSS. The detailed data are given in [43].
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Figure 11. The identification error to a 10% step decrease in the voltage reference of G2 and return to the original

condition in OP2 .
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Figure 12. Multimachine power system with a SSSC.

6.3.2. Parameter settings

All of the parameter settings, network structures, and training processes are the same as those of the previous

system, the 2-machine, 2-area system. The difference in the speed deviations of generators G1 and G3 is

selected as the input signal of the proposed controller with the aim of damping the interarea oscillations.

Here again, all of the PID gains are initially set to those of the conventional PI controller. The ASRWNNI

is also trained off-line before placing it into the system. All of the input and output signals of the ASRWNNI

are scaled to the range of [–1, 1] using parameters α and β (here α = 0.15 and β = 0.006).
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6.3.3. Nonlinear time-domain simulation

The system responses to a 3-phase to ground fault of an 8-cycle duration at bus 8 are shown in Figure 13.

Figure 14 shows the system responses to a 3-phase to ground fault of an 8-cycle duration at bus 9. The results

for a 2-phase to ground fault of an 8-cycle duration at bus 7 are also presented in Figure 15, while Figure 16

shows the system responses to an 8-cycle outage of line 1.

From all of the results presented in this subsection, it can be observed that the proposed controller provides

better performance for interarea oscillations damping in comparison to the PI controller, significantly improving

the transient stability performance of the system subjected to a wide ranges of disturbances. Acceptable

performance of the ASRWNNI for different types of faults can also be deduced from the results.
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Figure 13. System responses to a 3-phase to ground fault at bus 8.
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Figure 14. System responses to a 3-phase to ground fault at bus 9.

 

 

 

 

0 1 2 3 4 5 6 7 8 9 10
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

-3

NC
PI Controller
OLSL-PID Controller

0 1 2 3 4 5 6 7 8 9 10

30
40
50
60
70

K
p 

V
a
ri

a
ti

o
n

s

0 1 2 3 4 5 6 7 8 9 10

4

4.1

4.2

K
i V

a
ri

a
ti

o
n

s

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

time, s

K
d 

V
a
ri

a
ti

o
n

s

0 1 2 3 4 5 6 7 8 9 10
3471

3472

3473

3474

0 1 2 3 4 5 6 7 8 9 10
2.5

2.6

2.7

2.8

2.9

0 1 2 3 4 5 6 7 8 9 10
0.34

0.36

0.38

time, s

0 1 2 3 4 5 6 7 8 9 10
-4

-3

-2

-1

0

1

2

3
x 10

-3

A
S

R
W

N
N

I 
P

e
rf

o
rm

a
n

c
e

ASRWNNI
PLANT

η
,  w

,m
ax

η
,  d

,m
ax

η
,  θ

,m
ax

η
,

=
 t

,m
ax

ω
1
,ω

3
p

u

Figure 15. System responses to a 2-phase to ground fault at bus 7.
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Figure 16. System responses to a 3-phase to 8-cycle outage of line 1.

7. Conclusions

In this article, to overcome the problems of the fixed-gain PI controller of FACTS devices, an OLSL-PID

controller was developed for power system stability enhancement. The PID controller parameters were updated

based on the information provided by the ASRWNNI, which is a powerful, fast-acting identifier thanks to its

local nature, self-recurrent structure, and stable training algorithm with ALRs based on the discrete Lyapunov

stability theorem. Following the off-line training of the ASRWNNI, it was placed in the final configuration, and

its on-line training was performed in each sampling period. The initial gains of the OLSL-PID were also set

to those of a conventional PI controller, and an adapting ability was then added to it by a BP-based on-line

updating algorithm. Finally, the proposed control scheme was tested in a 2-machine, 2-area power system

under different operating conditions and disturbances. The simulation showed the effectiveness and robustness

of the proposed approach, and thus was promising. The design problem was finally extended to a 4-machine,

2-area benchmark power system in order to damp the interarea modes of the oscillations. The results showed

that the proposed controller provides better performance for interarea oscillation damping in comparison to

the PI controller and they also revealed that because of the high adaptability, the local behavior, and the high

flexibility of both the controller and the identifier, the OLSL-PID can damp the oscillations in a good manner

and significantly improves the transient stability performance of the system.
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Appendix A: System data

Generators: SB1 = 2100 MVA, SB2 = 1400 MVA, H = 3.7 s, VB = 13.8 kV, f = 60 Hz, RS = 2.8544e-3,

Xd = 1.305, X ′
d = 0.296, X”d = 0.252, Xq = 0.474, X ′

q = 0.243, X”q = 0.18, Td = 1.01 s, T ′
d = 0.053 s,

T”d = 0.1 s.

Loads: Load1 = 250 MW, Load2 = 100 MW, Load3 = 50 MW.

Transformers: SBT1 = 2100 MVA, SBT2 = 400 MVA, 13.8/500 kV, f = 60 Hz, R1 = R2 = 0.002, L1 = 0,

L2 = 0.12, D1 /Yg connection, Rm = 500, Lm = 500.

Transmission lines: 3-Ph, 60 Hz, line lengths: L1 = 280 km, L2 = 300 km, L3 = 50 km, R1 = 0.02546

Ω/km, R0 = 0.3864 Ω/km, L1 = 0.9337e-3 H/km, L0 = 4.1264e-3 H/km, C1 = 12.74e-9 F/km, C0 = 7.751e-9

F/km.

SSSC: Snom = 100 MVA, Vnom = 500 kV, f = 60 Hz, maximum rate of change of reference voltage (Vqref ) =

3 pu/s; converter impedances: R = 0.00533, L = 0.16; DC link nominal voltage: VDC = 40 kV; DC link

equivalent capacitance CDC = 375e-6 F; injected voltage regulator gains: KP = 0.00375, Ki = 0.1875; DC

voltage regulator gains: KP = 0.1e-3, Ki = 20e-3; injected voltage magnitude limit: Vq = ±0.2.

PSSs: PSS1 and PSS2 : Ts = 15e-3, Tw = 1, Kp = 0.25, T1 = 0.06, T2 = 1, T3 = T4 = 0.

Appendix B: Adjusting the cycle.

1. If n = 1, then go to step B, else:

(a) Calculate ∂u(n)/∂W i
c(n) using Eqs. (4)–(6),

(b) Update the OLSL-PID gains having the “Data I-a” and ec(n+ 1), from the previous time step,

using Eqs. (2) and (3).

2. Calculate u(n) and apply it to both the plant and the ASRWNNI.

3. Calculate following items using a SRWNNI:

(a) ∆ŷ(n+ 1) using Eq. (11) and then ec(n+ 1) (also save ∆ŷ(n+ 1) to use in the next time step as

∆ŷ(n)),

(b) The system Jacobian ∂∆y(n+ 1)/∂u(n) using Eq. (18) and save it as “Data I-a”,

(c) Calculate ALRs for ASRWNNI using Eqs. (25)–(27) and save them as “Data I-b”,

(d) Calculate ∂∆ŷ(n)/∂W i
I (n) using Eqs. (14)–(17) and save them as “Data I-c”.

4. If n = 1, then go to step E, else:

(a) Calculate eI (n) having ∆ŷ(n) from the previous time step and using the current value of the plant

output,

i. Train the ASRWNNI having “Data I-b” and “Data I-c” from the previous time step, using Eq.

(13).

5. Go to (A) for the next time step.
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A. Appendix C: The proof of Theorem 1.

A discrete-type Lyapunov function can be given by:

VI (n) =
1

2
e2 (n) , (C.1)

where e(n) = (y(n)− ŷ(n)) represents the error in the learning process. Then:

∆VI (n) = VI (n+ 1)− VI (n)

=
1

2

[
e2 (n+ 1)− e2 (n)

] . (C.2)

The error difference can be represented by:

e (n+ 1) = e (n) + ∆e (n)

≈ e (n) +

[
∂e (n)

∂W i
I

]T
∆W i

I

, (C.3)

and also:

∆W i
I = ηiI

(
−∂JI (n)

∂W i
I

)
= ηiIe (n)

∂ŷ (n)

∂W i
I

. (C.4)

Next, from Eqs. (C.2)–(C.4), ∆VI(n) can be represented as:

∆VI (n) = ∆e (n)

(
e (n) +

1

2
∆e (n)

)
= −λe2 (n) ,

where

λ =
1

2
ηiI
∥∥gi (n)∥∥2 (2− ηiI

∥∥gi (n)∥∥2) . (C.5)

If λ > 0 is satisfied, ∆VI(n) < 0. Thus, the asymptotic convergence of the proposed identifier is

guaranteed. Let ηα = ηiI(g
i
max)

2 [33], and then:

λ ≥ 1

2
ηiI
∥∥gi (n)∥∥2 (2− ηα) > 0. (C.6)

From Eq. (C.6), we obtain 0 < λα < 2 and Eq. (21) follows. This completes the proof. 2

B. Appendix D: The proof of Theorem 2.

gw(n) = ∂ŷ(n)/∂w , and then we have:

gw (n) =

Nw∑
i=1

ψi.

Since we have ψi ≤ 1 for all i ,

∥gw (n)∥ <
√
Nw

So we have−→ (gwmax)
2
= Nw.

Accordingly, from Theorem 1, we obtain 0 < ηwI < 2 / N w . This completes the proof. 2
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C. Appendix E: The proof of Theorem 3.

In order to prove Theorem 3, the following lemmas are used [33,40].

Lemma 1. Let f(r) = r. exp(−r2). Then, |f(r)| < 1 ∀r ∈ ℜ .

Lemma 1. Let g(r ) = r2. exp(−r2). Then, | g(r)| < 1 ∀r ∈ ℜ .

(A). gt(n) = ∂ŷ(n)/∂t , and then we have:

gt (n) =

Nw∑
i=1

wi

(
∂ψi

∂t

)

=

Nw∑
i=1

wi


Ni∑
j=1

(
∂ϕ (zij)

∂zij

∂zij
∂t

)
<

Nw∑
i=1

wi

{
Ni∑
j=1

max
(
−2α. exp (−0.5− α)× −1

d

)}
,

where α =
(
z2ij − 1

)
/2, and according to Lemma 2 |α. exp (−α)| < 1; then we have:

∥∥gt (n)∥∥ <√Nw

√
Ni |w|max

2 exp (−0.5)

|d|min

.

Then: (
gtmax

)2
= NwNi

[
|w|max × 2 exp (−0.5)

|d|min

]2
.

Accordingly, from Theorem 1, we obtain Eq. (22).

(B). gd(n) = ∂ŷ(n)/∂d , and then we have:

gd (n) =

Nw∑
i=1

wi

(
∂ψi

∂d

)

=

Nw∑
i=1

wi


Ni∑
j=1

(
∂ϕ (zij)

∂zij

∂zij
∂d

)
<

Nw∑
i=1

wi


Ni∑
j=1

max

(
−2α.zij exp

(
0.5− α− z2ij

)
d

) ,

where α =
(
1− z2ij

)
/2, and so according to Lemmas 1 and 2

∣∣zij exp (−z2ij)∣∣ < 1 and |α. exp (−α)| < 1, and

then we have: ∥∥gd (n)∥∥ <√Nw

√
Ni |w|max

2 exp (0.5)

|d|min

.

Then: (
gdmax

)2
= NwNi

[
|w|max × 2 exp (0.5)

|d|min

]2
.

Accordingly, from Theorem 1, we obtain Eq. (23).
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(C). gθ(n) = ∂ŷ(n)/∂θ , and then we have:

gθ (n) =

Nw∑
i=1

wi

(
∂ψi

∂θ

)

=

Nw∑
i=1

wi


Ni∑
j=1

(
∂ϕ (zij)

∂zij

∂zij
∂θ

)
<

Nw∑
i=1

wi


Ni∑
j=1

max

(
−2α. exp (−0.5− α)× ϕij (n− 1)

d

) ,

where α =
(
z2ij − 1

)
/2, and according to Lemma 2 |α. exp (−α)| < 1, and then we have:

∥∥gθ (n)∥∥ <√Nw

√
Ni |w|max

2 exp (−0.5)

|d|min

.

Then: (
gθmax

)2
= NwNi

[
|w|max × 2 exp (−0.5)

|d|min

]2
.

Accordingly, from Theorem 1, we obtain Eq. (24). This completes the proof. 2

D. Appendix F: PI controller parameters

Table F. PID (PI) optimal gains.

Kp Ki Kd

23.86 3.98 0
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