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Abstract: Wavelet transform (WT) represents a very attractive mathematical area for just more than 15 years of its

research in applications in electrical engineering. This is mainly due to its advantages over other processing techniques

and signal analysis, which is reflected in the time-frequency analysis, and so it has an important application in the

processing and analysis of time series. In this paper, for example, the analysis of the hourly load of a real power system

over the past few years was performed by applying the continuous WT and using the Morlet wavelet function. The results

show that this approach of data analysis can give a better insight into the basic characteristics of the consumption and

identify the characteristic periods of the power system load variances over the past years, which can be very interesting

for power system planners.
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1. Introduction

A power system is a complex dynamic system composed of a large number of elements, i.e. generation units,

transmission and distribution lines, transformers, and loads, that are all interconnected and thus represent a

specific group of elements. The basic function of a power system is to provide a reliable, secure, and economical

supply of electricity to customers according to previously defined power quality standards. The planning and

operation of a power system is quite an extensive and very complex area, where technology and economics

are inextricably intertwined [1]. One step in power system planning is the electricity power balance, which is

commonly connected to the planning of the incomes and outcomes of some physical, economical, or any other

parameter in a certain time period (day, week, month, and year). The standard methodology of electricity power

balance preparation on a monthly or yearly basis is based on the estimation of the approximated load duration

curve according to predefined priorities on the available generation units [2]. One of the major shortcomings

of such methodology is the objective lack of real dispatcher requests that arises from the daily load curves,

hydrological occasions, dynamics on compensation reservoir usage, usage of pumped storage hydroelectricity,

etc. A very important step in the power system planning and operation process is the total understanding of the

load characteristic and demand. The consumers in power systems are numerous and varied with different load

characteristics. Load diagrams represent the basic characteristics of the demand and the load duration curves

can be defined and analyzed both for individual consumers or a complete system. Analysis of the daily, weekly,
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monthly, and annual load profiles is common in the process of the planning, operation, and maintenance of the

power system. The daily and weekly load profiles are often the input data in the processes of the short-term

planning and short-term load forecasting of the power system, and since this is relatively small number of data,

their changes over time can easily be seen. The monthly load curves mainly represent the inputs in the processes

of the mid-term planning or mid-term load forecasting of the power system [3–5]. The annual curve of the load

has a relatively large number of data and provides a good overview of the dynamic behavior of the power system

load during the seasons. Further analysis of the processes of the long-term planning or long-term forecasting

mainly involves the normalization of the annual load profile [6–8]. However, normalized annual load profiles

do not provide the possibility of the time-frequency analysis of the observed time series. On the other hand,

wavelet transform (WT) has attracted considerable attention in almost all areas of science in recent years. A

large number of scientists from all fields of electrical engineering research confirm the remarkable possibilities

of WT in analysis and signal processing in the fields of power quality, protection, processing and analysis,

telecommunications, etc. In several papers, WT attracted considerable attention in the analysis of load profiles.

In [9,10], different methods of power system load forecasting were presented, while in [11], the WT was used

in the analysis of the weekly and monthly load diagram to identify the required amount of balancing capacity

when observing the time-varying nature of the dominant frequencies contained in the power signals.

In this paper, by applying the continuous WT (CWT) and the Morlet wavelet function, we analyzed

the hourly load variances of the real power system in Bosnia and Herzegovina over the past few years. The

results show that this approach to data analysis can give a better insight into the basic characteristics of

the consumption. Moreover, the time-frequency analyses of the observed time series are used to examine

the characteristic periods of the power system load variances over the past several years, which can be very

interesting for power system planners.

2. Background

Although it represents a relatively new mathematical area, a detailed description of wavelet theory can easily

be found in a vast number of books and papers. In this section, a brief overview of the wavelet theory and the

basic characteristics of the analyzed system data will be presented.

2.1. Wavelet theory

The WT historical development can be seen from the time of JBJ Fourier’s work to the late 1980s. In 1988,

Belgian mathematician Ingrid Daubechies presented her work to the scientific community, in which she created

orthonormal wavelet bases of the space of square integrable functions, which consists of compactly supported

functions with a prescribed degree of smoothness. Today, this is considered as the end of the first stage of the

development of WT. WT is a natural continuation of the Fourier transform and its modified short-term Fourier

transform. Over the years, it was developed independently in mathematics, quantum physics, and electrical

engineering, as in other areas of science.

A wavelet is a function with the nature of wave functions with compact support. It is called “wave”

because of the oscillatory nature of the small finite domain on which it is different from zero (compact support).

The scaling and translation of basic wavelet ψ (x) (mother wavelet) define the wavelet basis and represent the

wave function of the limited duration for which it is valid:∫ ∞

−∞
ψ (x)dx = 0. (1)
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The selection of the scaling and translation parameters provides a representation of the smaller fragments of a

complicated form with a higher time resolution (zooming sharp and short-term peaks), while smooth segments

can be represented at a smaller resolution, which is the wavelet’s good characteristic (basis functions are time-

limited). All of the details concerning the general theory of wavelets can be found in [12–17].

2.2. Test system and characteristic data

The Bosnia and Herzegovina (B&H) Electricity Power System is part of the European Network of Transmission

System Operators for Electricity system and is integrated into the European power system. After the end of the

war in the 1990s, the B&H power system was almost completely destroyed, as was most of the industrial sector

in the country. Fifteen years after the signing of the Dayton Peace Agreement, the electricity consumption

and the maximum load values have reached the values of those obtained in 1991 (approximately 2200 MW for

the complete B&H power system). Today in B&H, there exist 1 common transmission company and 3 power

companies for generation, distribution, and supply. The hourly load curves for EPC Elektroprivreda B&H

consumption in 2008, 2009, and 2010 are presented in Figure 1. Geographically, EPC Elektroprivreda B&H

supplies about 700,000 customers that are widespread over approximately a quarter of the total surface of the

country. The hourly loads of EPC Elektroprivreda B&H over the past 3 years, without consideration of the

electricity export to other countries, are presented in Figure 1.

It is obvious from Figure 1 that the yearly consumption is closely related to the temperature oscillations.

Hence, in the autumn and winter periods, the consumption is evidently larger than in the spring and summer

periods. Furthermore, it is obvious that the system load in 2009 was somewhat lower than expected, which

is a consequence of the global economic crisis. However, the crisis was not reflected in the consumption of

the voltage levels at 35 kV, 20 (10) kV, and 0.4 kV. The consumption has a continual annual growth trend of

several percentages (2.2% in 2009 and 2.4% in 2010). A consumption decrease was reflected from the industrial

consumers at a 110 kV voltage level, e.g. steel companies or the manufacturing industry. Along with the

previously noted results of the evident load variance, it is obvious that temperature has the greatest impact on

the shape of the load consumption curve. Thus, it is evident that in the summer, a minimum load is reported,

while during the winter, a maximum peak value occurs. Otherwise, geographically, the temperature in B&H can

vary from a very low temperature (–20 ◦C) in the winter to very high temperatures (+40 ◦C) in the summer.

3. Wavelet analysis results

WT is used for measuring the parity of the frequent function content and basic wavelet in the time-frequency

domain. Based on the WT presented in [18], the CWT has been applied to analyze the data from Figure 1 by

customizing a widely accessible software tool developed by Torrence and Compo

(http://paos.colorado.edu/research/wavelets/). Similar analyses of the time series have been used for numerous

studies in various science areas; see [18–32] for examples.

Briefly, the analysis presented in this paper uses the Morlet wavelet function ψ0 (η), defined as [18]:

ψ0 (η) = π
−1/4 eiω0ηe

−η2/2 , (2)

where ω0 is the dimensionless frequency and η is the dimensionless time [18]. The dimensionless time parameter

is defined as η = t/s , where t is the time parameter and s is the scale. The dimensionless frequency parameter

is defined as ω0 = sω where ω is the frequency parameter [31]. Selecting ω0 = 6 for the Morlet wavelet provides
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Figure 1. Hourly load for EPC Elektroprivreda B&H for 2008, 2009, and 2010.

a great balance between the time and frequency localization, and for this central frequency, the Fourier frequency

period is almost equal to the scale [32].

The continuous WT of the time seriesP = {Pn, n = 0, . . . , N − 1} , which has equal time intervalsδt (a

time interval of 1 h), with defined wavelet function ψ0 (η) will be calculated as [32]:

Wm (s) =
δt√
s

N−1∑
n=0

Pnψ ∗
[
(n−m) δt

s

]
,m = 0, 1, . . . , N − 1, (3)

where * represents the conjugate complex value, N is the number of points in the time series, and ψ (t) is the

wavelet function at scale s and is translated in time by m . The previous equation describes the convolution of

Pn with a scaled and translated version of the wavelet function.

The local wavelet power spectrum is defined as |Wm (s)|2 and represents the squared absolute value of

the wavelet transform coefficients (or squared amplitude) [18,29,32]. Concerning the fact that the wavelet power

spectrum gives more information in one picture, it is often practical to show the information as the averaged
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value of the result in the range of scale or time. Torrence and Compo showed the average variations of the

whole time series on every scale, called the global wavelet spectrum (GWS) (time-averaged wavelet spectrum),

which is defined as [29]:

W
2
(s) =

1

N

N∑
n=0

|Wm (s)|2 . (4)

The scales are a series of fractional powers of 2 and are defined as [18]:

sj = s02
kδj , k = 0, 1, . . . , J, (5)

where s0 is the smallest resolvable scale and J determines the largest scale [18]. In this study, the value s0 = 6h

is used. Moreover, the scale δj = 0.25 is used, which will do 4 suboctaves per octave. The smaller values of δj

give a finer resolution [18].

The 3 time series analyzed in this paper start with the first hour on 1 January 2008 and end with 0000

hours on 31 November 2010. The wavelet power spectrum and the GWS for the 3 time series are shown in Figure

2, where the color codes for the power ranges are from blue (low power) to red (high power), and the significant

regions are the ones associated with red, orange, and yellow. From Figure 2 it is possible to identify a few very

interesting pieces of information about the analyzed time series, which describes the dynamical behavior of the

EPC Elektroprivreda B&H consumption.

It is obvious that the GWSs for the 3 analyzed time series are very similar, which is logical considering

that the data from the same system are analyzed. As can be seen in the GWS graph, a few local maximums

are identified, where the largest is that in a 24-h period for all 3 of the analyzed time series. It is clear that

there is a higher concentration of power about the 24-h period, which shows that these time series have strong

daily signals [30].

The maximums of 3 analyzed time series are at intervals of 12 and 24 h, between the 64- and 168-h bands,

and between the 500- and 1000-h bands. The local maximum period of 12 h physically represents the daily

consumption variation (day–night), and it is clear that the intensity depends on the temperature conditions,

i.e. the season. The intensity of the daily active power consumption changes has a higher intensity in the spring

and autumn periods, which is obvious from Figure 2.

This is a consequence of the considerable temperature fluctuations during these periods of the year

compared to the temperature fluctuations during the periods of winter and summer. This conclusion would be

a difficult one to come up with from Figure 1 without a detailed analysis of the daily load profiles throughout

the year. The largest of the GWS maximums is identified at 24-h periods for all 3 of the analyzed time series. It

is obvious from Figure 2 that the wavelet coefficient values for the analyzed case vary in a 24-h period depending

on the season. They are more intensive during the winter periods, while their intensity is a bit lower during

the summer months. This is also obvious from Figure 1. Furthermore, the maximum in the 168-h period

corresponds with the characteristic weekly consumption. It is obvious for all 3 of the analyzed time series that

the first characteristic weeks occur in the second half of April and the first days of May, i.e. during the observed

times of 2500 h up to 3000 h. These increases in the wavelet coefficients identified in Figure 2 are consequences

of the ending of the winter (heating) season in that period with the public holidays occurring during this period.
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Figure 2. The wavelet power spectrum and the GWSs for the hourly consumption of the B&H power system for 2008,

2009, and 2010.

Furthermore, observing Figure 2, 2 interesting weeks in the summer period are identified. In relation to

2009 and 2010, in which these weeks are the same, the 2 characteristic weeks for the summer of 2008 year were

moved for 1 week, which is obvious from Figure 2. This can be interpreted as very hot weeks and the intensive

use of air conditioners.

Very interesting results have been identified for the period between the 64- and 168-h bands in the second

half of the year for all 3 of the analyzed time series. Two typical weeks (or a few days) can be identified and

are moved for 10 days for each next year analyzed. This is the result of religious holidays, when a somewhat

significant change of electricity is evident, but this is very difficult to observe from Figure 1.

Finally, the significant maximums for all 3 of the analyzed series are evident in the period between the

500- and 1000-h bands. This is the result of extremely low winter temperatures. Additionally, in 2009, during

this period, a complete suspension of the gas supply to B&H occurred, which additionally had a significant

increase in the consumer’s consumption. For this reason, the maximum GWS during this period for 2009 was

slightly higher than in the other 2 years.
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From the previous analysis, it is evident that the main impact on the consumption is the temperature

oscillations. However, all of the other factors are not negligible, such as natural gas consumption and some

social events. All of this gives a more complete understanding of the consumptions and indicates the specific

consumption periods during the year, which can be very interesting for power system planners.

4. Conclusions

In this paper, by applying CWT, the time series of real power system consumption demand were analyzed.

With spectral wavelet analysis, the time-frequency power characteristics of the analyzed data were estimated,

thus providing an exceptional insight into the dynamic behavior of the observed system load over time.

For all 3 of the analyzed time series, several local maximums were identified in the GWS graphs, where the

largest is that in a 24-h period, which shows that these time series have strong daily signals. It was shown that

the daily fluctuations in consumption are slightly higher during the periods of spring and autumn as a result of

significant temperature fluctuations during these periods of the year. Moreover, it was shown that some typical

weeks do not appear at the same time intervals during the year, which may provide useful information for power

system planners. For the analyzed power system, it is obvious that the consumption is in close dependence on

the temperature oscillations.

As it was presented in this paper, this approach in power system consumption analysis enables a different

insight into the consumption behavior and also the identification of characteristic time periods during the year

that occur due to certain reasons (temperature changes, social events, etc.), which have a significant impact on

power system consumption.
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