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Abstract: Classification and rule induction are key topics in the fields of decision making and knowledge discovery.

The objective of this study is to present a new algorithm developed for automatic knowledge acquisition in data mining.

The proposed algorithm has been named RES-2 (Rule Extraction System). It aims at eliminating the pitfalls and

disadvantages of the techniques and algorithms currently in use. The proposed algorithm makes use of the direct

rule extraction approach, rather than the decision tree. For this purpose, it uses a set of examples to induce general

rules. In this study, 15 datasets consisting of multiclass values with different properties and sizes and obtained from

the University of California, Irvine, have been used. Classification accuracy and rule count have been used to test the

proposed method. This method presents an alternative 3-step method to classify categorical, binary, and continuous

data by taking advantage of algorithms for data mining classification and decision rule generation. The method aims

at improving the classification accuracy of the algorithms that extract the decision rules. Experimental studies were

conducted on the benchmark datasets and the results of the comparisons with some known algorithms for decision rule

generation have shown that the proposed method performs classification with a higher accuracy and generates fewer

rules.
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1. Introduction

Data mining is described as the process of accessing information in large databases and extracting generalized

information, or, in other words, searching, revealing, and providing correlations in large databases that will

enable us to make estimations about the future with the help of computer programs. Data mining covers

basics like statistics, databases, programming techniques, and high performance processing, as well as all works

for formulizing and applying induction procedures that would extract significant and useful information from

available data [1]. Structural patterns and hidden knowledge in the large databases can be represented in various

ways, such as decision tables, decision trees, association rules, and classification rules. Algorithms are needed

for generating rules that determine the description of the concepts to be learned. However, the description is

only one of many possible interpretations of the training data and may impose a completely different meaning

that is far from the meaning of the concept [2].

A major problem encountered in the design of learning algorithms is the generation of a complex descrip-

tion from noisy examples. Learning from noise-corrupted data may result in a large number of complicated

decision rules describing trivial instances. Hence, the resulting concept description may not reflect general sit-

uations. Such a case is referred to as ‘overfitting’, which refers to a tendency to force the rule induced from the
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training data to agree with the data too closely, at the cost of generalization for other examples. Poor concept

description is another cause of overfitting. Researchers have studied the methods to overcome the overfitting

caused by noise for a long time [2,3].

In recent years, many algorithms in the literature have been developed in order to discover the rela-

tionships between the input data and the output data for generating rules. In these algorithms, approaches

such as divide and conquer, association rules, covering rule induction, decision trees, and näıve Bayes are used

[1–13]. Apart from these, there are also other algorithms that generate rules using techniques such as neural

networks, ant colony optimization, genetic algorithms, particle swarm optimization, fuzzy logic, and support

vector machines [14–19]. In this study, the covering rule induction method has been used in order to obtain

generalized rules.

Tan et al. [20] presented a hybrid evolutionary algorithm using genetic algorithms and a support vector

machine for the attribute selection. Elalfi et al. [21] proposed an algorithm for extracting accurate and intelligible

rules from databases via a trained artificial neural network using genetic algorithms. Kahramanli and Allahverdi

[22] presented a method that extracts rules from trained adaptive neural networks using artificial immune

systems. The authors iterated the purpose of the study as to develop a new adaptive function and a new

method for rule generation. In their study, the results of the proposed algorithm on 2 benchmark datasets were

compared with the results obtained from the previous works in the literature. Rodŕıguez et al. [14] presented an

efficient distributed genetic algorithm for classification rule extraction based on the island model and enhanced

it for scalability with data training partitioning in data mining. In this study, they calculated the acquisition

rate, rule count, and standard deviation for many datasets. Cohen et al. [7] introduced an automatic, general,

decision-tree–based framework for instance-space decomposition with a contrasted population miner rule using

grouped gain-ratio. Thabtah and Cowling [11] proposed an algorithm that resolves the overlapping between

rules in the classifier by generating rules that do not share training objects during the training phase, resulting in

a more accurate classifier. Their results, obtained from experimenting on 20 binary, multiclass, and multilabel

datasets, show that the proposed technique is able to produce classifiers that contain rules associated with

multiple classes. Cios and Kurgan [12] described a hybrid inductive machine learning algorithm called CLIP4.

In this algorithm, data are first partitioned into subsets using a tree structure and then production rules are

generated only from the subsets stored at the leaf nodes. The unique feature of the algorithm is the generation of

rules that involve inequalities. Moreover, this algorithm-generated model of the data consists of well-generalized

rules, and it ranks the attributes and selectors that can be used for feature selection. Thabtah et al. [9] proposed

a new associative classification method called multiclass classification based on association rules (MCAR). This

method takes advantage of vertical format representation and uses an efficient technique for discovering frequent

items based on recursively intersecting the frequent items of size n to find potential frequent items of size n+

1. Coenen and Leng [10] showed that the choice of appropriate values for the support and confidence thresholds

could have a significant effect on the accuracy of classifiers obtained by classification association rule mining

(CARM) algorithms. They examined the effect of the choices on the predictive accuracy of the CARM methods,

showed that the accuracy can almost always be improved by a suitable choice of parameters, and described a

hill-climbing method for finding the best parameter settings. Su et al. [8] proposed the differential evolution

(DE)/quantum-inspired differential evolution (QDE) algorithm for the discovery of classification rules. This

algorithm combines the characteristics of the conventional DE algorithm and the QDE algorithm. Based on

some strategies of the DE and QDE algorithms, the DE/QDE algorithm can directly cope with the continuous,

nominal attributes without discretizing the continuous attributes in the preprocessing step. The comparisons of
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the DE/QDE algorithm with Ant-Miner and CN2 on 6 datasets from the University of California, Irvine (UCI)

datasets showed competitive results.

These algorithms generate general concept definitions from special examples with the help of special

procedures. These algorithms are classified into 2 main groups. The first is decision-tree–based algorithms and

the other is rule-based algorithms.

Decision tree is one of the data mining and machine learning techniques with applications in various fields.

A decision tree is a tree structure representation of the given decision problem, such that each nonleaf node is

associated with one of the decision variables, each branch from a nonleaf node is associated with a subset of the

values of the corresponding decision variable, and each leaf node is associated with a value of the target variable

[23]. Decision-tree–based algorithms usually use the information entropy measure to grow a decision tree by

searching for a feature that gives the maximum information gain [3]. The procedure of growing a decision tree

continues by dividing examples into smaller subsets until the training examples are correctly classified based on

a user-specified termination criterion. An example of the first-type algorithm is the incremental decision (ID)

family of algorithms, such as ID3 [24] and C4.5 [6].

In real-world applications, training examples are usually insufficient to define a concept description

uniquely. Therefore, learning algorithms need the flexibility to produce different generalizations from given

examples. In decision-tree–based algorithms, the description of a subset of examples in a leaf node of a tree is

uniquely described as a series of feature tests from the root to the bottom of a tree. This approach does not

have the flexibility of describing a target concept in different ways.

Rule-based algorithms have the ability to generate multiple descriptions of a concept. An example is

the algorithm quasi-optimal (AQ)15, where the empirical learning was treated by Michalski [25] as the general

covering problem. The basic term of a cover, as used in the AQ family of algorithms, implies that there may

be multiple covers to include positive training examples. This resulted in the development of procedures that

produce a quasi-optimal solution in polynomial time. Generally, AQ algorithms follow a greedy heuristic that

tries to include/exclude as many as possible of the positive/negative examples when searching for a complex.

There are many information display forms of data mining classification algorithms that are used as output

formats. Among them are decision rules, decisions lists, decision trees, inductive logic programs, and neural

networks. Decisions rules are the simplest display form of these output formats: If Condition Then Class. Here,

the ‘If’ part is composed of attribute–value pairs with the help of AND/OR logical operators and the ‘Then’ part

shows the corresponding class value of the given condition. Generally, these decision rules are extracted during

the training process through data mining classification algorithms in such a manner that all of the training set

is covered. The purpose of extracting decision rules from training data is to obtain generalized rules that define

the classes from the special data. The generalization process ends when new rules cannot be generated or the

specified termination criteria are met. The extracted decision rules are used to classify the samples in the test

set. The output formats of the data mining algorithms, such as decision trees and neural networks, can be

easily converted to decision rules.

The proposed algorithm will be described and exemplified on a simple dataset in the next section. The

comparisons of the proposed algorithm with the other algorithms in the literature over 15 datasets are given in

Section 3. Finally, the results are discussed in Section 4.
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2. The RES-2 algorithm for rule discovery

In this section, the rule extraction system algorithm RES-2 for solving classification problems will be introduced.

The algorithm can be readily applied on the datasets that contain continuous, categorical, and binary attributes.

The continuous attributes in datasets are discretized using Fayyad and Irani’s entropy-based discretization

method [26]. Fayyad and Irani have extended the method of binary discretization in CART [27] and C4.5, and

they introduced multiinterval discretization using a minimal description length technique. In this method, the

data are discretized into 2 intervals for a candidate cut point, and the resulting class information entropy is

calculated. A binary discretization is determined by selecting the cut point for which the entropy is minimal

amongst all of the candidates. The binary discretization is applied recursively, always selecting the best cut

point. A minimum description length criterion is applied to decide when to stop the discretization [28]. The

rule generation procedure of RES-2 is given in the Figure.

Step-1. Convert continuous values to categorical values.

Step-2. n = 1 // the number of attributes used in the combination

Step-3. REPEAT

Stage I

ALL_CLASSIFIED=FALSE

FOR I = 1 TO Number_Of_Samples

IF I
th

example is unclassified THEN

Pick only one value for each attribute in the example set and and

form combinations with n number of attributes .

S = 0, Rule_Generated = False

DO

S = S + 1

S
th

combination is applied to all examples in the example set and

T is set to the number of the classes corresponding to this combination.

IF T = 1 THEN

The combination is turned into a rule.

Produced rule is added to the rule set.

The examples which are classified by rule are marked.

Rule_Generated=True

END IF

WHILE S < Number_Of_Combinations AND Rule_Generated

Rule which classifies most examples is selected.

END IF

END FOR

IF all samples classified THEN ALL_CLASSIFIED = TRUE

ELSE n = n + 1

END IF
UNTIL n > Number_of_Attribute OR ALL_CLASSIFIED

Stage II

Rule which classifies most examples is selected.

If there is more than one rule representin g the same example,

pick up most general one. The others are eliminated.

Stage III

Rules which can be combined using the OR operator are determined and combined.

Step-4. Rules covered by others are eliminated and the most general rules are selected.

Figure. Rule generation procedure of the RES-2 algorithm.

The algorithm checks all of the samples one by one in the training set beginning from the first sample, and

the samples classified by the generated rule are sorted out at each stage. Thanks to this process, the operation

time is guaranteed to be shorter and the same rules are prevented from being regenerated. When a sample

is dealt with, first it is checked to see whether the combination of the single attribute–value pair generates a

rule. If this combination becomes a rule, then all of the samples covered by this rule are marked and the other

combinations are checked. Otherwise, the other combinations are checked directly. This operation continues
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AKGÖBEK/Turk J Elec Eng & Comp Sci

until a rule that classifies the sample in question is generated. Because of this, all of the samples included in

the training set can be classified by the generated rules. This means that the training set can be classified with

100% accuracy by this algorithm.

2.1. Rule representation of the algorithm

In the context of the classification task of data mining, discovered knowledge is often expressed in the form of

IF–THEN rules, as follows [29]:

IF Conditions THEN Class

The rule antecedent (IF part) contains a set of conditions, usually connected by a logical conjunction

operator (AND). We will refer to each rule condition as a term, such that the rule antecedent is a logical

conjunction of terms in the form of IF term1 AND term2 AND ... THEN Class. Each term is a triple

<attribute, operator, value > , such as <Temperature = High> .

The rule consequent (THEN part) specifies the class predicted for cases whose predictor attributes satisfy

all of the terms specified in the rule antecedent. From a data mining viewpoint, this kind of knowledge

representation has the advantage of being intuitively comprehensible for the user, as long as the number of

discovered rules and the number of terms in the rule antecedents are not large. More particularly, a rule is given
as:

IF (x 1 ≤ t1 ) AND . . .AND (x n ≥ tn ) THEN C,

where xi are continuous variables, ti are real numbers, and C is a class designating a concept, such as the

class of healthy patients. Note that discrete variables are special cases of continuous variables. For instance, If

x 2 = 3.0 And x 1 ≥ 2.0 And x 1 ≤ 5.0 Then Class = Yes.

At the third stage of the proposed algorithm, the rules are combined with the OR logical operator to

decrease the number of rules. For instance, If x 3 = Normal Or (x 2 = 3.0 And x 1 ≥ 2.0 And x 1 ≤ 5.0) Then

Class = Yes.

2.2. Rule generation methodology of the algorithm

The developed method achieves the rule generation process in 3 stages. These stages are given below:

1. Creating combinations and checking whether or not they correspond to only one class. Adding the rule

that corresponds to only one class to the rule set. Thus, the generated rule set classifies the training set

with 100% accuracy.

2. Choosing the most comprehensive rule among the inherited ones and deleting the repeating rules from

the database. This enables fewer rule generations.

3. Decreasing the number of rules to a minimum level by combining the terms that are in the antecedent part

of the rules with the same classification, not only with the AND operator but also with the OR operator.

The first stage consists of the same number of steps as the attribute number included in the sample

set. At the first step, the value of each attribute in the current sample is taken one by one and checked to see

whether it constitutes a rule on its own. The condition constituting a rule needs to belong to only one class

and the relevant attribute–value pair is set as a rule. Otherwise, no action is taken. This process is repeated

for all of the attribute–value pairs that are in the sample set. All of the rules generated in this stage are added

to the rule base. The structure of the rules obtained is as follows:
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AKGÖBEK/Turk J Elec Eng & Comp Sci

If Attribute 1 = Value 1,1 Then Decision = Class 1 .

This way, it is made possible to obtain the most general rules that contain the smallest amount of

attribute–value pairs and that represent the sample set. In this stage, the samples that contain missing values

are not removed from the sample set, but it is made sure that the missing values are ignored. At this point, the

values of 2 attributes in the current sample are taken and combined with the logical AND operator in order to

check whether they correspond to only one class. If they correspond to only one class, the conditions are made

a rule and are added to the rule base; otherwise, no transaction is conducted. This process is repeated for all

of the dual combinations. The structure of the rules obtained as a result of this stage is as follows:

If Attribute 1 = Value 1,1 AND Attribute 2 = Value 2,1 Then Decision = Class n .

In the third step, it is explored whether triple attribute–value pairs form a rule. This way, the procedures

are repeated in k steps in a sample set consisting of k attribute–values. This stage continues until all of the

samples are classified and all of the rules generated are added to the rule base. The longest rule, which may be

formed in a sample set that contains k attributes, is possible in the format below:

If Attribute 1 = Value 1,a AND Attribute 2 = Value 2,b And . . . And Attribute k = Value k,c

Then Decision = Class n .

However, the possibility of such a rule is very small. Such a rule is named a special rule rather than a

general rule and represents only one sample.

This stage continues until all of the rules in the sample set are classified. As no pruning procedure is

used, the sample set is classified by the rule set with 100% accuracy.

The second stage is the elimination of unnecessary and repeating rules in the rule base. The repeating

rules or the rules that are covered by another rule are eliminated from the rule base in such a way that there

remains in the end only one rule. It is aimed that the number of the rules generated with the help of this feature

be at a minimum rate.

In the third stage, those rules in the rule set that have the same classification can be combined with the

OR logical operator. There are 2 exemplary rules relating to this case. There is the repeating X1 = Medium

condition in the antecedent part of both of the rules .

If X1 = Medium AND X2 = High Then Decision = YES

If X1 = Medium AND X2 = Short Then Decision = YES

These 2 rules can be combined with the IN or OR logical operators and made into a single rule:

If X1 = Medium AND X2 IN [High, Short] Then Decision = YES

or

If X1 = Medium AND (X2 = High OR X 2 = Short) Then Decision = YES

After this stage, those rules covered by the other rule could be eliminated from the rule set. The second

of the 2 rules given below is eliminated as it is covered by the first rule.

If X1 = Normal OR X2 = Low Then Decision = Yes

If X1 = Normal Then Decision = Yes
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2.3. Characteristics of the algorithm

The characteristics of this algorithm can be described as follows:

• The algorithm does not perform any calculation in the sample set (such as entropy, Gini index, etc.) and it

does not generate a decision tree. It has quite a simple rule discovery method, as it directly extracts rules

beginning from the first sample. This characteristic provides great convenience in terms of programming

logic.

• The algorithm can also take action according to the samples that contain a missing value. That some

samples in the sample set contain missing values is inevitable. For this, the samples containing missing

values in the training set are not eliminated from the sample set, but instead they are ignored during the

rule extraction.

• Rules can be generated from the sample set not only for the categorical attributes but also for the attributes

containing numerical and binary values.

• It allows for the range definitions for continuous values to be made. With the help of this feature, it is

made possible to obtain more general rules.

2.4. Application of the algorithm

In Table 1 [30], a sample set is given that consists of 4 attributes and 14 samples in order to decide whether an

investment project can be implemented or not. The RES-2 algorithm has been applied step by step in order to

understand the rule extraction process of the algorithm and to obtain rules from the sample set.

Step 1.

As all of the values in the sample set are categorical and as they do not contain any numerical value,

discretization is not performed.

Step 2.

First Stage starts with the number of attributes in combination as n = 1. In this stage, the rule extraction

process is performed according to the combinations of the single attribute–value pairs. For this, the unclassified

samples will be tried in order.

Step 3.

The first sample is chosen as a principle. This sample is composed of the attribute–values of {Global risk:High,

Profitableness:Important, Return time:Long, Investment level: High}. As each value corresponds to more than

one class in the sample set when the combinations of the single values in this example are tried one by one, it

cannot generate a rule on its own, and the next sample is tried.

The second example is composed of the attribute–values of {Global risk:High, Profitableness:Important,

Return time:Long, Investment level:Low} . These values, as well, cannot generate rules on their own and so the

next sample is tried.

The third example is composed of the attribute–values of {Global risk:Low, Profitableness:Important,

Return time:Long, Investment level: High} . It is checked to see whether all of these values correspond to only

one class in the sample set. As the first value, {Global risk:Low} , corresponds to the YES class in the samples

numbered 3, 7, 12, and 13, it generates the following rule.
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Table 1. Investment training examples.

Example no. Global risk Profitableness Return time Investment level Class
1 High Important Long High No
2 High Important Long Low No
3 Low Important Long High Yes
4 Medium Medium Long High Yes
5 Medium Small Short High Yes
6 Medium Small Short Low No
7 Low Small Short Low Yes
8 High Medium Long High No
9 High Small Short High Yes
10 Medium Medium Short High Yes
11 High Medium Short Low Yes
12 Low Medium Long Low Yes
13 Low Important Short High Yes
14 Medium Medium Long Low No

Rule 1: IF Global risk = Low THEN Class = YES

With this rule, the samples numbered 3, 7, 12, and 13 are classified and then marked as never to be paid

attention to. As the other values in the third sample do not generate a rule on their own, the next unclassified

sample is tried. As none of the attribute–value pairs in the other remaining samples correspond to only one

class on their own, they cannot generate a rule and the next stage is performed.

Dual combinations of the attribute–values in the samples that are not classified in the second stage are

formed and it is checked to see whether these combinations will generate rules or not.

The first sample that is not classified is taken. This sample consists of the attribute–values of {Global risk:High,

Profitableness:Important, Return time:Long, Investment level:High} . Dual combinations of these values are

applied on the sample set respectively. As the {Global risk:High, Return time:Long} combination of these are

included in the NO class, it generates the following rule.

Rule 2: IF Global risk = High AND Return time = Long THEN Class = NO

With this rule, the samples numbered 1, 2, and 8 are classified. These samples are marked as never to

be paid attention to later on. As the remaining combinations do not correspond to only one class, they cannot

generate rules on their own.

The fourth sample that is not classified is chosen. This sample consists of the attribute–values of

{Global risk:Medium, Profitableness:Medium, Return time:Long, Investment level:High} . As the {Global risk:Medium,

Investment level:High} of the dual combinations of these values is included only in one class, it generates the

following rule.

Rule 3: IF Global risk = Medium AND Investment level = High THEN Class = YES

With this rule, the samples numbered 4, 5, and 10 are classified and these samples are marked.

The sixth sample, which is the first sample that is not classified, is taken. This sample consists of the

attribute–values of {Global risk:Medium, Profitableness:Small, Return time:Short, Investment level:Low} . As

the {Global risk:Medium, Investment level:Low} of the dual combinations of these values corresponds to only

one class, it generates the following rule.

Rule 4: IF Global risk = Medium AND Investment level = Low THEN Class = NO
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With this rule, the samples numbered 6 and 14 are classified and these samples are marked as never to

be paid attention to again.

Up to this stage, there remain the samples numbered 9, 10, and 11 as unclassified. The first one of these,

the ninth sample, consists of the attribute-values of {Global risk:High, Profitableness:Small, Return time:Short,

Investment level:High} . As the {Return time:Short, Investment level:High} of the dual combinations of these

values is included only in 1 class in all of the sample sets, it generates the following rule:

Rule 5: IF Return time = Short AND Investment level = High THEN Class = YES

With this rule, the samples numbered 5, 9, 10, and 13 are classified.

Up to this stage, there remains the sample numbered 11 as unclassified. This sample consists of the

attribute–values of {Global risk:High, Profitableness:Medium, Return time:Short, Investment level:Low} . As

the {Global risk:High, Return time:Short} of the dual combinations of these values corresponds to only one

class, the following rule is obtained.

Rule 6: IF Global risk = High AND Return time = Short THEN Class = YES

With this rule, the samples numbered 9 and 11 are classified.

Up to this stage, 6 rules have been generated and all of the samples have been classified with these rules.

Which samples are classified by which rule can be seen in Table 2.

Table 2. Examples classified by the obtained rules.

Rule no Classified samples by rule Unclassified samples
1 3 – 7 – 12 – 13 1 – 2 – 4 – 5 – 6 – 8 – 9 – 10 – 11 – 14
2 1 – 2 – 8 4 – 5 – 6 – 9 – 10 – 11 – 14
3 4 – 5 – 10 6 – 9 – 11 – 14
4 6 – 14 9 – 11
5 5 – 9 – 10 – 13 11
6 9 – 11 –

Step 4.

The samples classified by the rule numbered 5 are also classified by the other rules as well. The rule

numbered 5 classified the samples numbered 5, 9, 10, and 13. As the samples numbered 5 and 10 are classified

by rule 3, the sample numbered 9 by rule 6, and the sample numbered 13 by rule 1, rule 5 is cancelled. The

rule set obtained after these processes is given in Table 3.

Table 3. Rule set that is generated by RES-2.

Rule no. Rule definition
1 IF Global risk = Low THEN Class = YES
2 IF Global risk = High AND Return time = Long THEN Class = NO
3 IF Global risk = Medium AND Investment level = High THEN Class = YES
4 IF Global risk = Medium AND Investment level = Low THEN Class = NO
5 IF Global risk = High AND Return time = Short THEN Class = YES

3. Experimental evaluation of RES-2

Datasets were used in the study to test the success of the developed method. A dataset consists of a set of

already classified samples (S = s1, s2,. . . ). Each sample (si = x1, x2 , . . . ) is a vector and xi is defined as
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AKGÖBEK/Turk J Elec Eng & Comp Sci

the features or attributes of this sample. The dataset can be expanded using a C = c1, c2, ...vector. Here,ci

designates the class of each sample.

Cross-validation is one of the most commonly used methods for testing the results. The predictive

accuracy is measured by a well-known 10-fold cross-validation method for the used datasets. In this study, each

dataset is divided into 2, as the training set and the test set, according to the 10-fold cross-validation method.

The sample set is divided into 10 parts with this method, where 1 of those parts is the test set (10% of the

sample set), the remaining parts are taken as the training set (90% of the sample set), and the problem is run

10 times. In the first run, the first 10% is taken as the test set; in the second run, the second 10% is taken as

the test set; .... and in the final run, the last 10% is taken as the test set.

The rule base was created from training sets using the RES-2 algorithm, and these rule sets were applied

to the test sets and the accuracies were calculated. During the test procedure, each sample in the test dataset

is dealt with in the given order. Rules in the rule set are searched for the sample one by one. If the sample is

accurately classified by a rule, the number of samples covered by the rule set is increased by one; otherwise, it

is added to the set of inaccurately classifieds. This procedure is applied to all of the samples in the test dataset

and the number of accurately classified samples is determined. The accuracy is then calculated by dividing this

achieved number by the total number of samples in the test set. A repeat is made for the sample set divided

into 10 parts according to the 10-fold cross-validation method and the accuracy of the sample set is calculated

by taking the mean of the values achieved as a result.

Software was developed for the RES-2 algorithm using the Delphi programming language. Datasets

existing in the text format were transferred to the Oracle database in order to run search procedures on the

datasets faster using SQL expressions. Samples with incomplete values were not removed from the dataset, but

they were ensured to be omitted by a special code integrated in the prepared software. The program was run

on a PC computer with a Pentium IV 3.0 GHz processor and 1 GB RAM to compare results and results were

obtained.

3.1. Characteristics of the used datasets

In this study, 15 datasets that contain the multiclass values of different characteristics and sizes obtained

from the UCI repository of machine learning databases have been used in order to test the performance of

the proposed method. The properties of the datasets used [attribute type, number of examples, number of

attributes, number of classes, and missing values (%)] are given in Table 4, where it can be seen that the

datasets have 2 to 19 classes and 4 to 61 characteristics. The attributes consist of Integer, Real, Categorical,

and a mix of these, and their number of samples in the dataset vary between 148 and 12,960 (for more details,

see http://archive.ics.uci.edu/ml/datasets.html).

3.2. Classification accuracy

The accuracy of the values obtained is calculated using Eq. (1). The accuracy is defined as the algorithm’s rate

of correctly classifying data that were not previously encountered.

Accuracy(%) =
No. of test examples covered by the rule set

Total no. of test examples
x100 (1)

The classification accuracy is obtained with the division of the test set chosen from the sample set and the

samples correctly classified by the rule set by the total number of samples according to the 10-fold cross-
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Table 4. Features of the example sets.

Dataset Attribute type
Number of Number of Number of Percent of
examples attributes classes missing values

Balance-scale Categorical 625 4 3 0.0
Breast cancer Categorical 286 9 2 0.35

Breast cancer w. Integer 699 10 2 0.23
Chess Categorical 3196 36 2 0.0
CRX Categorical, Integer, Real 690 15 2 0.65

Dermatology Categorical, Integer 366 34 6 0.06
Diabetes Categorical, Integer 768 8 2 0.0
Hepatitis Categorical, Integer, Real 155 19 2 5.67

Iris Real 150 4 3 0.0
Lympograph Categorical 148 18 8 0.0
Mushroom Categorical 8124 22 2 1.39
Nursery Categorical 12,960 8 5 0.0

Soybean-Large Categorical 307 35 19 6.56
Tic-Tac-Toe Categorical 958 9 2 0.0

Vote Categorical 435 16 2 4.14

validation method. The arithmetic average of the values obtained after the 10 repeats is taken and the average

accuracy is calculated.

3.3. Results obtained using RES-2

Four criteria were used to test the results of the algorithms: the mean accuracy, number of rules, standard

deviation, and process time. The results obtained from the RES-2 algorithm according to the 10-fold cross-

validation method are given in Table 5.

Table 5. The results obtained by RES-2.

Dataset
Maximum Minimum Standard Average Number of Execution

accuracy (%) accuracy (%) deviation accuracy (%) rules time (s)
Balance-scale 91.94 50.00 13.90 79.43 17.86 ± 1.25 0.34
Breast cancer 94.74 77.78 5.13 86.18 22.50 ± 0.96 0.35

Breast cancer w. 98.44 93.31 1.46 95.74 18.14 ± 1.64 0.33
Chess 99.38 97.81 0.58 98.76 17.00 ± 1.1 103.21
CRX 95.52 81.54 4.30 89.05 39.43 ± 2.26 2.43

Dermatology 97.50 91.43 2.10 95.29 16.50 ± 1.12 19.23
Diabetes 88.59 73.68 4.40 79.26 17.43 ± 1.68 0.78
Hepatitis 93.33 79.42 5.08 84.53 12.57 ± 1.40 0.40

Iris 100.00 90.91 3.68 97.61 5.29 ± 0.70 0.22
Lympograph 98.50 66.67 10.52 81.85 23.83 ± 3.44 0.59
Mushroom 100.00 100.00 0.0 100.00 18.14 ± 2.03 79.56
Nursery 88.39 99.59 4.45 94.47 80.11 ± 3.09 180.27

Soybean-Large 100.00 77.78 7.23 94.14 20.14 ± 1.73 15.34
Tic-Tac-Toe 100.00 93.65 2.30 97.07 24.57 ± 1.18 0.62

Vote 100.00 95.35 1.25 97.44 10.43 ± 0.90 0.55

3.4. Performance comparison with other algorithms

For each dataset shown in Table 4, the performance of the RES-2 algorithm was compared with very well-

known algorithms often used for benchmarking purposes in the data mining and machine learning literature.
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All of the selected datasets belong to real-world domains and come from the well-known UCI Machine Learning

Repository from UCI [31]. Real-world domains are useful because they come from real-world problems that we

do not always understand and are therefore actual problems for which we would like to improve the performance.

The comparisons with respect to the average accuracy and the number of rules induced by the RES-2 algorithm

and some algorithms are given in Tables 6–20.

Table 6. Comparison of the RES-2 algorithm with other classifiers for the balance-scale dataset.

Algorithm Average accuracy Number of rules References
RES-2 79.43 17.86 ± 1.25 This study
MCAR 77.54 16 Thabtah et al. [9]

PAT-DTL (AGM) 74.40 - Kang and Sohn [32]
CBA 65.66 15 Thabtah et al. [9]
Ripper 64.56 17 Thabtah et al. [9]
C4.5 64.32 33 Thabtah et al. [9]

Table 7. Comparison of RES-2 with other classifiers for the Breast Cancer Wisconsin dataset.

Algorithm Average accuracy Number of rules References

CBA 98.84 45 Thabtah and Cowling [11]

CPOM-NB 97.42 1 Cohen et al. [7]

NBTree 96.56 28 Cohen et al. [7]

RES-2 96.54 19.33 ± 1.70 This study

MCAR 96.48 61 Thabtah et al. [9]

SVM+Pr 96.30 5.1 Martens et al. [33]

Ant-Miner 96.04 6.2 ± 0.25 Su et al. [8]

RMR 95.92 60 Thabtah and Cowling [11]

Ripper 95.42 6 Thabtah and Cowling [11]

G-REX 95.10 2.2 Martens et al. [33]

Trepan 95.00 5.4 Martens et al. [33]

CN2 94.88 18.6 ± 0.45 Su et al. [8]

C4.5 94.66 14 Thabtah and Cowling [11]

DE/QDE 92.68 11.8 ± 1.08 Su et al. [8]

Table 8. Comparison of RES-2 with other classifiers for the Breast Cancer dataset.

Algorithm Average accuracy Number of rules References
RES-2 86.18 22.50 ± 0.96 This study
C5.0 75.80 9 Pham and Afify [34]

DE/QDE 75.52 6.30 ± 1.19 Su et al. [8]
Ant-Miner 75.28 7.10 ± 0.31 Su et al. [8]

PAT-DTL (JS) 73.43 - Kang and Sohn [32]
Rules-6 72.60 10 Pham and Afify [34]

Ant-Miner w/o rule pruning 70.69 19.60 ± 0.22 Su et al. [8]
PAT-DTL (AGM) 69.23 - Kang and Sohn [32]

Rules-3 Plus 68.40 40 Pham and Afify [34]
CN2 67.69 55.40 ± 2.07 Su et al. [8]
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Table 9. Comparison of RES-2 with other classifiers for the Chess dataset.

Algorithm Average accuracy Number of rules References

Rules-3Plus 99.0 108 Pham and Afify [34]

RES-2 98.8 17.00 ± 1.1 This study

Rules-6 98.5 31 Pham and Afify [34]

C5.0 97.2 21 Pham and Afify [34]

ID3 93.9 - Nielsen et al. [35]

C4.5 92.9 - Nielsen et al. [35]

DIR 92.9 - Nielsen et al. [35]

Table 10. Comparison of RES-2 with other classifiers for the CRX dataset.

Algorithm Average accuracy Number of rules References

MOEA 93.48 - Setzkorn and Paton [18]

C4.5 91.79 - Carvalho and Freitas [36]

C4.5/GA-large-SN 90.40 - Carvalho and Freitas [36]

Double C4.5 90.02 - Carvalho and Freitas [36]

RES-2 89.05 39.43 ± 2.26 This study

C4.5/GA-small 88.94 - Carvalho and Freitas [36]

SVM 83.92 - Setzkorn and Paton [18]

CBA 83.50 - Chan et al. [37]

GARC 82.50 - Chan et al. [37]

EROL 81.63 - Setzkorn and Paton [18]

S-NBTree 76.76 - Wang et al. [19]

NBTree 75.42 - Wang et al. [19]

Table 11. Comparison of RES-2 with other classifiers for the Dermatology dataset.

Algorithm Average accuracy Number of rules References

GP 96.60 - Bojarczuk [17]

DIMLP 95.70 - Bologna [16]

RES-2 94.88 17.33 ± 1.25 This study

MLP 94.70 - Bologna [16]

Ant-Miner 94.29 7.30 ± 0.15 Su et al. [8]

DE/QDE 91.53 11.90 ± 2.02 Su et al. [8]

CN2 90.38 18.50 ± 0.47 Su et al. [8]

C4.5 89.10 - Bojarczuk [17]

BGP 86.20 - Bojarczuk [17]

Ant-Miner w/o rule pruning 83.05 25.90 ± 0.31 Su et al. [8]
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Table 12. Comparison of RES-2 with other classifiers for the Diabetes dataset.

Algorithm Average accuracy Number of rules References
C4.5 85.82 20 Thabtah and Cowling [11]
RMR 78.79 65 Thabtah and Cowling [11]
RES-2 78.71 18.29 ± 0.45 This study
Ripper 76.04 4 Thabtah and Cowling [11]
CBA 75.34 36 Thabtah and Cowling [11]
CORE 75.34 - Tan et al. [20]

NavieBayes 75.09 - Tan et al. [20]
Cal5 75.00 - Tan et al. [20]
CART 74.50 - Tan et al. [20]
GGP 72.60 - Tan et al. [20]
AC2 72.40 - Tan et al. [20]
CN2 71.10 - Tan et al. [20]

Table 13. Comparison of RES-2 with other classifiers for the Hepatitis dataset.

Algorithm Average accuracy Number of rules References

Ant-Miner w/o rule pruning 92.50 6.80 ± 0.13 Su et al. [8]

DE/QDE 90.97 4.30 ± 0.64 Su et al. [8]

Ant-Miner 90.00 3.40 ± 0.16 Su et al. [8]

CN2 90.00 7.20 ± 0.25 Su et al. [8]

RES-2 83.22 12.48 ± 0.64 This study

C4.5/GA-large-SN 82.52 - Carvalho and Freitas [36]

TFPC 81.20 72.9 Coenen and Leng [10]

CMAR 81.00 153.1 Coenen and Leng [10]

C4.5/GA-small 79.36 - Carvalho and Freitas [36]

Double C4.5 66.16 - Carvalho and Freitas [36]

CBA 57.80 15.8 Coenen and Leng [10]

Table 14. Comparison results of RES-2 with other classifiers for the IRIS dataset.

Algorithm Average accuracy Number of rules References
REGAL 99.00 11 Rodŕıguez et al. [14]
RES-2 97.61 5.00 ± 0.76 This study
Trepan 96.20 6.7 Martens et al. [33]
SVM+Pr 96.00 7 Martens et al. [33]
CPOM-NB 96.00 2 Cohen et al. [7]
EDGAR 96.00 14 Rodŕıguez et al. [14]
CLIP4 95.60 4 Cios and Kurgan [12]
MCAR 95.32 31 Thabtah et al. [9]
C4.5 95.10 4.3 Martens et al. [33]

G-REX 94.80 4.0 Martens et al. [33]
Ripper 94.66 4 Thabtah and Cowling [11]
NBTree 94.00 4 Cohen et al. [7]
RMR 93.87 15 Thabtah and Cowling [11]
CBA 93.25 18 Thabtah and Cowling [11]
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Table 15. Comparison of RES-2 with other classifiers for the Lympograph dataset.

Algorithm Average accuracy Number of rules References

SIM 86.20 - Luukka [38]

Rules-6 86.00 15 Pham and Afify [34]

RES-2 81.85 24.17 ± 3.53 This study

CN2 81.60 - Luukka [38], Bologna [16]

MLP 81.60 - Luukka [38], Bologna [16]

C4.5 81.08 12 Thabtah et al. [9]

DIMLP 80.40 - Luukka [38], Bologna [16]

Rules-3 Plus 80.00 24 Pham and Afify [34]

Ripper 77.02 6 Thabtah et al. [9]

CBA 76.38 38 Thabtah et al. [9]

MCAR 76.02 49 Thabtah et al. [9]

C5.0 76.00 7 Pham and Afify [34]

Table 16. Comparison of RES-2 with other classifiers for the Mushroom dataset.

Algorithm Average accuracy Number of rules References

CLIP4 100.00 2 Cios and Kurgan [12]

RES-2 100.00 18.14 ± 2.03 This study

Ripper 99.90 14
Thabtah and Cowling [11],

Thabtah et al. [9]

C4.5 99.77 44
Thabtah and Cowling [11],

Thabtah et al. [9]

ID3 99.10 - Nielsen et al. [35]

DIR 98.90 - Nielsen et al. [35]

PDG1 98.80 - Nielsen et al. [35]

MCAR 97.56 53 Thabtah et al. [9]

CBA 91.29 38
Thabtah and Cowling [11],

Thabtah et al. [9]

Table 17. Comparison of RES-2 with other classifiers for the Nursery dataset.

Algorithm Average accuracy Number of rules References

EDGAL 99.00 270 ± 28.41 Rodŕıguez et al. [14]

REGAL 98.00 309 ± 22.41 Rodŕıguez et al. [14]

NBTree 95.92 139 Cohen et al. [7]

RES-2 94.47 80.11 ± 3.09 This Study

CPOM-NB 94.21 15 Cohen et al. [7]

CBA 90.10 78.4 Coenen and Leng [10]

CMAR 88.30 298.6 Coenen and Leng [10]

NPGA 78.25 7 Dehuri and Mall [15]

TFPC 77.80 39.7 Coenen and Leng [10]

INPGA 76.65 7 Dehuri and Mall [15]

SGA 76.20 7 Dehuri and Mall [15]
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Table 18. Comparison of RES-2 with other classifiers for the Soybean-Large dataset.

Algorithm Average accuracy Number of rules References
RES-2 94.14 20.14 ± 1.73 This study
CBA 91.00 - Coenen and Leng [10]
CMAR 90.80 - Coenen and Leng [10]
TFPC 89.10 - Coenen and Leng [10]
PDG1 88.20 - Nielsen et al. [35]
NB 87.70 Nielsen et al. [35]

PAT-DTL(JKL) 87.41 - Kang and Sohn [32]
DIR 85.90 - Nielsen et al. [35]

Table 19. Comparison of RES-2 with other classifiers for the Tic-Tac-Toe dataset.

Algorithm Average accuracy Number of rules References
CBA 100.00 25 Thabtah and Cowling [11]
RMR 100.00 26 Thabtah and Cowling [11]
MCAR 100.00 27 Thabtah et al. [9]
EDGAR 99.00 87 ± 14.45 Rodŕıguez et al. [14]
DE/QDE 98.85 10 Su et al. [8]

CN2 97.38 39.70 ± 2.52 Su et al. [8]
RES-2 97.10 24.86 ± 1.64 This study
Ripper 96.97 9 Thabtah and Cowling [11]
REGAL 91.00 50 ± 13.12 Rodŕıguez et al. [14]
C4.5 83.71 95 Thabtah and Cowling [11]

CPOM-NB 76.51 7 Cohen et al. [7]
NBTree 75.67 51 Cohen et al. [7]

Ant-Miner 73.04 8.50 ± 0.62 Su et al. [8]

Table 20. Comparison of RES-2 with other classifiers for the Vote dataset.

Algorithm Average accuracy Number of rules References
RES-2 97.44 10.43 ± 0.90 This study

Rules-3 Plus 97.00 33 Pham and Afify [34]
C5.0 97.00 5 Pham and Afify [34]

Rules-6 95.60 10 Pham and Afify [34]
CLIP4 94.00 9.7 Cios and Kurgan [12]
MCAR 88.70 85 Thabtah et al. [9]
RMR 88.70 84 Thabtah and Cowling [11]

C4.5 88.27 4
Thabtah and Cowling [11],

Thabtah et al. [9]

Ripper 87.35 4
Thabtah and Cowling [11],

Thabtah et al. [9]

CBA 86.91 40
Thabtah and Cowling [11],

Thabtah et al. [9]

When the results shown in these tables are examined, it can be seen that the proposed RES-2 algorithm

both classifies the test set with high accuracy and generates a limited number of rules according to the rules

that it obtains from the given training set. For instance, the RES-2 algorithm produced the highest results for a

total of 5 datasets: 86.18% accuracy for Breast Cancer, 97.44% for Vote, 94.14% for Soybean-Large, 79.43% for
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Balance-Scale, and 100% for Mushroom. It produced the second highest results for the Iris and Chess datasets

at 97.61% and 98.8%, respectively, and it produced the third highest results for the Diabetes, Lympograph, and

Dermatology datasets. It produced results with high levels of accuracy for the other datasets, as well.

4. Conclusion

In this article, a new algorithm directly producing rules with a simple and at the same time effective rule

search mechanism has been presented. This algorithm explores all of the cases that could generate rules using

the search technique, without performing any calculations in the rule generation stage, and turns them into

rules. The search technique is based on testing whether the attributive–value combinations that could be rules

correspond to only one class or not. Thus, it generates all of the rules and ensures that the most general

rules are chosen. Fewer rules are generated by eliminating unnecessary and repeated rules at the end of the

procedure. Furthermore, it classifies the training set with 100% accuracy, as it does not use a pruning method.

According to the results obtained using the benchmark datasets taken from real life, the proposed method

produces better results than many other algorithms in terms of both the accuracy and rule number. In the

future, it may be possible for the algorithm to eliminate unqualified rules and generate fewer rules by applying

a pruning procedure and calculating the quality of the obtained rules. Additional issues to be further studied

include examining how the proposed algorithm can be implemented using other classification methods such as

support vectors machines, ant colony optimization, or Bayesian networks.
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