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Abstract: Most research in the field of digital speech technology has traditionally been conducted in only a few

languages, such as English, French, Spanish, or Chinese. Numerous studies using distinctive phonetic features (DPFs)

with different techniques and algorithms have been carried out during the last 3 decades, mainly in English, Japanese, and

other languages of industrialized countries. DPF elements are based on a technique used by linguists and digital speech

and language experts to distinguish between different phones by considering the lowest level of actual features during

phonation. These studies have investigated the best performances, outcomes, and theories, especially those regarding

digital speech recognition. The aim of this paper is to present the background of DPF theories and the usefulness thereof

for digital speech and language processing. In addition, we highlight the background of Arabic language phonology

compared to 2 well-known languages to enhance the current knowledge about this narrow language discipline. Finally,

this work reviews the research dealing with DPF strategies for digital speech and language processing using computing

and engineering techniques and theories. Based on the literature search conducted for this paper, we conclude that

although the Arabic language is a very important and old Semitic language, hitherto it has suffered from a lack of

modern research resources and theories on DPF elements.
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1. Introduction

1.1. Arabic language background

Arabic is one of the world’s major languages. It is the fifth most widely spoken language in the world and is

second in terms of the number of speakers, with over 250 million Arabic speakers, of whom roughly 195 million

are first language speakers and 55 million are second language speakers [1]. To begin the study on distinctive

phonetic feature (DPF) elements for the Arabic language, many points about the nature of this language must

be taken into account. The Arabic language has 3 forms: classical Arabic, modern standard Arabic (MSA), and

colloquial Arabic. Classical Arabic is the language of the Quran, the religious instruction in Islam, and of the

great writers and poets. MSA (or Al-fus ?ha) is one of the Arabic dialects and is the form of the Arabic language

that is taught in schools and used in most radio and television broadcasts, formal talks, and the majority of the

printed matter in the Arab world, including books. Colloquial Arabic (or al-ammiyya) is the form of Arabic

that is used in everyday oral communication.

Arabic dialects vary in many dimensions, but primarily with respect to geography and social factors.

According to geographical linguistics, the Arab world can be divided in many different ways. Given below
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is only one of those covering the main Arabic dialects. Gulf Arabic includes the dialects of Kuwait, Saudi

Arabia, Bahrain, Qatar, United Arab Emirates, and Oman, while Iraqi Arabic is the dialect of Iraq. In some

dialect classifications, however, Iraqi Arabic is considered a subdialect of Gulf Arabic. Levantine Arabic includes

the dialects of Lebanon, Syria, Jordan, and Palestine. Egyptian Arabic covers the dialects of the Nile valley,

including Egypt and Sudan. Maghreb Arabic covers the dialects of Morocco, Algeria, Tunisia, and Mauritania.

Libya is sometimes included in this class. Yemenite Arabic is often considered a class on its own. Socially, it is

common to distinguish 3 subdialects within each dialect region: city dwellers, peasants/farmers, and Bedouins.

The 3 levels are often associated with a ‘social hierarchy’ from the rich, settled city-dwellers, down to Bedouins.

Different social associations exist, as is common in many other languages around the world [2].

1.2. Arabic, English, and Japanese phonology

Most of the research on speech processing has focused on the languages of industrial countries, such as English

and Japanese. Moreover, most of the resources and supporting speech tools and products have been implemented

using English and Japanese, together with the languages of other industrialized countries. Due to the familiarity

of the literature, research, and speech tools for English and Japanese, we briefly compare Arabic with these 2

well-known languages.

To be specific our aim is to investigate some of the phonological characteristics of Arabic, English, and

Japanese by comparing the 3 languages with respect to their phonological level, specifically by investigating the

vowels, consonants, and syllables. The differences and similarities are highlighted to obtain a clear background

of these 3 important languages. Vowels and consonants are phonemes that can be defined as the smallest part

of speech that designates a variation in the meaning of a spoken valid word of the language [3]. We intend to

search the phoneme inventory of these 3 languages.

MSA Arabic has 6 vowels and 2 diphthongs. The 6 vowels are /a/, /i/, /u/, /aa/, /ii/, and /uu/, where

the former 3 are short vowels and the latter 3 are the corresponding longer versions of the short vowels. On the

other hand, the 2 diphthongs are /ae/ and /ao/ [3–5]. As a result, the duration of the vowel sounds is phonemic

in the Arabic language, and this is one of the major distinctions of Arabic compared to English and Japanese.

Each short Arabic vowel is phonetically identical to its long counterpart (i.e. the only difference is the duration

thereof) [5]. Arabic dialects may have different and additional vowels; for instance, the Levantine dialect has at

least 2 extra diphthongs, /aj/ and /aw/. Similarly, the Egyptian dialect has additional vowels [6].

Comparing English and Japanese, we see some significant differences in the following 2 areas: first, the

number of vowels, and second, the tense/lax distinctions. In the English vowel system, there are more than

13 different vowels (depending on the American and British dialects) and these include several diphthongs.

On the other hand, Japanese has only 5 vowels, which are common to most languages, including Arabic and

English [7,8]. Another characteristic that differentiates the English vowel system specifically from the Japanese

vowel system is whether there is a distinction between the lax and tense vowels in either of the 2 systems. The

differentiation between the tense and lax vowels is made according to how much muscle tension or movement

in the mouth is involved in producing the vowels [8]. Vowels produced with extra muscle tension are called

tense vowels, while those produced without that much tension are called lax vowels. For example, /i/ as in the

English word “eat” is categorized as a tense vowel as the lips are spread (muscular tension in the mouth) and

the tongue moves toward the root of the mouth. To be specific, the tense/lax vowel pairs in English, such as

/i/ vs. /I/, /e/ vs. /ε /, and /u/ vs. /U/, do not exist in the 5-vowel Japanese system, because the tense/lax

differentiation is not phonemic [7,8].
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Regarding consonants, MSA Arabic contains 28 consonants, varying between stops, fricatives, nasals,

and liquids. Moreover, the Arabic consonant system comprises 2 distinctive classes, known as pharyngeal and

emphatic phonemes. These 2 classes cannot be found in either English or Japanese, but can be found in other

Semitic languages such as Hebrew [4]. Regarding the consonant systems, there are clear differences in the

consonantal distributions between Arabic, Japanese, and English. One of the differences is the lack of affricates

in Japanese, which is not the case in Arabic and English. Moreover, regarding the point of articulation, there

is a variety of fricatives and affricates, which are much more widely distributed in Arabic and English than

in Japanese. Specifically, /v/, /θ /, /ð/, / /, and /d / are found in the Japanese consonantal system, but

some of these phonemes exist in Arabic and English [7]. Another difference in the consonantal system between

Japanese and English is that there are some consonants found in the consonant inventory of Japanese, but not

in that of English, such as the voiceless bilabial fricative /Φ/ and voiceless palatal fricative /Ç/ [8]. In addition,

Japanese has a liquid consonant that does not correspond exactly to the English liquid /r/ or /l/, but rather

Table 1. Arabic and English consonants [3–5,9].
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is considered to be a sound in-between that of the English /r/ and /l/. The exact articulation point is not

specified for the Japanese /r/ sound. Hence, the most characteristic difference between the Japanese and English

consonantal systems lies not in the number of consonants found in each of the 2 languages, but rather in the

unique distribution patterns of the consonants in each language. Table 1 displays the full features of consonants

of MSA Arabic and English in a way that facilitates comparison. In addition, using set methodology, Figure 1

displays the common phonemes between any pairs of the 3 investigated languages, as well as the common set

for all 3 languages [7] The contents in Figure 1 were collected from different well-known references dealing with

these 3 important languages [3–5,9–11].
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Figure 1. Arabic, Japanese, and English consonants [3–5,9–11].

Regarding the syllables, an MSA Arabic syllable must contain at least 1 vowel. Moreover, Arabic vowels

cannot appear as the first part of a syllable, but can occur either between 2 consonants or at the end in a syllable

or word. Arabic syllables can be classified as short or long. The allowed syllables in the Arabic language are:

CV, CVC, and CVCC where V indicates a (long or short) vowel and C indicates a consonant. The CV type is

a short one, while all of the others are long. Syllables can also be classified as open or closed. An open syllable

ends with a vowel, whereas a closed syllable ends with a consonant. For Arabic, a vowel always forms a syllable

nucleus, and there are as many syllables in a word as there are vowels [5,12].

On the other hand, English allows a wide variety of syllable types including both open and closed syllables:

CV (open syllable), CVC, CCVC, CCVCC, and CCCVCC (closed syllable).

In Japanese, the allowed syllable types seem to be restricted to open syllables only. The fact that Japanese

words of more than 1 syllable always follow the CV-CV-CV syllable sequence clearly shows the significant

characteristics of Japanese syllables, which differ from those in English [7].

The main differences here are: first, Japanese does not allow a word to end with a consonant, which is
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exactly the case in Arabic, and second, Japanese does not permit both initial and final consonant clusters (i.e.

a CCVCC syllable). Thus, in general, Arabic and English have a wider range of syllable types than Japanese,

and they also allow the occurrence of consonant clusters, both in the initial and final positions in a word.

There is a distinction between Arabic and English in this regard, in that Arabic syllables start with a

single consonant only followed by a vowel, whereas an English syllable can start with 1, 2, or even 3 consonants

[5]. It should be noted, however, that although English permits initial and final consonant clusters, there are

some restrictions on the possible combinations of consonants when realized in consonant clusters [7].

2. Arabic speech, language, and DPF

2.1. DPF elements

Jacobson and Chomsky were among the first scientists to work on DPF elements in English and additional

languages in the last century [9,13]. DPF elements are a way of representing phoneme phonation by specifying

the manner of articulation (vocalic, consonantal, continuant . . . ), tongue position (high, front, end . . . ), etc. and

can separately uniquely identify each phoneme. According to various researchers’ definitions, DPF elements are

a compact set of articulatory and acoustic “gestures”, combinations of which can codify meaningful similarities

and dissimilarities between all sounds [9]. Each phoneme can then be represented by its values in the distinctive

feature space, and the differences between the phones can be described simply and succinctly in the same space

[9]. In other words, together with other definitions by various language experts, speech sounds can be described

using a DPF representation by identifying a set of physiological actions or states that serve to distinguish

speech sounds from one another. Any language phonemes are viewed as a shorthand notation for a set of

DPF elements, which describe the operations of the articulators required to produce the distinctive aspects

of a speech sound [14]. The DPF is related to another term, that is, the articulatory features defined as the

group of properties of a speech sound based on its voicing or on its place or manner of articulation in the vocal

tract from a phonetic point of view [13]. In other words, DPF depends on linguistic and phonemic observation,

whereas articulatory features depend on the phonetic characteristics of the actual vocal tract while vocalizing

the specific language phonemes. Linguists can easily identify a phone using the values of the DPF elements.

This can be done by identifying a set of physiological actions or states, including high, low, anterior, back,

coronal, plosive, continuant, fricative, nasal, voiced, and semivowel, which help to distinguish the speech sounds

from one another [14,15]. Based on another variation in the definition, phonemes are viewed as the shorthand

notation for a set of features describing the operations of the articulators required to vocalize the distinctive

aspects of a speech sound. To give an example, the phonemes “p” and “b” are produced in ways that differ only

in the state of the vocal folds; “p” is produced without a vibration (unvoiced), while “b” requires a vibration

of the vocal cords (voiced). In the distinctive feature representation, only the feature “voice” differs for these

2 sounds [14]. For the Arabic language, Table 2 shows the common DPF elements as agreed upon by Arabic

linguistics and researchers.

To achieve automatic speech recognition (ASR) at the highest possible levels of performance, we have to

ensure efficient use of all of the contextual and phonetic information. The specific phones that are used in any

instance depend on contextual variables such as the speaking rate. On a short time scale, such as the average

length of a phone, limitations on the rate of change of the vocal tract cause a blurring of the acoustic features

that is known as the coarticulation effect. For longer time scales there are many contextual variables that

vary only slightly (e.g., the degree and spectral characteristics of the background noise and channel distortion)

and speaker dependent characteristics (e.g., vocal tract length, speaking rate, and dialect) [16]. Compared to

1430



ALOTAIBI and MEFTAH/Turk J Elec Eng & Comp Sci

other major languages in the world, the Arabic language generally suffers from a lack of research initiatives and

modern research resources, especially on the topic of DPF and applications in digital speech processing.

Table 2. MSA Arabic DPF elements [9,13,17].

In this paper, we review several works related to the DPF elements in 3 subsections: DPF in the Arabic

language, artificial neural network (ANN) techniques used in DPF, and other techniques considered for DPF.

For each section, the papers are ordered from oldest to newest.
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2.2. Studies on Arabic DPF

The Arabic language has unique characteristics; for example, pharyngeal and emphatic, together with various

kinds of allophone germination. Table 2 gives the Arabic DPF elements that exist in its main dialect namely

MSA. These phonemes and their assigned features can vary in different Arabic regional and local dialects.

Moreover, the Arabic language has more lexical stress systems than any other language, but regrettably, in our

investigation of the Arabic language and DPF, we have found only a small number of good studies and papers

on this subject.

In this context, Selouani et al. [18] worked on spotting Arabic phonetic features using a modular

connectionist architecture and rule-based system. They presented the results of their experiments in complex

Arabic phonetic feature identification using a rule-based system and modular connectionist architectures. The

aim of their study was to use the Arabic language to test the ability of automatic systems operating a ‘blind’

classification for detecting aspects as subtle as germination, and emphasis and relevant extension of vowels.

They used 2 techniques. The first operates in the field of analytic approaches and aims to implement a relevant

system for automatic segmentation and labeling through the use of finite state networks. The second deals

with a set of a simplified version of subneural networks. Two types of architectures, namely, serial and parallel

architectures of subneural networks, were investigated. A comparison between the 2 identification strategies

was executed using stimuli uttered by Algerian native speakers. Based on the results, the authors concluded

that for the detection of complex phonetic features such as the phonological duration, i.e. long vowels and their

germination, the rule-based system is more promising. In contrast, when a rough discrimination is solicited,

neural networks are more adaptable and the parallel architecture of subneural networks is the most reliable

system. They claimed that their proposed connectionist mixture of experts is advantageous in that it simplifies

learning because the binary discrimination does not need a large number of cycles. Moreover, generalization of

the identification of other features such as the speaker’s sex, voiced-unvoiced markers, etc. may constitute a

simple, yet powerful, way of improving ASR systems.

Selouani et al. [19] also worked on Arabic phonetic feature recognition using modular connectionist

architectures. They proposed an approach for reliably identifying complex Arabic phonemes in continuous

speech using a mixture of artificial neural experts. Their objective was to test the ability of autoregressive

time delay neural networks to detect Arabic complex phonemes. The authors claimed that the parallel and

serial structures of autoregressive time delay neural networks surpass the monolithic configuration and the

parallel disposition constitutes the most reliable system. Again, as in their previous work, they claimed that

the proposed mixture of the neural experts approach is advantageous since it facilitates learning because binary

discrimination does not need a large number of cycles. Generalization to the identification of other features,

such as the speaker’s sex and prosodic features may constitute a simple yet powerful way of improving the

performance of ASR systems.

3. Used techniques with DPF

3.1. ANN techniques

There is a strong relation between neural networks and speech DPF features. A human being’s brain can

easily identify the different distinctive features in speech; hence, brains can classify language phonemes easily

and accurately. For example, the brain can distinguish between the phonemes /s/ and /z/, where the only

difference is just the voicing, which is missing in the former but is present in the latter phoneme. Moreover,

the human brain can be best emulated by ANN technology in our computational intelligent artificial system
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nowadays. Thus linguists and computer scientists would agree on the fact that ANNs may be the best choice

in order to identify the speech units’ features.

In this section, we review different studies by several researchers working on neural network techniques

along with DPF technology and digital speech processing to achieve the best outcomes, and put forth theory

and guidance for future researchers in this interesting, important, and relevant research subject.

King et al. [20] focused on the detection of phonological features in continuous speech using neural

networks. A description of the techniques for detecting the phonological features in continuous speech was

included in their work. They reported work on speech recognition architectures based on phonological features

rather than phones. Their experiments focused on 3 phonological feature systems: the sound pattern of the

English system, which uses binary features; a multivalued feature system using traditional phonetic categories

such as manner and place; and, finally, government phonology, which uses a set of structured primes. In all

of these experiments the authors used recurrent neural networks to perform the feature detection. All of the

experiments were carried out on the well-known English TIMIT speech corpus. The authors asserted that the

networks performed well in all cases, with the average accuracy for a single feature ranging from 86% to 93%.

In another study, Launay et al. [21] focused on knowledge-based features for hidden Markov model

(HMM)-based large vocabulary automatic speech recognition. They described an attempt to build a large

vocabulary ASR system using distinctive features by replacing features based on their short-term spectra, such

as mel-frequency cepstral coefficients (MFCC), with features that explicitly represent some of the distinctive

features of the speech signal. The authors engineered an approach whereby neural networks are trained to map

short-term spectral features to the posterior probability of some distinctive features. Experimental results on

the Wall Street Journal task showed that such a system does not outperform the MFCC-based system, although

it generated very different error patterns. They claimed that they were able to obtain reductions in the word

error rates of 19% and 10% on the 5 K and 20 K tasks, respectively, over their best MFCC-based system. They

suggested that their proposed approach could be a very promising way of incorporating speech knowledge into

large-scale ASR systems.

Fukuda et al. [10] investigated DPF element extraction for robust speech recognition. They described

an attempt to extract DPF elements that represent articulatory gestures in linguistic theory using a multilayer

neural network and to apply the DPF elements to noise-robust speech recognition. In the DPF element

extraction stage, after a speech signal has been converted to acoustic features, it is composed of local features.

The authors mapped the acoustic parameters to the DPF elements using a multilayer neural network with

context-dependent output units. The local features showed better performance than the MFCC as input for

the multilayer neural network. The results of the proposed DPF without the conventional MFCC parameter

are almost the same as the standard MFCC-based feature parameter in HMM-based isolated spoken word

recognition experiments with clean speech. Moreover, this could significantly reduce the effect of high-level

additive noise, particularly the ring tone of a mobile phone.

Fukuda et al. [22] focused on the idea of the canonicalization of the feature parameters for automatic

speech recognition. They showed that the acoustic models of an HMM-based classifier include various types of

hidden variables such as sex, speaking rate, and acoustic environment. They stated that a robust ASR system

could be realized if there was a canonicalization process to reduce the influence of the hidden variables from

the acoustic models. In their paper, they described the configuration of a canonicalization process targeting sex

as a hidden variable. The authors proposed a canonicalization process composed of multiple DPF extractors

corresponding to the hidden variable and a DPF selector, to compare the distance between the input DPF and

the acoustic models. In the DPF extraction stage, an input sequence of the acoustic feature vectors was mapped

1433



ALOTAIBI and MEFTAH/Turk J Elec Eng & Comp Sci

onto 3 DPF spaces corresponding to male, female, and neutral voices using 3 multilayer neural networks. The

paper concluded that the proposed canonicalization process could reduce the influence of sex as a hidden variable

from the acoustic models.

In addition to the above, Huda et al. [16] worked on DPF-based phonetic segmentation using recurrent

neural networks. They emphasized that possessing an ASR system at the highest possible level of performance

implies the efficient use of all of the contextual information. The specific phones that are used in any instance

depend on the contextual variables, such as the speaking rate. In their work, a 2-stage system of recurrent

neural networks and a multilayer neural network was introduced to obtain better contextual information, and

hence better phonetic segments. The experiments on several methods show that a better contextual effect can

be obtained using a combination of a recurrent neural network and a multilayer neural network, rather than

using only a multilayer neural network.

Huda et al. [23] also worked on DPF-based phone segmentation using a 2-stage multilayer neural network.

In their paper, they introduced a DPF-based feature extraction using a 2-stage multilayer neural network, where

the first stage maps the continuous acoustic features, namely the local features onto discrete DPF patterns, and

the second stage constrains the DPF context or dynamics in an utterance. The experiments were carried out

using Japanese triphthong data. The authors asserted that the proposed DPF-based feature extractor provides

good segmentation and high recognition rates with a reduced mixture-set of HMMs by resolving coarticulation.

Again, but with a slight variation with respect to the type of corpus used, Huda et al. [15] worked

on DPF-based phone segmentation using hybrid neural networks. In their work, they introduced DPF-based

feature extraction using a 2-stage neural network system consisting of a recurrent neural network in the first

stage and a multilayer neural network in the second stage. The recurrent neural network maps continuous

acoustic features, i.e. local features, onto discrete DPF patterns, while the multilayer neural network constrains

the DPF context or dynamics in an utterance. The experiments were carried out using Japanese newspaper

article sentences, and continuous utterances containing both vowels and consonants. Again the authors argued

that the proposed DPF-based feature extractor provides good segmentation and high recognition rates with a

reduced mixture-set of HMMs by resolving the coarticulation effect.

For a second time, Huda et al. [24] investigated phoneme recognition based on hybrid neural networks

with the inhibition/enhancement of DPF trajectories. They presented a novel DPF extraction method that

incorporates inhibition/enhancement functionalities by discriminating the DPF dynamic patterns of the trajec-

tories as relevant or not. The proposed algorithm, which enhances convextype patterns and inhibits concave-type

patterns, was implemented in a phoneme recognizer and evaluated. Their recognizer consists of 2 stages. The

first stage extracts 45 dimensional DPF vectors from local features of input speech using a hybrid neural net-

work and incorporates an inhibition/enhancement network to obtain modified DPF patterns. The second stage

orthogonalizes the DPF vectors, and then feeds these to an HMM-based classifier. They concluded that the

proposed phoneme recognizer significantly improves the accuracy of the phoneme recognition with fewer mixture

components by resolving coarticulation effects. Finally, Yu et al. [25] worked on boosting the attribute and

phone estimation accuracies with deep neural networks for detection-based speech recognition. They achieved

high accuracies for both phonological attribute detection and phone estimation by using deep neural networks.

3.2. Other techniques

In this section, we consider a variety of different studies that used DPF with techniques other than neural

networks. Initially, Nitta [11] worked on feature extraction for speech recognition based on orthogonal acoustic-
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feature planes along with linear discriminant analysis. He described an attempt to extract multiple topological

structures, hidden in time-spectrum patterns, using multiple mapping operators, and to incorporate the op-

erators into the feature extractor of a speech recognition system. His design methodology for mapping the

operators in the feature extractor was created by observing the orthogonal basis of speech and modeling it. The

proposed method based on multiple acoustic-feature planes along with linear discriminant analysis showed sig-

nificant improvements compared with the conventional time-spectrum method, as well as the Karhunen–Loève

transform, time-spectrum, and linear discriminant analysis in the experiments using the Japanese Cv-set speech

database. Furthermore, the proposed method maintains accuracy in the range of small feature dimensions.

Eide [14] worked on distinctive features for use in an ASR system. He developed a method for representing

the speech waveform in terms of a set of abstract linguistic distinctions to derive a set of discriminative features

for use in a speech recognizer. He achieved a reduction in the word error rate of 33% on an ASR task by

combining the distinctive feature representation with the original waveform representation.

Tolba et al. [26] worked on auditory-based acoustic distinctive features and spectral features for ASR

using a multistream paradigm to improve the performance of ASR systems. Their goal was to improve the

performance of HMM-based ASR systems by exploiting certain features that characterize speech sounds based on

the auditory system and that are based on the Fourier power spectrum. They conducted a series of experiments

on speaker-independent continuous speech recognition using a subset of the large readspeech corpus TIMIT.

Based on their results they claimed that combining classical MFCCs with auditory-based acoustic features and

the main peaks of the spectrum of a speech signal using a multistream paradigm leads to an improvement in

the recognition performance. They found that the word error rate decreased by about 4.01%. In addition,

they showed that the use of auditory-based acoustic distinctive cues and/or the magnitudes of the spectral

peaks improve the performance of the recognition process compared to systems using only MFCCs, their first

derivatives, and second derivatives.

Tolba et al. [27] also contributed to another slightly different study. They carried out comparative

experiments to evaluate the use of auditory-based acoustic distinctive features and formant cues for ASR using

a multistream paradigm. They described an experimental effort to compare the performance of an HMM-based

ASR system in which certain speech features were combined with the classical MFCCs using a multistream

paradigm. A series of experiments on speaker-independent continuous speech recognition was conducted using

a subset of the large readspeech corpus TIMIT. They claimed that the use of either the magnitudes or the

frequencies of the speech signals combined with some auditory-based features and MFCCs for ASR using a

multistream paradigm leads to an improvement in the recognition performance of ASR systems compared to

systems using only MFCCs, and their first and second derivatives. They concluded that combining a perceptual-

based front-end with the knowledge gained from measuring the physiological responses to speech stimuli could

provide insight into the features used in the auditory system for speech recognition.

Fukuda et al. [28] worked on noise-robust ASR using DPF elements approximated with a logarithmic

normal distribution of the HMM. They attempted to replace normal distributions of the DPF elements with

logarithmic normal distributions in the HMMs. According to the authors, this is caused by DPF elements

showing skew symmetry or positive and negative skewness. They asserted that the proposed HMM with a

logarithmic normal distribution yielded a better performance than the HMM with a normal distribution on

speakerindependent isolated spoken word recognition tests both with clean speech and speech contaminated by

high-level additive noise. Moreover, the combined use of DPF and MFCC significantly improved the word error

rate over the baseline HMM system based on the MFCC parameters.

Selouani et al. [29] focused on auditory-based acoustic distinctive features and spectral cues for robust
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ASR in low SNR car environments. They proposed a multistream paradigm to improve the performance of ASR

systems in the presence of highly interfering car noise. Their results showed that combining classical MFCCs

with the main formant frequencies of speech signals using a multistream paradigm leads to an improvement

in the recognition performance in noisy car environments for a wide range of SNR values varying between

16 dB and –4 dB. They concluded that the use of auditory-based acoustic distinctive cues could improve the

performance of the recognition process in noisy car environments as opposed to using only MFCCs, and their

first and second derivatives, for high SNR values, but not for low SNR values.

Stuker et al. [30] addressed the subject of multilingual articulatory features. They addressed articulatory

features in the context of monolingual, crosslingual, and multilingual speech recognition. Their results showed

that for a variety of languages articulatory features can be reliably recognized within the language and even

across languages. They found that pooling the feature detector from multiple languages outperforms monolin-

gual ones. They claimed a relative error rate reduction of 10.7% in a monolingual setup and up to 12.3% in a

crosslingual setup.

Fukuda et al. [31] worked on designing multiple DPF extractors for canonicalization using a clustering

technique. They showed that the acoustic models of an HMM-based classifier include various types of hidden

factors, such as speaker-specific characteristics and acoustic environments. In their work, they described an

attempt to design multiple DPF extractors corresponding to unspecific hidden factors, as well as the introduction

of a noise suppressor targeted at the canonicalization of a noise factor. Their proposed method isolates the

feature extractor design from the HMM classifier design. The Japanese version of the AURORA2 database was

used in this work. The authors claimed that the proposed method achieved a significant improvement when

combining the canonicalization process with the noise reduction technique based on a 2-stage Wiener filter

Huda et al. [32] worked on the canonicalization of feature parameters for robust speech recognition

based on DPF vectors. They introduced a canonicalization method composed of multiple DPF extractors

corresponding to each hidden factor canonicalization, and a DPF selector that selects an optimum DPF vector

as an input for the HMM-based classifier. They proposed a method to resolve sex factors and speaker variability,

and eliminate noise factors by applying the canonicalization based on the DPF extractors and 2-stage Wiener

filtering. Having carried out experiments using the Japanese corpus, AURORA-2J, they asserted that the

proposed method provides higher word accuracy under clean training and a significant improvement of the

word accuracy for low SNR under multicondition training compared to the standard ASR system with MFCC

parameters. Moreover, the proposed method requires reduced (two-fifths) Gaussian mixture components and

less memory to achieve accurate ASR.

Chen et al. [33] worked on phone set construction based on context-sensitive articulatory attributes for

code-switching speech recognition. They presented a novel method for creating a polyglot speech synthesis

system via the selection of the speech sample frames of the given speaker in the first language without the need

of collecting speech data from a bilingual (or multilingual) speaker. They employed the articulatory features and

auditory features in their selection process to achieve a high-quality synthesis output. Moreover, they asserted

that the experimental results showed that good performance regarding the similarity and naturalness can be

achieved with the proposed method. Finally, Wu et al. [34] tried to create a cross-lingual frame selection method

for polyglot speech synthesis. They integrated acoustic features and cross-lingual contextsensitive articulatory

features into phone set construction for code-switching ASR by KL-divergence and a hierarchical phone unit

clustering algorithm. They claimed that their experimental results show that their method outperforms other

traditional phone set construction methods.

1436



ALOTAIBI and MEFTAH/Turk J Elec Eng & Comp Sci

4. Conclusion

This work investigated Arabic language research on DPF elements along with some background of this important

and specialized language topic. A comparison of Arabic, English, and Japanese phonologies was covered. Various

engineering techniques were used aside from the DPF, including MFCC, ANN, HMM, and combinations of

these. ANNs are widely used in clustering techniques. Various studies using different techniques were targeted

to achieve speech recognition at the highest possible level of performance. Sadly, although Arabic is rich in

distinctive features, the quantity and quality of research focusing on DPF construction, analysis, comparison,

and adoption in modern digital speech processing and various applications thereof is very limited. We also

reviewed a variety of studies that make use of DPFs to realize the highest possible level of performance in

speech recognition. These studies employ different engineering techniques to identify the DPFs, including

MFCCs, HMMs, ANNs, which are widely used in clustering techniques, and combinations of these.
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