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Abstract: A linearly slotted waveguide antenna (LSWA) is investigated. The slot is placed in one of the narrow faces

of a rectangular waveguide, which operates at Ka-band (26.5–40 GHz), which is in a frequency range including upper

microwaves and the lower edge of millimeter waves. Analytically, the magnetic current approach is applied. Some

antenna parameters of this structure are experimentally measured and it is observed that the antenna radiates a single

transversal-polarized beam that scans with frequency. The experimentally obtained patterns in 2 perpendicular planes

are also correlated with analytical and numerical patterns that use the magnetic current model and HFSS, respectively.

Approximate maximum directivity and side lobe level of the antenna are 20 dBi and –10 dB, respectively. In a frequency

range of 23–35 GHz, efficiency above 75% is obtained by this investigated antenna. Travelling wave parameters of the

antenna are also calculated. The antenna is a fast-wave structure and exhibits frequency-scanning behavior with an

average scanning rate of 2.14◦ /GHz. Some of the results of the investigated LSWA are also compared with the results

of the sinusoidal slotted waveguide antenna (SSWA) investigated in a previous study by the author. The directivity and

efficiency of the linear slot is better than that of the sinusoidal slot, while the other characteristics are similar. Thus,

the LSWA exhibits a better performance than the SSWA does if we consider the transversal Eϕ polarization (SSWA has

another polarization as well, which is longitudinal Eθ polarization). It is also concluded that this frequency-scanning

Ka-band LSWA can be used in telecommunications and radar applications.

Key words: Slotted waveguide antennas, linear slot, sinusoidal slot, travelling wave, fast wave radiated structures,

leaky wave, Ka-band, millimeter waves

1. Introduction

Although slotted waveguide antennas are one of the oldest antenna types [1], they are still applied in telecommu-

nication and radar systems due to their superiority. The advantages of this type of antenna are their simple and

cheap structure, and high efficiency [2]. Polarization purity is another property of slotted waveguide antennas

[3]. When a rectangular waveguide is chosen for slotting, both faces (narrow or broad faces) can be preferred.

Because the narrow face of a rectangular waveguide has unidirectional surface electric current densities (Figure

1), a linear long slot in this face will be the correct choice for obtaining strong radiation. A linearly slotted

waveguide antenna is a leaky-wave structure because electromagnetic power continuously leaks from the slot.

At least 90% of input power is required to radiate from the slot [2,3]. The radiation of a slotted waveguide

antenna in any form is analytically formulated by the magnetic current approach [4,5]. When the length of the

slot is longer than several wavelengths, this radiator can be classified as a travelling wave slot antenna [6]. A

travelling wave structure [7] is characterized by its propagation constant.
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There are also some theoretical investigations in the literature involving a narrow slot in a rectangular

waveguide [1,8,9]. In those previous studies, the slotted waveguide antennas were mostly investigated to analyze

circuital properties and travelling wave parameters. However, in our study, a field pattern analysis of a travelling

wave linear slot is done with the application of the magnetic current model for the analytical investigation and

additionally the measured and the calculated patterns are correlated with the numerical ones. Thus, there is a

chance to show the validity of the magnetic current model and the compatibility of the analytical and numerical

patterns with the measured ones.

Another interesting topic that is investigated in this paper is a comparison of the linear slot to another

one: a sinusoidal slot, which was investigated in a previous study by the author [10]. In that paper it was shown

that the sinusoidal slotted waveguide antenna (SSWA) has 2 beams, which are in 2 different polarizations. Some

characteristics of the transversal-polarized beam of the SSWA exhibit similarities with those of the LSWA, which

is investigated in this study. The results obtained from this comparison will be discussed in the next sections of

the paper. Additionally, the radiation properties and travelling wave parameters of the LSWA such as far-field

pattern, directivity, and velocity ratio, will be demonstrated to show the effectiveness of the antenna.

2. The theory

The radiated far-zone fields of a travelling wave linear slot in a narrow face of a rectangular waveguide will be

formulated as given in [10]. Formulation starts with definition of a fictitious magnetic current I⃗m in the slot

[4,5]. This current is assumed to exist because electric surface current density ( J⃗s) lines are cut by the slot [2].

The linear slot is shown in Figure 1. The vector lines of magnetic field H⃗ are perpendicular to the lines of ( J⃗s).

Figure 1. A travelling wave linear slot, where a fictitious magnetic current I⃗m flows along. The solid lines and

the dashed lines on the wall refer to the vector lines of electric surface current density ( J⃗s) and magnetic field (H⃗) ,

respectively.

The analysis is straight forward and similar to that of the electric current complementary thin wire

antennas [11]. The linear slot on the waveguide’s narrow wall (Figure 2) has 2z0 length, which is at least

several wavelengths long ( l > λ) to satisfy the travelling wave condition. It is supposed that the waveguide

is properly matched and only a forward current exists in the linear slot. This magnetic current on the point

z = z′ is given as

I⃗m = âzIm = âzIm0exp?(−γzz
′), (1)

where Im0 and γz refer here to magnitude of magnetic current and propagation constant of the current wave

along the slot, respectively. The propagation constant is represented as γz = αz + jβz [11,12], where αz is the

attenuation constant,1 which is the summation of leakage and conduction losses, in Np/m, and βz is the phase

1When the loss power Ploss due to conductivity of metallic waveguide walls is negligible (see Section 3.3 for calculation), αz

contains only the leakage power due to the radiation from the slot. It is also called the “leakage constant” for a leaky-wave structure
for this case [2] and is closely related to the leaked or radiated power Prad from the structure. The leakage constant is formulated
as αz = − (1/2L) ln (PL/P0) , where L is length of the leaky-wave structure, P0 is the input power, and PL is the remaining
power at the end of the structure.
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constant in rad/m. The exponential term in the equation shows that this current wave is a travelling wave.

x

y

z

R

r

0

d

0
z0-z

mI zâ dz
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Figure 2. A sketch of a properly matched linear slot to illustrate the calculation of radiated fields arising from a

magnetic current I⃗m .

Electric vector potential generated by magnetic current I⃗m given in [10] is

F⃗ (r⃗) = (ε0/4π)
∫ z0
−z0

(
I⃗m exp (−jkR)

/
R
)
.d⃗z′ . k is the phase constant of radiated free space wave here. The

components of electric vector potential in Cartesian coordinates at point P (rθϕ) can be written as

Fx (x, y, z) = Fy (x, y, z) = 0

Fz (x, y, z) =

(
ε0Im0

4π

)∫ z0

−z0

exp (−γzz
′)
exp (−jkR)

R
.dz′

These components above are transformed to spherical components using an appropriate transformation matrix

[11]. Thus, the spherical components of electric vector potential are obtained as

Fr = Fzcosθ

Fθ = −Fzsinθ

Fϕ = 0

Finally, far field electric fields radiated by a linear slot can be written as follows:

E⃗ (r, θ, ϕ) = jωη0âr × F⃗ (r, θ, ϕ) =

 Er
∼= 0

Eθ
∼= −jωη0Fϕ

Eϕ
∼= −jωη0Fθ

= 0, (2)

where âr andη0 refer to unit vector of r component and wave impedance of free space (= 120π), respectively.

3. Measurements

3.1. Antenna pattern measurements of linear slot and correlation with calculated and numerical
ones

For measurements, a linearly slotted waveguide antenna (LSWA) was created using a CNC milling machine. A

rectangular Ka-band (26.5–40 GHz) waveguide was chosen for slotting and a linear slot was milled in a narrow

face of this waveguide (Figure 3). According to IEEE, the Ka-band is the uppermost part of the microwave

region. However, the RF band’s designation informs us that this range also takes part in the EHF band, which

is at the lower edge of the millimeter wave region starting from 30 GHz. The dimensions of the slot are 1 mm

in width and 80 mm in length, which equal λ/10 and 8λ at 30 GHz, respectively. Thus, the slot is thin enough

to obtain a linear magnetic current and long enough to get travelling waves along the slot. It is seen in Figure

3 that the antenna is properly matched with a 50-Ω coaxial-type broad band load.
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Figure 3. Photo of the created linearly slotted waveguide antenna (LSWA).

The far-field pattern measurements were performed in 2 major perpendicular planes: y − z and x − y

planes (see Figure 3). For the y − z plane measurement, ϕ = π/2 and there is no change in the electric vector

potential components given in Eq. (3) because none of the components depend on the coordinate ϕ . However,

for the x− y plane measurement θ = π/2 and these components become Fθ = −Fz and Fr = −Fϕ = 0. After

obtaining electric vector potential components, the radiated far-zone electric fields are calculated for 2 major

planes using Eq. (2).
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Figure 4. The measured (▬▬▬▬), calculated (▬  ▬  ▬), and numerical (by HFSS) (▬▬▬▬) far-field Eϕ patterns of the

LSWA in the y − z plane for 4 different frequencies.

In the measurements, the far-field patterns of the antenna were obtained at the Ka-band (26.5–40 GHz)

using a system including an Agilent N5230A vector network analyzer (VNA). The measured far-field patterns

were in the y − z and x − y planes as formulated above. In Figure 4, measured, calculated, and numerical
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far-field Eϕ patterns of the LSWA in the y− z plane for 4 different frequencies are given. While the simulation

package program HFSS was used for obtaining the numerical patterns, the calculated ones were created by a

MATLAB code using the analytical magnetic current model formulated in Section 2.

An analysis of the patterns in Figure 4 gives us the following results. Although the numerical and

calculated field patterns match with the measured ones perfectly for the main lobe, the calculated patterns

give a better match with the measured ones for the shoulder at the right-hand side of the main lobe, which is

around –10 dB. However, the numerical patterns match the measured ones better than the calculated ones for

the remaining part of the pattern at the side lobes, which is below –10 dB. On the other hand, the calculated

patterns start to diverge from the measured and numerical patterns below –20 dB.

In Figure 5, the measured and calculated x− y plane normalized far-field Eϕ patterns of the LSWA at

27 GHz can be seen and compared with the corresponding y− z plane far-field pattern of the same component

given in Figure 4. According to the figures, the x − y plane pattern is wider than the y − z plane pattern

because the aperture of the antenna is smaller in the x− y plane than in the y − z plane. It can be concluded

that the LSWA has a fan-shaped pattern.

For the full frequency range, the measured y− z plane Eϕ field peak power level varying with frequency

for the LSWA obtained from Figure 4 is shown in Figure 6 (peak power levels of the SSWA are also included

for comparison). It can be observed that the peak power level of the LSWA varies in a 2-dB interval in the

measurement frequency range and the maximum power level is obtained at 31 GHz.
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Figure 5. The measured (▬▬▬▬), calculated (▬  ▬  ▬),

and numerical (by HFSS) (▬▬▬▬) normalized far-field Eϕ

patterns of the LSWA in the x− y plane at 27 GHz.

Figure 6. The measured peak power levels of Eϕ beam

in the y − z plane for the LSWA and SSWA. The result

of SSWA given here is after [10].

3.2. Other radiation and travelling wave parameters of the LSWA and comparison to those of the

SSWA

In this section, the remaining radiation parameters and travelling wave parameters of the LSWA will be

investigated. Some of the results will also be compared to the Eϕ beam results of the SSWA2 [10], which

2The author has also published other kinds of travelling wave sinusoidal-shaped antenna and resonator structures, i.e. sinusoidal
wire antennas [13,14] and resonator [15,16] and sinusoidal strip-microstrip antennas [17]. The radiated fields of these antennas are
calculated by the electric current model [11] as a common property. In addition, 2 studies related to a dielectric leaky-wave antenna
excited by sinusoidal metallic gratings were also published [18,19].
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can be seen in Figure 7. The SSWA has 2 field components, transversal Eϕ and longitudinal Eθ . However, the

LSWA has only one component, Eϕ , due to its one-dimensional geometry. The corresponding field component

of the SSWA is the Eϕ component, which is used for the comparison to the same field component of the LSWA.

The SSWA was created before using a CNC milling machine for a previous study [10] and all results related to

the SSWA, which are used in this paper for comparison purposes, were obtained in that study. A SSWA can be

characterized by its period (Λ), amplitude (L0), and the number of periods (N), and these values were chosen

as Λ = 7 mm, L0 = 1.5 mm, and N = 12, respectively. Therefore, the total length of the sinusoidal slot was

Λ × N = 84 mm, which is approximately the same length as the linear slot (80 mm). One can compare the

far-field patterns of this antenna given in [10], which are not presented here due to the lack of space, to the

patterns of the LSWA given in Figures 4 and 5.

Figure 7. The SSWA, which was investigated in [10]. See the text for the dimensions of the antenna. Some characteristics

of its transversal component (Eϕ) are compared to those of the LSWA, which is investigated in this paper.

The measured peak power levels of the Eϕ component of the SSWA are given in Figure 6 for comparison

with those of the LSWA. It is obvious that the efficiency of the LSWA is on average 4–5 dB better than that of

the SSWA. This efficiency difference increases with frequency.

Figure 8 shows the measured beam pointing angle for the y − z plane measurement and the calculated

velocity ratio υp/c (the ratio of the phase velocity, which propagates along the slot to the light speed) variations

versus frequency for the LSWA and SSWA. The beam pointing angle is the angle where the maximum radiation

locates in θ -coordinate (check field patterns given in Figure 4). The velocity ratio is also related to the phase

constants with the relation υp/c = k/βz . The solid lines in the figure are the best-fitted lines through the

points. A nonlinear decaying behavior with frequency can be seen from the figure for the beam angle and the

calculated velocity ratios. The beam angle (see Figure 8 (a)) varies 30◦ in a 14-GHz frequency range (25–39

GHz), giving an average scanning rate of 2.14◦ /GHz for the LSWA. The average scanning rate of the Eϕ beam

of the SSWA was found in [10] as 1.93◦/GHz, which is slightly lower than the value of the LSWA. The υp/c

values in Figure 8(b) are obtained by matching the calculated patterns with the measured ones. υp/c is higher

than unity; thus the structure is a fast wave structure, which is a natural outcome of the slotted waveguide

structures [8]. It can be seen that the velocity ratio of the sinusoidal slot is less than that of the linear slot.

Thus, the wave propagates slower in the sinusoidal slot than in the linear slot and the difference in the velocity

ratios becomes less at the higher frequency part of the operating frequency band. It is expected because the

electrical length of the sinusoidal slot is greater than the length of the linear slot that the wave propagates

slower along the sinusoidal slot.

The half-power beam widths (HPBWs) in the 2 major measurement planes (y− z and x− y planes) and

the calculated antenna directivity, which is D ∼= 41, 253/(Θ1Θ2), where Θ1 and Θ2 are the HPBWs in the 2

major planes (y− z and x− y planes) in degrees [11], versus frequency for the LSWA and SSWA are shown in

Figure 9. For the LSWA, it is observed from Figure 9(a) that the beam measured in the x − y plane is wider
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than the beam in the y − z plane, which is consistent with the results obtained from the field patterns given

in Figures 4 and 5. The beam in both planes (y − z and x − y planes) becomes narrower with the increasing

frequency (high frequency narrowing). The directivity values (see Figure 9(b)) for the linear slot increases from

15 dBi to 20 dBi in the frequency range 27–33 GHz. The HPBW value of the sinusoidal slot in the y− z plane

is quite similar to that of the linear slot. The y − z plane beam of the linear slot is on average 1.5◦ narrower

than that of the sinusoidal slot. However, for the x − y plane, the HPBWs of the beams are different. The

directivities calculated from the HPBWs of both antennas vary for this reason and the directivity of the linear

slot is approximately 15% larger than that of the sinusoidal slot.
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Figure 8. (a) The measured beam pointing angle of the Eϕ field for the y − z plane measurement and (b) the

calculated velocity ratio υp/c variations versus frequency for the LSWA (–•–) and SSWA (–◦–). The solid lines are the

best-fitted lines through the points. The results of the SSWA are after [10].
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Figure 9. (a) The HPBWs in the 2 major measurement planes and (b) the calculated antenna directivities of the LSWA

(–•–) and SSWA (–◦–). The results of the SSWA are after [10].

3.3. S-parameters measurement and antenna efficiency of the LSWA and comparison to those of

the SSWA

In the experiment, S-parameters (S11 and S21) were additionally measured using an Agilent N5230A VNA. The

calibration steps of the VNA for slotted waveguide antennas are as follows. First, the slotted waveguide part of
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the LSWA was disassembled and the broad-band 50-Ω load was disconnected from the n-type waveguide–coaxial

cable transition on the right connected to the flange of waveguide on the left (see Figure 7 for their positions).

Then the VNA was fully calibrated. Finally, the slotted part of the antenna was reassembled and the VNA

became ready to measure S-parameters. During S11 measurements, the broad-band 50-Ω load was additionally

connected to the antenna. In Figure 10, the measured S-parameters (S11 and S21) of the LSWA are shown.
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Figure 10. Measured S-parameters (S11 and S21) of the LSWA.

Using measured S-parameters, the antenna efficiency e can easily be calculated. The calculation method

is as described in [10]. Briefly, if we assume that the radiating antenna is a 2-port network (see Figure 11), we

may write the power equation of this network as Pin = Pr + Pt + Prad + Ploss . In this power equation, Pin is

the input power supplied to the antenna, Pr is the reflected power from port 1 of the antenna network due to

the mismatch, Pt is the transmitted power from port 1 to port 2, Prad is the radiated power from the antenna,

and Ploss is the lost power due to the finite conductivity of the waveguide walls. According to the definition

of S-parameters, Pr = |S11|2 Pin and Pt = |S21|2 Pin , where S11 and S21 are measured S-parameters. Note

that S-parameters have to be converted from dB to linear scale in equations. The calibration makes Pin unity

(Pin = 1). Because for an 80 mm long standard Ka-band waveguide, the lost power that is dissipated in the

metallic waveguide walls is calculated around 0.05 dB [12], the lost power is negligible for the LSWA (Ploss
∼=).

Thus, we obtain radiated power Prad as

Prad = 1−
{
|S11|2 + |S21|2

}
. (3)

Finally, the antenna efficiency e in percentage is found in terms of the radiated power Prad ,

e =
Prad

Pin
× 100 = 100Prad. (4)

The antenna efficiency of the LSWA and SSWA, which is calculated using (4), is given in Figure 12. For

the linear slot, the maximum efficiency achieved is 95% and the efficiency is over 75% in the frequency range

23–34 GHz, showing that the antenna efficiency is less at the high frequency region of the band. Additionally,

the linear slot has higher efficiency on average and the efficiency of the sinusoidal slot drops fast after 27 GHz.

This result is consistent with the peak power levels observed in Figure 6. One can conclude that the LSWA is

a more efficient and broadband antenna compared to the SSWA.
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Figure 11. Two-port antenna network. Figure 12. Calculated antenna efficiency in percentage

for the LSWA and SSWA. The result of the SSWA is after

[10].

4. Summary and conclusion

The travelling wave LSWA was investigated by this study in the lower edge of the millimeter-wave region at

the Ka-band. Some results were also compared with those of the transversal field component (E∅) of the

SSWA, which was investigated in a previous study [10]. The magnetic current model is used for the analytical

approach. The measured far-field patterns are correlated with the calculated and numerical ones. According

to the calculated velocity ratios (υp/c), the LSWA is a fast wave structure as expected for a slotted waveguide

antenna. The antenna has 20-dBi directivity at maximum and the beam frequency scanning interval is 30◦ in

a 14-GHz frequency range, giving an average scanning rate of 2.14◦ /GHz, which is very close to the rate of the

SSWA (1.93◦/GHz) [10]. It is observed from the measured field patterns that the beam measured in the x− y

plane is wider than the beam measured in the y − z plane beam because the antenna has a smaller antenna

aperture in the x− y plane.

Nonlinear decaying behaviors are observed for the frequency variations of the beam angle and velocity

ratio. We observed that the beam angle and velocity ratio of SSWA are slightly smaller than those of the LSWA

at a fixed frequency. While the HPBW values in the y − z plane of the LSWA and SSWA are quite close, in

the x− y plane they differ. It causes a change in directivity values, where the directivity of the SSWA is 15%

smaller.

The antenna efficiency variation with the frequency was also calculated using S-parameter measurements

and a maximum of 95% efficiency was achieved, while the efficiency was over 75% in the frequency range 23–34

GHz. The SSWA exhibits less antenna efficiency than LSWA. The results show that the linear slot has better

antenna characteristics compared to the SSWA. This situation can be explained in the following manner. The

SSWA has 2 field components, transversal Eϕ and longitudinal Eθ , due to its geometry. However, the LSWA

has a single field component, transversal Eϕ . Thus, the electromagnetic power is shared in 2 field components

for the sinusoidal slot. This can cause a decrease in peak power levels of each field component and in the

efficiency of the sinusoidal slot.

It is concluded that the LSWA investigated in this study can be used in radar or any telecommunication

applications and exhibits better performance than the SSWA if we consider only the transversal polarization

Eϕ .
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