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doi:10.3906/elk-1110-24

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

A learning approach in link adaptation for MIMO-OFDM systems

Halil YİĞİT,1,2,∗ Adnan KAVAK2,3

1Department of Information Systems Engineering, Technology Faculty, Kocaeli University, İzmit, Kocaeli, Turkey
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Abstract: We propose a neural network (NN)-based adaptive modulation and coding (AMC) for link adaptation in

MIMO-OFDM systems. The AMC optimizes the best modulation and coding scheme (MCS) under a packet error rate

(PER) constraint. In our approach, a NN with a multilayer perceptron (MLP) structure is applied for the AMC and its

performance is compared with the k-nearest neighbor (k-NN) algorithm under the frequency-flat (1-tap) and frequency-

selective (4-tap) wireless channel conditions. The simulation results show that the NN classifier outperforms the k-NN

algorithm, especially in terms of the PER, due to the fact that the MLP guarantees a MCS with a lower data rate by

way of the selection of a class label with a lower index number. It has a slightly worse spectral efficiency performance

compared to the k-NN. Thus, the MLP approach provides higher communication robustness over the k-NN. It can be

concluded from the results that the selection of the AMC classifier depends on a trade-off between the PER and the

spectral efficiency, relying on the user’s requirements.
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1. Introduction

The performance of multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM)

can be increased using a link adaptation in the form of adaptive modulation and coding (AMC) [1–3]. The

AMC in MIMO-OFDM selects the best modulation order and coding rate parameters based on a link quality

metric (LQM) obtained from the channel state information (CSI) to reduce the packet error rate (PER) and

maximize the data rate under the PER reliability constraint [4,5].

In MIMO-OFDM systems, there are various difficulties in the implementation of the AMC [6]. The

delayed CSI feedback at the transmitter by reason of the effect of the transmission delays and errors in the

feedback causes a significant decrease in the AMC’s performance [7]. An important factor to consider for the

AMC is the quality of the PER prediction. To predict the PER, a general solution is to generate a look-up

table (LUT) for a LQM, which includes all of the effects in wireless channel H between the transmitter and

the receiver, noise power N0 , transmitted signal energy Es , packet length in bits L , and the modulation and

coding scheme (MCS) selected [8,9]. The most important disadvantage of using LUTs is that the memory

usage is significant in high-dimensional LQMs, and so the LUT is generally restricted to 1- or 2-dimensional

LQMs for simplicity [10]. In addition, LUTs rely seriously on the wireless channel model and the unique traits

of each wireless device. There are a variety of LQMs for the AMC. However, the most commonly used LQM
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is the postprocessing signal-to-noise ratio (SNR) defined for each spatial stream and each subcarrier in the

MIMO-OFDM system [10,11].

In this paper, we propose a neural network (NN) classifier as a machine learning (ML) technique for

the AMC in the MIMO-OFDM system under the frequency-flat channels (FFCs) and the frequency-selective

channels (FSCs). The advantages of NNs include the requirement of less statistical training, the ability to

determine nonlinear statistical relationships between the inputs and outputs, good generalization capability, and

the availability of various learning algorithms. Once a NN is trained with the training data, mapping between

the inputs and outputs occurs very fast in the testing stage. Furthermore, a NN can be used effectively, even

when the dimension of its input and output is high. The main drawback of the NNs is that they include a

computationally intensive training process to minimize overfitting [12]. As the training operation does not need

to be performed frequently, this is not a vital shortcoming.

As a NN classifier, we consider a multilayer perceptron (MLP), which is one of the most popular NN

models, to detect the relationships between the LQM and the MCS index, which includes the modulation order

and coding rate parameter for the AMC in MIMO-OFDM systems. The Levenberg–Marquardt (LM) algorithm

[12,13], which is the fastest backpropagation algorithm in terms of convergence to the optimum point, is used

for training the proposed MLP network.

We compare our proposed NN structure with the k-nearest neighbor (k-NN) algorithm since both use

supervised learning. However, the k-NN algorithm does not require any training process in contrast to the NN.

In the literature, it is known as a lazy classifier due to the fact that models are not built explicitly, unlike the

NN and other classification algorithms. The k-NN algorithm requires the computation of the distance of the

unlabeled object to all of the labeled objects. Furthermore, the selection of the k value significantly affects the

performance of the k-NN algorithm [13,14].

1.1. Related works
The application areas for NNs in wireless communications are still attractive for researchers. The authors of

[15] carried out channel prediction in order to track the mobile station position and to increase the received

signal power in varying wireless channels using linear NNs. In [11,16], the k-NN algorithm was implemented

to provide an accurate MCS using different LQMs. A narrow-scoped study for AMC based on a NN approach

was performed due to the paper’s length limitation in [17], where the FSC is only studied with a lack of

computational complexity. In [18,19], the support vector machine (SVM) algorithm was applied to optimize

the AMC parameters in MIMO-OFDM systems. The authors compared the PER and the average throughput

performance of the SVM and k-NN classifier. Although SVMs have significant advantages over NNs, especially

with regard to finding the global minimum, they are relatively slow in the test stage. SVMs have high algorithmic

complexity and extensive memory requirements both in training and testing. Contrary to the SVM, the input-

output mapping is computationally very light in NNs and, therefore, it is considered as well matched for real-time

systems. An important practical problem that has not been solved yet for SVMs is the selection of the kernel

function parameters [20]. In NNs, it is only necessary to find the layer and neuron number. With the motivation

of the fast input-output mapping capability of NNs compared to k-NN and SVM, our aim in this study is to

demonstrate that the NN approach is applicable for AMC in a MIMO-OFDM system.

The remainder of this paper is organized as follows. Section 2 describes the MIMO-OFDM system model.

In Section 3, an overview of the AMC for link adaptation is given. The classification approaches for the AMC

in MIMO-OFDM are presented in Section 4. The detailed simulation setup and results are given in Section 5.

The concluding remarks are stated in Section 6.
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2. System model

The MIMO-OFDM system model and IEEE 802.11n physical layer specifications [21] are employed for the MCS

selection described in this study. The MIMO-OFDM system is illustrated in Figure 1.
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Figure 1. Block diagram of the MIMO-OFDM wireless communication system.

At the transmitter, the source bits are encoded with the convolutional coding rate C . The coded

and interleaved bits are parsed Ns ∈ min (Nr ,Nt) spatial streams, where Nr and Nt are the number of

receive antenna and transmit antenna, respectively. Each spatial stream is independently mapped into symbols

using the quadrature amplitude modulation (QAM) constellation order M . The spatial mapping converts Ns

dimensions into Nt dimensions. The time-domain signals are transmitted over N subcarriers using the inverse

discrete Fourier transform (IDFT) algorithm and cyclic prefix (CP) adding. At the receiver, the Nr -dimensional

time-domain signals are first received. Spatial equalization is performed to obtain the estimate of the received

signals. The frequency domain OFDM symbols given by Eq. (1) are obtained by implementing the discrete

Fourier transform (DFT) and CP, removing the equalized samples. After that, the QAM symbols are mapped to

the bits per spatial branch. Each branch is coupled together via a deparsing operation. After deinterleaving, the

receiver obtains the final binary sequence using a Viterbi decoder [10]. For an MIMO-OFDM system equipped

with Nt transmit antennas and Nr receive antennas, the received symbol on the nth subcarrier

n ∈ {1,2,... ,N } after DFT is given by:

yn =
√

EsHnxn + vn, (1)

where xn is the transmit symbol vector; vn ∼ CN (0, N0 I) is the additive complex Gaussian noise vector,

where the real and imaginary components are independent and identically distributed (IID) normal random

variables with a zero mean and variance N0 ; and Es is the expected total transmit energy. Hn represents

the channel matrix of the nth subcarrier. The channel coefficients in the frequency domain are obtained as

linear combinations of the dispersive channel taps. It is assumed that the channel impulse response is static

for all of the OFDM symbols. The expected transmit energy Es and noise variance N0 are normalized to 1 to

characterize the input-output relationship of the MIMO-OFDM system.
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3. Link adaptation based on AMC

The basic idea of link adaptation based on AMC is to select the optimal AMC parameters, such as the modulation

order M and convolutional coding rate C , to maximize the throughput R under the PER constraint as given

by:

argmax
i

{Ri : PERi ≤ PERt arg et} , (2)

where the index i corresponds to a MCS defined by the IEEE 802.11n physical layer specifications [21]. In

this study, the index i is the class label of the MCS in terms of the classification. In this case, Eq. (2) states

that a class i is selected if the corresponding PER i is less than or equal to the target PER for a given channel

realization H. The PER is a function given by:

PERi = f {MCSi,H, Es, N0, L} , (3)

where L is the packet length in bits. The spectral efficiency of the MIMO-OFDM system for a given channel

realization is defined as the data rate of the optimum MCS divided by the channel bandwidth B . It is

mathematically given by:

ζi = Ri (1− PERi(γ))/B bps/Hz, (4)

where γ is the postprocessing SNR per spatial stream and per subcarrier, which is defined as a LQM to describe

the performance of the link adaptation. At the receiver side, if the linear zero-forcing (ZF) equalizer is used,

the ZF postprocessing SNR on the each spatial stream a ∈ {1,... ,Ns} and each subcarrier n ∈ {1,... ,N } with

agreeable Gaussian interstream interference plus noise is expressed as:

γ[a, n] =
Es

N0

Ns∑
a′=1

∣∣∣[GZF [n]]a,a′

∣∣∣2 , (5)

where GZF = (Hn)
+

= (HH
n Hn)

−1HH
n .(·)H and (·)−1 denote the Hermitian transpose and inverse matrix,

respectively. GZF is the Moore–Penrose pseudoinverse matrix of H for the nth subcarrier [11].

4. Machine learning approaches

In this section, we apply the k-NN algorithm and the MLP network to the AMC in a MIMO-OFDM system.

Both classifiers exploit the supervised learning algorithm to select the correct class labels based on the training

set. To perform the classification, a training set of feature sets and correct class labels indexed by a nonnegative

integer is created. For our study, each element of the feature set z corresponds to the postprocessing SNR values

of each spatial stream a ∈ {1,... ,Ns} and each subcarrier n ∈ {1,... ,N } calculated according to Eq. (5), and

each class label i corresponds to a MCS. To obtain the training set, each distinct realization of the feature set

is assigned to a class label i according to Eq. (2). Mathematically, it is defined for each channel realization as

follows:

{zw} ⇒ {i(w)} , (6)

zw =
[
{γw[a, n]}Ns,N

a=1,n=1

]
(7)

where w is a realization index for each feature set in the training set.
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4.1. AMC based on the k-NN algorithm

The k-NN algorithm can select the class labels accurately without using functional mapping between the feature

sets z and the class labels i . Since it does not employ a training process, the k-NN algorithm searches the

entire training set using the Euclidean distance metric for a query given from a channel realization. After

searching the operation, an ascending sort is performed over the distances. Once the k-NN list is obtained, the

query is classified based on the majority vote (weighted equally) of its nearest neighbors [14]. Figure 2 shows

the majority vote principle in the k-NN classification. In this instance, the query (black-filled square) has 2

neighborhoods to the MCS9 (i = 9) class, 3 neighborhoods to the MCS10 (i = 10) class, and 1 neighborhood

to the MCS12 (i = 12) class, respectively. Thus, MCS10 is selected considering that the query has a larger

number of neighborhoods to MCS10 than to either MCS9 or MCS12 . On the other hand, if 2 or more classes

result in the same number of neighbors to the query, a class label with a lower index is selected. It is clearly seen

from Figure 3 that the query has 3 neighborhoods to the MCS9 and MCS10 classes, respectively. In this case,

MCS9 is selected for the AMC. The unique difference from [11,18] is that a class label indexed by a nonnegative

integer number is the only feedback to the transmitter. The transmitter sends information bits at the maximum

data rate using modulation order M and coding rate C selected from Table 1.
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Figure 2. MCS class selection based on a majority vote. Figure 3. The presentation of the MCS9 selection in a

6-NN classifier.

Table 1. IEEE 802.11n MCS list for the spatial multiplexing mode.

MCS index value M C Ri

i = 8 2 1/2 13.0 Mbps
i = 9 4 1/2 26.0 Mbps
i = 10 4 3/4 39.0 Mbps
i = 11 16 1/2 52.0 Mbps
i = 12 16 3/4 78.0 Mbps
i = 13 64 2/3 104.0 Mbps
i = 14 64 3/4 117.0 Mbps
i = 15 64 5/6 130.0 Mbps
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YİĞİT and KAVAK/Turk J Elec Eng & Comp Sci

4.2. AMC based on the MLP network

Contrary to the k-NN algorithm, the MLP network performs functional mapping between its inputs and outputs.

Figure 4 illustrates a MLP network model with a single neuron. The input to this neuron, x = (x1 , x2 , ... ,

xp), is a feature vector in a p -dimensional feature space. vj {1 ≤ j ≤ p} are the synaptic weights. The quantity

b is called the bias.

+ 

bl

x1 

x2 

xp 

v1 

v2 

vp 

yl ul

Figure 4. MLP network with a single neuron.

In Figure 4, the network output ul is related to the network input yl via a linear or nonlinear activation

function as given by Eq. (8):

ul = f

 p∑
j=1

vjxj + bl

 = f (yl) , (8)

where l is the neuron index in the case that multiple neurons are used in the MLP. The tangent-sigmoid function

is usually exploited as a nonlinear activation function. It is mathematically given as follows:

f(y) =
2

1 + exp(−2y)
− 1. (9)

In the linear activation function, the network output directly equals the network input y , as given by Eq. (10).

f(y) =

p∑
j=1

vjxj + b (10)

During the training process, the feature vector x is fed to the network. After nonlinear/linear mapping, the

network output u is obtained. The weights in the network are updated according to the chosen learning

algorithm to minimize the error e between every output value u and its target value ud , as shown in Figure 5.

The training is stopped when the weights converge to a particular solution for the training set.

MLP Learning algorithm 

ud 

u e 

x 

Updated weights 

Figure 5. The training process in the MLP network.
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The input-output relationship for the MLP AMC can be expressed as follows:

i(w) = Θ (zw) , (11)

where z is the feature set and each column has a p-dimensional feature vector x, and i is the network output

that corresponds to the class label. Θ(·) is the total function that represents the NN model.

We have chosen a MLP structure, as depicted in Figure 6. Before feeding the training data, which contain

the feature set and class labels, to the network, we normalize to the range of –1 and +1 in stage 1. In stage

2, an overall function of the MLP network is obtained to perform a mapping between its input and output

according to the predefined network parameters. Stage 3 performs an inverse normalization operation to obtain

a NN output before normalization. The network output might be noninteger after the reverse normalization.

At this point, the crucial property of the MLP-based model is a rounding operation. Stage 4 rounds this value

to 2 integers. The first value corresponds to the nearest integer towards the infinity of the network output (i.e.

7.2 → 8). The other is the nearest integer towards zero (i.e. 7.2 → 7). After that, we choose the class label i ,

which both stays within the MCS set illustrated in Table 1 and has a lower class label number. For example, if

the network output rounds to 7 and 8 after the rounding operations, the class label i is selected as 8. Because

the MCS set does not allow us to use MCS7 in the case of 2 spatial streams, Ns = 2 in the IEEE 802.11n

MIMO-OFDM system. Thus, we ensure the selection of the MCS with a low class label number, which provides

higher communication robustness. The reason for choosing only 2 spatial streams is that most of the errors

occur in the Ns = 2 condition.
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Figure 6. MLP network structure for the AMC classification.

5. Simulation setup and results

5.1. Simulation setup

The IEEE 802.11n MIMO-OFDM system with 2 receive antennas and 2 transmit antennas is considered to

evaluate the performance of the proposed AMC classification. We assume a MCS set for the spatial multiplexing

mode (Ns = 2) depicted in Table 1.

The MIMO-OFDM system is simulated for each modulation order M , coding rate C , and the 2 spatial

streams to determine the PER in the FFCs (1-tap) and in the FSCs with 4 taps, respectively. For the simulations,

the system assumes that the data length is 128 bytes per packet. The number of data subcarriersN is 52. The

FFT size in the IEEE 802.11n is selected as 64 for 20 MHz channels. Perfect frequency synchronization and

symbol timing is assumed. The receiver has perfect channel state information. The soft-output ZF spatial

equalization is exploited at the receiver. Neither space-time block coding nor precoding occurs during the

simulations.
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In the simulations, we use the previously generated channel data set #1 for the training phase and channel

data set #2 for the testing phase. In both channel data sets, each entry of the data set has a Nr× Ntaps ×Nt

channel matrix, where Ntaps is the number of channel taps. Each element of the channel matrix is an IID

complex-Gaussian random variable with a zero mean and variance N0 . The number of channel realizations is

3.2 × 104 . The system is run for each MCS in one channel realization. Hence, the PER vectors are also 3.2

× 104 -dimensional for each MCS. We have 8 PER values, each corresponding to a distinct MCS for a given

channel realization.

To create the training set, we use 3.2 × 104 channel realizations of channel data set #1. For each

channel realization w , the postprocessing SNR values γ are computed according to Eq. (5) and sorted in

ascending order. The NsN -dimensional ordered postprocessing SNR set is obtained. We then select the best

indices p of these sorted SNR values, which gives an accurate approximation of the NsN -dimensional set,

to reduce the feature set dimension. Although the NN and the k-NN classifier do not require the reduction

of the feature set dimension, it might be beneficial to reduce the computational complexity, severe memory

usage, and classification time. The best indices for the ordered postprocessing SNR sets are determined via

a brute force search (BFS) over all of the feature sets [10]. Table 2 shows the best subcarrier indices up to 4

dimensions, defined by the BFS for the IEEE 802.11n MIMO-OFDM system in the FSCs (4-tap). In the FFC,

the postprocessing SNR values for each spatial stream and subcarrier remain the same. Consequently, there is

no need to determine the indices for the 1-tap channel.

Table 2. The best subcarrier indices.

Ns p 4 taps
2 1 {25}
2 2 {11, 52}
2 3 {7, 24, 61}
2 4 {6, 13, 24, 56}

In Table 2, the index numbers of more than 4 are not included. This is because p > 4 does not have a

significant performance improvement over p = 4 [11]. As a consequence, to construct the 4-dimensional feature

vector z, we choose the indices as

z =


x1

x2

x3

x4

 =


γ6
γ13
γ24
γ56

 (12)

for each channel realization.

After the dimension reduction, we construct the training set in the NN-based AMC. For this purpose, a

new feature set is assigned to the correct class label in the training set according to Eq. (2). The target PER is

chosen as 0.1 (10% PER). After determining the MCS i set that meets the PER constraint for a given channel,

the class label i with the highest rate R is chosen. If the PER constraint cannot be met by any class, the MCS i

with the lowest rate R is selected. Table 3 shows the training data set example for the AMC where K is the

total number of entries in the training set. Each row in Table 3 consists of the p -dimensional feature vector,

where each element represents the postprocessing SNR value as the network input and class label i ranging

from {8–15} as the network output.

After the training process, the network is then verified on 3.2 × 104 channel realizations within channel

data set #2. As mentioned in Section 4.2, the selection of the class label with a lower rate is ensured from stage
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3 in Figure 6. The PER values and spectral efficiencies obtained for all of the channel realizations are plotted.

The postprocessing SNR values used as the LQM are averaged over all of the subcarriers and spatial streams.

Next, a number of average LQM bins are created and the PERs and the spectral efficiencies in each bin are

averaged, as depicted in Figure 7.

Table 3. The training set example for the AMC.

Feature sets z Class labels i
γ11 γ12 ... γ1p 8
γ21 γ22 ... γ2p 15
... ... ... ... ...
γK1 γK2 ... γKp 12
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bin

creation
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Figure 7. The principle of defining bins.

5.2. Complexity analysis

In this section, we focus on the computational complexity of selecting the optimum MCS index for the k-NN

and MLP classifiers. The k-NN algorithm basically involves Euclidean distance, which is the d computation

between 2 p -dimensional vectors, as follows:

d2(a,b) =

p∑
j=1

(aj − bj)
2
. (13)

This results in pK multiplies and 2pK additions, where K is the distance computation number, or, in other

words, the number of feature sets in the training set. In practical implementations, the square of the distance

is used instead of the distance to get rid of the square root operation. It does not affect the performance of

the k-NN algorithm. After calculating the square of the distances, a K -length sorting operation is required.

To determine the nearest neighbors with a majority vote, the class labels are assigned to K sorted distances

via a comparing operation that requires log2(K) computations and k + 1 additions. The test set contains K

feature sets. Finally, the total computational complexity of the k-NN algorithm is found by multiplying all of

the computation numbers with K .
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In the MLP approach, we consider a network with 2 hidden layers that contain 5 neurons each. As

mentioned above, to train the MLP network, LM optimization is used. The weight update expression of the

LM algorithm can be given as follows:

W = W −
[
JTJ+ µI

]−1
JTe, (14)

where J is the Jacobian matrix and e is the error vector for all of the inputs. LM requires the computation of the

J matrix, as seen from Eq. (14). We suppose that J is known. In our case of K patterns, and the MLP network

with a total of 61 weights and 1 output, the Jacobian matrix has K rows and W = 61 columns. The J matrix

becomes K×W -dimensional. The computation of JT J requires KW 2 multiplications and KW 2 additions. To

calculate the µI production, W 2 multiplications is needed, where I is the W ×W -dimensional identity matrix.

The sum of 2 matrices of W ×W size requires 2W 2 additions. After the sum operation, the matrix inversion is

performed for the W ×W matrix. Here, the singular value decomposition (SVD) algorithm is implemented to

achieve an inverse operation. In [15], the authors performed a computational complexity analysis of the SVD

algorithm. This paper does not supply the derivation of the SVD-based inverse operation. It can be shown

that it contains 29W 3+ 17W 2+ 4W− 42 additions, 29W 3+ 17W 2+ 2W− 42 multiplications, and log2(W )

comparison. To calculate the e vector for all of the K patterns, 2K additions are performed. JT e requires

KW additions and multiplications. The product of 2 matrices of size W × W and W× 1 has W 2 additions

and W 2 multiplications. Two W× 1-dimensional vectors are finally subtracted to determine all of the weights.

This operation requires only 2W additions. After determining all of the weights, to obtain i , the MLP network

performs f (WT X + b) mapping over all of the layers and neurons, where f is the activation function given

by Eq. (9), X is the inputs to the neurons, and b is the bias vector. The mapping between all of the inputs

and outputs requires (5p+ 61) K multiplications, (5p+ 61) K additions, and 10 exponential operations per

epoch. Table 4 gives a summary of the computational complexity analysis of the k-NN algorithm and the MLP

network to predict the best MCS class index for all of the K test patterns.

Table 4. A summary of the computational complexity analysis of the k-NN and MLP classifiers.

k-NN Addition Multiplication Sort Comp. Exp.

Train ... ... ... ... ...

Test 2pK 2+ (k + 1) K pK 2 K2 Klog2K ...

MLP

Train
29W 3+ (20 +K)W 2+ (6 + K) 29W 3+ (19 +K)W 2+ (2 + K)

... Klog2W 10K
W+ (63 + 5m)K– 42 W+ (61 + 5m)K– 42

Test (5p+61)K (5p+61)K ... ... 10K

5.3. Results

The performance of the k-NN algorithm for AMC is investigated for different k values, which vary from 1 to 50

in 1-tap FFCs and 4-tap FSCs, respectively. Figures 8 and 9 show the performance of the correct classification

percentage for the k-NN–based AMC in these 2 channel distributions. It is clearly seen that 66.43% of the

classification performance in the FFC with 1-tap and 57.88% of the classification performance in the FSC with

4 taps to assign a correct MCS class label is obtained when k = 2. The major advantage of the small k value

is the minimization in the processing time.
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Figure 8. The correct classification percentages of the k-NN-based AMC for the different values of k in the FFCs with

1 tap.
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Figure 9. The correct classification percentages of the k-NN-based AMC for the different values of k in the FSCs with

4 taps.

Table 5 demonstrates the correct classification percentages of the MLP-based AMC for the different

network configurations in the FFC with 1 tap and the FSC with 4 taps. To find the optimum network structure,

the MLP networks each have the different hidden layers and neuron numbers depicted in Figure 6, run 500 times.

The transfer function of the hidden layers is a tangent-sigmoid function, as given by Eq. (9). The output layer

has a linear transfer function, as given by Eq. (10). The performance function of the network is chosen as

the mean squared error. The maximum epoch number is set to 10,000. The learning rule selected is the LM

backpropagation algorithm because of its convergence speed.

Table 5. The correct classification percentages of the MLP AMC for the different MLP models in the FFC and the

FSC.

MLP model
FFC (1-tap) FSC (4-tap)

Mean deviation
Min Max Mean Min Max Mean

S1 = 2 61.40% 64.33% 63.31% 60.92% 61.69% 61.44% 1.23%
S1 = 5 61.38% 66.08% 64.01% 61.35% 61.72% 61.53% 1.69%
S1 = 10 61.56% 66.79% 65.46% 61.36% 61.75% 61.56% 1.87%

S1 = 5, S2 = 2 63.67% 66.84% 65.61% 61.42% 61.78% 61.61% 1.18%
S1 = 5, S2 = 5 64.02% 66.89% 66.52% 61.39% 61.78% 61.61% 1.09%

S1 = 5, S2 = 2, S3 = 5 63.93% 66.87% 66.07% 61.13% 61.81% 61.62% 1.21%

In each run, networks are trained, and following that, they are tested. It is clearly seen that the best

classification performance and the least deviation among the min, max, and mean of the 500 classification

percentage values is achieved in the MLP network with 2 hidden layers, where each has S1 = 5 and S2 = 5
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neurons. Consequently, we consider this MLP structure as an optimal network for the considered application

and compare it with the k-NN (k = 2) algorithm in this paper.

Figure 10 shows the average PERs and spectral efficiencies as a function of the average SNR over all

of the subcarriers and spatial streams from Eq. (5) in the FFCs with a single tap. The spectral efficiencies

are obtained from Eq. (4). In Figure 10, the targeted AMC presents the case formulated by Eq. (2), not

including the selection of the lower-class label indexed by a positive number. It is clearly seen that the k-NN

AMC provides almost the same PER and spectral efficiency performance compared to the targeted AMC. The

proposed MLP AMC performs with a better PER but slightly worse spectral efficiency performance (plots of

the targeted AMC and k-NN AMC are overlapping). This is because the MLP guarantees a MCS with a lower

data rate by way of the selection of the class label with a lower index number. Thus, the MLP approach

provides higher communication robustness over the k-NN. In addition, our PER constraint (0.1% PER) is met

after approximately a 2 dB average SNR.
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Figure 10. The PER and spectral efficiency for the MLP and k-NN AMC in the 1-tap FFC.

Figure 11 shows the PER results as a function of the average SNR when the k-NN AMC and MLP AMC

are applied in the FSC with 4 taps. It is clearly seen that both classifiers meet the PER constraint when the

average SNR is approximately more than 8.6 dB, and the MLP AMC outperforms the k-NN AMC. This is

because the MLP ensures a MCS with a lower data rate through the selection of the lower index number, as

mentioned before.

In Figure 12, the spectral efficiencies of both classifiers are plotted against the average SNR. As is clearly

seen, the MLP AMC causes a barely decreasing spectral efficiency performance compared with the k-NN AMC.

Finally, we compare the percentages of the MCSs correctly adapted to the FFC with 1 tap and the FSC

with 4 taps in the case of the MLP and the k-NN AMC in Figure 13. Obviously, the classification performance

of the MLP-based AMC is better than that of the k-NN–based AMC in the FSC condition and nearly the

same as the k-NN in the FFC. For our AMC application, we conclude that the selection of the MLP or k-NN

classifier depends on the trade-off between the PER and the spectral efficiency, which depends on the end user

requirements in both of the frequency channels.
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Figure 11. The PER as a function of the average SNR

when the MLP AMC and k-NN AMC are applied in the

4-tap FSC.

Figure 12. The spectral efficiency as a function of the

average SNR when the k-NN AMC and MLP AMC are

applied in the 4-tap FSC.
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Figure 13. Correct classification percentages of the MLP AMC and k-NN AMC in the FFCs and the FSCs.

6. Conclusion

In this paper, we have proposed the MLP network for link adaptation based on AMC for the FFCs and the

FSCs in a MIMO-OFDM system. We analyzed the performance of the PER and spectral efficiency of the MLP

network, comparing it with the k-NN classifier. We also compared the percentages of the MCSs correctly adapted

to the frequency channels in the case of the MLP and k-NN AMC. The simulation results demonstrated that the

classification performance of the MLP-based AMC was better than that of the k-NN–based AMC in the FSC

condition and was nearly the same as the k-NN in the FFC. The MLP AMC exhibited better PER performance

compared to that of the k-NN AMC. The proposed MLP model selects a MCS with a lower data rate through

the selection of the lower index number, and so it offers higher communication robustness. Consequently, the

NN approach is applicable for the MCS selection in the MIMO-OFDM system for the frequency channels due

to the fast mapping between the postprocessing SNR and the MCS index. Finally, we can finally conclude that

the selection of the AMC classifiers depends on the trade-off between the PER and the spectral efficiency (data

rate), depending on the user’s requirements.
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YİĞİT and KAVAK/Turk J Elec Eng & Comp Sci

C Daniels at the Department of Electrical and Computer Engineering at The University of Texas, Austin, for

providing support.

References

[1] H. Yigit, A. Kavak, K. Kucuk, “Capacity improvement for TDD-MIMO systems via AR modeling based linear

prediction”, Wireless Personal Communications, Vol. 52, pp. 411–418, 2010.

[2] E. Telatar, “Capacity of multi-antenna Gaussian channels”, European Transactions on Telecommunications, Vol.

10, pp. 585–595, 1999.

[3] S. Catreux, V. Erceg, D. Gesbert, R.W. Heath Jr, “Adaptive modulation and MIMO coding for broadband wireless

data networks”, IEEE Communications Magazine, Vol. 40, pp. 108–115, 2002.

[4] P.H. Tan, Y. Wu, S. Sun, “Link adaptation based on adaptive modulation and coding for multiple-antenna OFDM

system”, IEEE Journal on Selected Areas in Communications, Vol. 26, pp. 1599–1606, 2008.

[5] Y.S. Choi, S.A. Alamouti, “Pragmatic PHY abstraction technique for link adaptation and MIMO switching”, IEEE

Journal on Selected Areas in Communications, Vol. 26, pp. 960–971, 2008.

[6] H.T. Nguyen, J.B. Andersen, G.F. Pedersen, “On the performance of link adaptation techniques in MIMO systems”,

Wireless Personal Communications, Vol. 42, pp. 543–561, 2007.

[7] T. Javornik, S. Plevel, G. Kandus, “A recursive link adaptation algorithm for MIMO systems”, Proceedings of the

12th IEEE Mediterranean Electrotechnical Conference, pp. 429–432, 2004.
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