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Abstract: Gas turbine (GT) fault detection plays a vital role in the minimization of power plant operation costs

associated with power plant overhaul time intervals. In other words, it is helpful in generating pre-alarms and paves

the way for corrective actions in due time before incurring major equipment failures. Hence, finding an efficient fault

detection technique that is applicable in the online operation of power plants involved with minor computations is an

urgent need in the power generation industry. Such a method is studied in this paper for the V94.2 class of GTs. As

the most leading stage for developing a feature-based fault detection system and moving from a fixed time-scheduled

maintenance to a condition-based one, principal component analysis is used for dimension reduction in the sensor data

space and dimensionless key features are employed instead. One healthy condition and 6 faulty conditions are used to

provide a realistic data set that is used for feature extraction, training, and testing artificial neural networks. In the

proposed method, multilayer perceptron (MLP) and learning vector quantization (LVQ) networks are used for the fault

classification. The good performance of the LVQ networks is presented by properly selecting the network architecture and

respective initial weight vectors. When comparing the results of the MLP and LVQ networks for the fault classification,

the LVQ network shows better classification results.
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1. Introduction

Artificial intelligent solutions have been widely adopted for fault detection problems in dynamic systems. The

main idea of these approaches is to convert the fault detection problem into an associated optimization problem

by introducing a performance index. Intelligent methods such as fuzzy systems and neural networks can learn

the plant model from the input-output data or learn from experience instead of being programmed. They

can approximate the nonlinear functions in order to construct the analytical model for generating residuals.

Moreover, they can be used as classifiers to perform fault detection and analysis [1]. Neural networks are known

to approximate any nonlinear function and they are widely used in nonlinear (and robust) fault diagnosis

problems [2–7]. They are also able to find the patterns that rule the relationships between the inputs and

outputs. Meanwhile, fuzzy logic systems also have the ability to model a nonlinear system and to express it

in the form of linguistic rules, making it more transparent, i.e. easier to interpret. They also have inherent

abilities to deal with imprecise or noisy data, therefore making them suitable for model-based fault diagnosis

[8–13].

∗Correspondence: rasaienia.abbas@monenco.com

1340



RASAIENIA et al./Turk J Elec Eng & Comp Sci

The development of industrial gas turbine (GT) fault detection configuration has been the aim of many

researches in the past years. The most important reasons for employing fault detection in GT engines can be

categorized within the following 3 topics:

1. Passage of time and aging reduces the efficiency in the GT package and results in performance reduction.

2. Generally, any undesired change in the performance and efficiency of one subsystem in a GT package will

make the other parts operate out of their normal conditions.

3. Because of the large amount of registered alarms and the status in the control system of a power plant,

predicting and analyzing the failures that will occur in the future is complicated.

With due consideration of the above mentioned reasons, the predicting and preventing of major failures

by analyzing the symptoms of minor faults and the provision of condition-based maintenance schedules is the

principal challenge in various maintenance strategies. The literature indicates the level of research carried out

in the field of industrial GT fault detection (and feature extraction) as follows:

• Fault detection methods (model-based and data-based methods) and fault-tolerant control systems [14,15];

• Neural networks, soft computing, and principal component analysis (PCA) [16–23];

• Fault detection of GTs [24–32];

• V94.2 GT piping and instrumentation diagram, instrument list, input/output list, and alarm list [33].

In this paper, a feature extraction technique is employed in order to identify the most important symptoms

of the V94.2 class of industrial GT engines instead of using all of the sensor data. Since the measuring points

in the V94.2 package are known, using static techniques seems to be an appropriate approach for solving this

problem. Considering a reasonable amount of instruments installed in the GT engine, the method proposed in

this paper attempts to make it possible to generate a limited number of features from the main data set (related

to the existing instruments) to use them for classification and detection purposes.

In the schematic structure indicated in Figure 1, the information received from a group of sensors installed

in the GT package is collected. Next, by extracting a number of features from the collected data (in healthy

and in faulty conditions), it will be possible to implement the fault detection procedure using artificial neural

networks [multilayer perceptron (MLP) and learning vector quantization (LVQ) classifiers]. The purpose of this

paper is to evaluate and compare the abilities of the MLP and LVQ networks for industrial GT fault detection

based on the extracted features.

2. V94.2 GT (case study)

V94.2 is a class of heavy-duty GTs designed for reliable, efficient, and flexible operation. As of March 2011,

more than 68 turbines of this type were in operation in the Middle East in order to generate more than 10,000

MW of electrical power. The main technical specifications of this class of GTs are as follows [33]:

• 16 stages-adjustable first stator row;

• 4 stage design, optimum as far as aerodynamic efficiency and losses due to cooling air consumption;
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• 2 vertical silo-type large-volume combustors;

• Double-walled flame tube with ceramic tiles;

• 2 × 8 burners (same size-different number for different GT sizes).

Furthermore, the main operational data of the V94.2 GT are mentioned in Table 1.

Feature
Extraction

Sensor 1

Sensor N

Sensor 2

MLP
Classification

LVQ
Classification

Figure 1. Concept of the feature-based fault detection by neural networks.

Table 1. V94.2 GT general technical data sheet.

GT model V94.2
Normal output (MW) 159

Frequency (Hz) 50
Efficiency (%) 34.5

Heat rate (BTU/KWh) 9890
Compression ratio 11.1

Exhaust-gas flow (kg/s) 519
Exhaust-gas temperature (◦C) 540

NOx emissions at full load (ppm)
with natural gas 25

with distillate (as defined by US EPA) 42

The data space used for the feature extraction (indicated in Table 2) is obtained by reviewing the list

of installed instruments in this class of GT engine in order to remove the redundant data and highlight the

independent measurements.

3. Feature extraction by principal component analysis

The goal of PCA is to reduce the dimensionality of the data, while retaining as much of the variation present in

the original data set as possible. This method projects the original data onto the orthogonal unit vectors along

which the data varies the most.

To illustrate the matter, consider an n-dimensional data space in which the data set consists of n× 1

(x i,i=1,2,...,k) random vectors, where k represents the number of provided samples of x i . For each x i , consider

E (x i) = 0 and E (x i·xT
i ) =Rxi , where E (.) denotes the expectation operator and Rxi is the covariance

matrix of x i .
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Table 2. Input of the main data set for the feature extraction of V94.2 GT.

Input data of the
Description Note Measuring range

main data set
a1 Ambient temperature 1 transmitter –30 to 70 ◦C
a2 Ambient humidity 1 transmitter 0%–100%
a3 Ambient pressure 1 transmitter

a4
Turbine speed (different 6 magnetic field sensors- 2 0.5–25,000 HZ

location-redundant sensors) redundant sets
a5 Output power 2 measurement 0–160 MW
a6 Inlet guide vane position 1 measurement 0–90◦

a7 Compressor inlet pressure 1 measurement 0–1300 mbar abs
a8 Compressor outlet pressure 2 measurement-redundant 0–30 bar
a9 Compressor inlet temperature 3 RTD 0–400 ◦C
a10 Compressor outlet temperature 2 RTD 0–350 ◦C

a11
Turbine outlet temperature Calculated in control system

(calculation)
a12 Fuel gas volumetric flow 2 measurement 200 – 4000 m3/h

a13, ..., a20 Bearing temperature

8 triplex thermocouples for

0–200 ◦Cturbine/generator and
compressors

Let u j,(j=1,2,...,n) be n× 1 orthonormal vectors, which are the unit vectors of the data space while

representing the direction of the maximum data variation. The projection of x i onto u j is defined by their

inner product as Eq. (1):

yj = xT
i · uj = uj · xT

i . (1)

The variance of the projected data along each u j is represented as Eq. (2):

δ2yj = uT
j · E(x · xT ) · uj = uT

j ·Rx · uj , (2)

where xn × k = [ x1x2 . . .xk ].

Considering that PCA is seeking the direction along which the variance of the original data is maximized,

an optimization problem should be solved in order to find the desired direction of the maximum variance (u).

If the Lagrange multiplier optimization method is used, the related cost function J will be defined as Eq. (3):

J = uT ·Rx · u+ α(1−uT · u), (3)

where α is named as a Lagrange multiplier.

By solving the above problem, Eq. (4) will be obtained.

Rxu = αu. (4)

From Eq. (4), it is realized that α is an eigenvalue of the covariance matrix and u is the corresponding

eigenvector. From Eqs. (2) and (4), the optimum α will be calculated as in Eq. (5):

δ2yj = α. (5)
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From Eq. (5), it is inferred that the variances of the projected data are equal to the eigenvalues of the

covariance matrix of the main data set. Hence, the m greatest variances will lie along the direction of the m

related eigenvectors, which are considered as features.

4. MLP and LVQ neural networks

The MLP and LVQ networks belong to the family of feedforward neural networks, which have different structures

and different training algorithms.

MLP is formed by 1 input layer, 1 or more hidden layers, and 1 output layer. The most commonly used

method of MLP training is the backpropagation algorithm. The simplest implementation of backpropagation

learning updates the network weights and biases in the direction in which the performance function decreases

most rapidly, i.e. the negative of the gradient. MLP weights and biases are reinforced as in Eq. (6):

V k + 1 = V k − η · gk, (6)

where V = [w b] is a vector of weights (w) and biases (b), g k is the current gradient, and η is the learning

rate. There are 2 different ways in which a gradient descent algorithm can be implemented: incremental mode

and batch mode. In the incremental mode, the gradient is computed and the weights are updated after each

input is applied to the network. In the batch mode, all of the inputs are applied to the network before the

weights are updated [16,18].

LVQ is a competitive learning network that utilizes an unsupervised learning method to solve supervised

learning tasks. LVQ includes 2 layers: the competitive layer and the linear layer. The competitive layer is

learned to classify the input patterns and the linear layer transforms the output of the competitive layer into

the target class [16–18].

In the vector quantization technique, the input space is divided into distinct regions. A reconstruction

vector is considered for each region. When an input is fed into the network, a vector quantizer determines the

region where the vector lies. Next, a reconstruction vector is provided by the quantizer.

Let Xn be the data set in an n -dimensional space and k the number of principal components that

represent the most data set variation. When the training pattern uk from class Fj is loaded to the network,

the reconstruction vector (wP ) of the P nodes of the competitive layer is reinforced according to the following

supervised rule (Eq. (7)) if the class of winner node P equals the desired class Fj :

wP, New = wP + η(uk −wP ). (7)

Otherwise,

wP, New = wP − η(uk −wP ), (8)

where η is the learning rate monotonically decreasing with time. The decreasing learning rate allows the network

to converge to a point at which the weight vectors are stable. One of the good effects of the LVQ network is to

minimize the misclassified points.

5. V94.2 GT feature extraction by PCA and fault detection by neural networks

According to Table 2, the input data space contains 20 measurement variables, including sensor-measured

variables and a variable computed in the control system. While these variables are measured and computed
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under GT healthy performance conditions, they are called healthy data. Thus, each healthy condition (x i) is

defined as Eq. (9), where each aij,(j = 1, 2, ..., n) is a healthy datum:

xi = [ai1ai2 ... ai20]
T ,i = 1, 2, ..., k . (9)

The main healthy data set is generated using the V94.2 engine simulator. The variable parameters are the

ambient temperature, humidity, and pressure for the different load operations of the GTs (using gas as fuel).

In this case, a matrix containing 20 × 15,000 samples (k = 15,000) is generated for the healthy conditions.

After the healthy data are generated, all of them are normalized between –1 and +1. Since in the PCA

method it is important to centralize the data, a correction is made to the data sets by subtracting their mean

value from each data value before applying the algorithm. In order to simulate the realistic data, white Gaussian

noise with 5% variance is considered to represent the expected sensor noise for all of the parameters (including

the calculated or measured parameters).

By performing PCA, the lower dimensional representation of the healthy data will be as in Eq. (10):

xi = c1 · u1 + c2 · u2 + . . . + cm · um, (10)

wherem is the number of features that are obtained after extracting the m greater eigenvalues from the

covariance matrix computed for the healthy data set. and u j s are their corresponding eigenvectors.

According to the diagram depicted in Figure 2, the data variation around the eigenvectors is computed

for m = 1, . . . , 4. This value is 43.54% for the single feature extraction, 82.11% in the case of the 2-feature

extraction, and 99.14% while extracting 4 features. In fact, this diagram confirms the sufficiency of selecting 4

principal components as the 4 features instead of employing the collected sensor data.
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Figure 2. Percentage of variance captured as a number of principal components.

It is possible to express any of the 4 (m = 4) eigenvectors corresponding to the 4 greatest eigenvalues of

the computed matrix (i.e. u j, j = 1, 2, 3, 4) as a linear combination of the sensor data. This is indicated in Table

3, where each column contains the calculated constant coefficients (weight factors) by which the effect of each

sensor datum (ai) on the given feature (u j) can be represented. It can be observed that extracted features are

severely influenced by ambient temperature, turbine speed, compressor inlet and outlet temperature/pressure,

inlet guide vane angle, and fuel gas volumetric flow, while they weakly depend on the bearing temperatures.
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Table 3. Relation of each feature with the sensor data of V94.2 GT.

Feature no

u1 u2 u3 u4

a1 0.3057 –0.1215 0.8256 –0.0348

a2 0.2101 –0.0605 –0.0976 –0.1096

a3 0.1660 –0.0567 –0.0709 –0.0983

a4 0.3969 –0.1212 –0.1434 –0.2621

a5 0.3298 –0.0425 –0.0312 –0.0382

a6 0.3776 –0.1089 –0.1353 –0.2574

a7 0.2750 0.4601 0.0048 0.3443

a8 0.2081 0.3381 0.0758 0.5091

a9 0.2694 –0.5939 –0.1007 0.5901

a10 0.1877 0.2888 –0.4245 0.0197

a11 0.2161 0.1445 –0.0594 0.0893

a12 0.1912 0.3951 0.2220 –0.2486

a13 –0.0434 0.0154 0.0149 0.0411

a14 –0.0018 0.0015 –0.0023 –0.0030

a15 0.0454 –0.0201 –0.0229 –0.0161

a16 –0.0022 0.0035 0.0002 0.0062

a17 –0.0100 0.0038 0.0004 –0.0122

a18 0.2995 –0.0936 –0.1096 –0.1846

a19 0.1250 –0.0319 –0.0407 –0.0764

a20 0.0811 –0.0215 –0.0250 –0.0496

Sensor data

Although the data required for the feature extraction are obtained under healthy operating conditions,

in order to investigate the possibility of fault detection by the MLP and LVQ neural networks, it is necessary

to determine a group of frequent faults for which timely fault detection is valuable. In the V94.2 industrial GT,

this group of faults is considered based on the recommendation of the engine manufacturer (TUGA, under the

license of Siemens and Ansaldo), as in Table 4.

Table 4. Fault selection of the V94.2 GT.

Notation Class Description
F1 Fault 1 Air filtering in the compressor section
F2 Fault 2 Compressor fouling
F3 Fault 3 Turbine blade aging
F4 Fault 4 Turbine fouling
F5 Fault 5 Combustor fouling
F6 Fault 6 Combustor cracked liner
H Healthy Healthy condition (no fault)

According to the diagram depicted in Figure 1, the extracted features (u j, j = 1, 2, 3, 4) related to each

class of faults (Fj) are used to train the MLP and LVQ networks.

In order to perform the fault detection, a matrix containing 20 × 15,000 samples (which are recorded

in the selected power plant’s data logger) is collected for all 6 classes of the above-mentioned faults and a new

feature-based matrix containing 4 × 15,000 samples is calculated from the first matrix. Next, 4 × 11,900

samples (including 4 × 10,200 faulty data and 4 × 1700 healthy data) are used for the training of the MLP
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and LVQ classifiers and 4 × 5600 samples (including 4 × 4800 faulty data and 4 × 800 healthy data) are also

used for testing the classifiers and validating the whole configuration.

The u j, j = 1, 2, 3, 4 features are the input nodes of the MLP and LVQ networks. The output layer

consists of neurons that represent the faulty and healthy classes for both classifiers. The MLP network structure

contains 2 hidden layers with 16 and 20 neurons that correspond to the satisfactory results of the training. The

LVQ network includes 21 subclasses (the effect of the changes on the number of subclasses is checked and the

best training/testing errors are found to be related to 21 subclasses). The training algorithm for the MLP

network is backpropagation implemented in the MATLAB toolbox (the error goal value is set to 0.01, which

was experimentally found to be satisfactory).

The initial vectors of the LVQ network are selected based on the extracted features’ probability distri-

bution. The initial learning rate of the LVQ network is set to 0.15. Figure 3 shows the training error of the

MLP network (with the backpropagation algorithm) as a function of the epochs number. It is obvious that the

training error reaches the error goal after 600 epochs.

In Figure 4, the training error of the LVQ is demonstrated as a function of the epochs number. It is seen

that after 57 epochs, the training error reaches 0.
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Figure 3. Training error of the MLP network as a func-

tion of the Epochs number.

Figure 4. Training error of the LVQ network as a function

of the Epochs number.

It is concluded that the MLP algorithm is a slower and less accurate method for reaching the specified

error goal in comparison with the LVQ network. The fault classification results of both neural networks are

indicated in Tables 5 and 6 using the matrix of the test data.

From Tables 5 and 6, it is clear that the performance of the LVQ classifier is more accurate than that of

the MLP network with the backpropagation algorithm in detecting and separating all of the faulty and healthy

conditions, while the MLP network shows good results only for the classification of fault 5 (combustor fouling)

and fault 6 (combustor cracked liner). Furthermore, it is obvious that the percentage of misclassified conditions

(conditions that are not correctly classified) is considerable compared to the results of the LVQ network.

As an important item, it is clearly seen that the classification of faults 1 and 2 (air filtering in the

compressor section and compressor fouling) are not basically possible with the MLP network because of the

high percentage of unclassified conditions.
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Table 5. Performance of the MLP classifier on the GT test data.

Condition

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Hclassified (%)
input fault
Fault 1 0.875 0.02125 0 0 0 0 0.10375
Fault 2 0.0325 0.85625 0 0 0 0 0.11125
Fault 3 0 0 0.91375 0.05375 0 0 0.0325
Fault 4 0 0 0.03875 0.95625 0 0 0.005
Fault 5 0 0 0.01375 0 0.9725 0.01125 0.0025
Fault 6 0 0 0 0 0.01 0.99 0

H 0.04625 0 0 0 0 0.00375 0.95

Table 6. Performance of the LVQ classifier on the GT test data.

Condition

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Hclassified (%)
input fault
Fault 1 0.995 0 0 0 0 0 0.005
Fault 2 0.0025 0.99375 0 0 0 0 0.00375
Fault 3 0 0 0.94375 0.0375 0 0 0.01875
Fault 4 0 0 0.01 0.9775 0 0 0.0125
Fault 5 0 0 0 0 0.9525 0.03125 0.01625
Fault 6 0 0 0 0 0.00625 0.975 0.01875

H 0 0.00125 0.0025 0 0 0 0.99625

By considering the essence of the defined faults and analyzing their classification condition rates, it is

realized that detection of fault 3 (turbine blade aging) and fault 5 (combustor fouling) by the LVQ classifier is

less accurate, but is acceptable. Hence, implementation of the extracted features (based on the sensor data)

and LVQ fault detection logic is practically possible inside the V94.2 control system software with reasonable

accuracy. The overall performance of the LVQ fault classifier can be improved by a fusion structure combining

the results of both classifiers (MLP and LVQ), which is now under investigation by the authors.

6. Conclusion

The current research claims to introduce a novel feature-based fault detection configuration for V94.2 GTs.

The study involved the feature extraction of GTs using PCA. Four principal components were extracted by the

PCA method and represented as linear combinations of the sensor data. The MLP and LVQ neural networks

were evaluated for V94.2 GT fault detection, which is regarded to be one of most difficult detection problems,

using 20 instruments and 6 typical faults.

The LVQ architecture provides the advantage of a simple topology that is faster and simpler than the

MLP with backpropagation algorithm. The performance of the LVQ classifier shows reasonable error (compared

to the MLP classifier), which is acceptable in power plant fault detection systems. Therefore, this configuration

allows the operator to improve the performance of the V94.2 GT by setting minor and major inspection times

for the V94.2 components based on the detected conditions.
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Notations

ai Sensor data
aij Healthy data
α Eigenvalue of the covariance matrix Rx

b Bias vector
cj Constant coefficient
η Learning rate
g Gradient in MLP
J Cost function

m Number of greatest eigenvalues of covariance
matrix Rx selected for PCA

n Dimension of data space
Rxi Covariance matrix of x i

δ2yj Variance of the projected data along each u j

u Data space unit vector
w Weights vector
x i n× 1 random vector
yj Projection of x i onto u j
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