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Abstract: This paper presents a solution for the emission-controlled economic dispatch (ECED) problem of medium-

sized power systems via an artificial bee colony algorithm. The ECED problem, which accounts for the minimization

of both the fuel cost and the emission, is a multiple objective function problem. The objective is to minimize the total

fuel cost of the generation and environmental pollution caused by fossil-based thermal generating units and to also

maintain an acceptable system performance in terms of the limits on the generator’s real and reactive power outputs,

bus voltages, shunt capacitors/reactors, and power flow of transmission lines. The proposed algorithm is validated on

an IEEE 30-bus system with 6 generating units. The results of the proposed technique are compared with that of

the particle swarm optimization technique. The proposed approach is also tested on the Algerian 59-bus network and

compared with global optimization methods (fuzzy genetic algorithm and ant colony optimization). The results show

that the approach proposed can converge to a near solution and obtain a competitive solution in a critical situation and

within a reasonable time.
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1. Introduction

Optimal power flow (OPF) was developed long ago with the introduction of a generalized formulation of the

economic dispatch problem, including voltage and other operating constraints.

The OPF calculation optimizes the static operating condition of a power generation-transmission system.

The main benefits of the OPF are 1) to ensure static security of quality of service by imposing limits on the

generation-transmission system’s operation, 2) to optimize the reactive-power/voltage scheduling, and 3) to

improve the economy of operation through the full utilization of the system’s feasible operating range and

by the accurate coordination of the transmission losses in the scheduling process. The OPF has usually been

considered as the minimization of an objective function representing the generation cost and/or the transmission

loss. The constraints involved are the physical laws governing the power generation-transmission systems and

the operating limitations of the equipment.

A wide variety of classical optimization techniques have been applied in solving the OPF problems consid-

ering a single objective function, such as nonlinear programming, quadratic programming, linear programming,

Newton-based techniques, the sequential unconstrained minimization technique, interior point methods, and

the parametric method. Effective OPF is limited by the high dimensionality of power systems and by the

incomplete domain-dependent knowledge of power system engineers [1,2].
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The first limitation is addressed by numerical optimization procedures based on successive linearization

using the first and the second derivatives of the objective functions and their constraints as the search directions,

or by linear programming solutions to imprecise models [3]. The advantages of such methods are in their

mathematical underpinnings, but disadvantages exist also in their sensitivity to problem formulation, algorithm

selection, and usual convergence to local minima [4].

The second limitation, incomplete domain knowledge, also precludes the reliable use of expert systems

where rule completeness is not possible.

As modern electrical power systems become more complex, the planning, operation, and control of such

systems using conventional methods face increasing difficulties. Intelligent systems have been developed and

applied for solving problems in such complex power systems.

Swarm intelligence is an innovative computational way to solve hard problems. This discipline is inspired

by the behavior of social insects, such as fish schools, bird flocks, and colonies of ants, termites, bees, and wasps.

In general, this is done by mimicking the behavior of the biological creatures within their swarms and colonies.

In a previous paper [5], the authors proposed the use of particle swarm optimization (PSO) on the OPF

problem, using as the objective function the minimization of the fuel cost and NOx emission control. More

than 6 small-sized test cases were used to demonstrate the performance of the proposed algorithm. Consistently

acceptable results were observed.

The purpose of the economic emission load dispatch problem is to obtain the optimal amount of gen-

erated power for the fossil-based generating unit in the system by minimizing the fuel cost and emission level

simultaneously, subject to various equality and inequality constraints of the power system.

In [6], we proposed the use of an ant colony search algorithm to solve the economic power dispatch with

pollution control. To accelerate the processes of the ant colony optimization (ACO), the controllable variables

are decomposed to active constraints that directly affect the cost function and are included in the ACO process

along with passive constraints, which are updated using conventional power flow.

The authors of [7] proposed a combined genetic algorithm (GA)-fuzzy–based approach for solving the

OPF. The GA parameters, e.g., crossover and mutation probabilities, were governed by a fuzzy rule base.

In this paper, the artificial bee colony (ABC) algorithm, inspired by the foraging behavior of honeybees,

is proposed to solve the OPF problem, using as the objective function the minimization of the fuel cost and

NOx emission level simultaneously, subject to various equality and inequality constraints of the power system.

Central processing unit times can be reduced by decomposing the optimization constraints of the power system

to active constraints manipulated directly by the ABC and passive constraints maintained in their soft limits

using a conventional constraint load flow. The standard IEEE 30-bus with 6 generators and the Algerian 59-bus

network are considered as the test systems. The results obtained are compared with the conventional methods

and with global optimization methods, and the effectiveness of ABC-OPF to solve the emission-controlled

economic dispatch (ECED) problem is demonstrated.

2. Problem formulation

The main objective of an OPF strategy is to determine the optimal operating state of a power system by

optimizing a particular objective while satisfying certain specified physical and operating constraints. In its

most general formulation, the OPF is a nonlinear, nonconvex, large-scale, static optimization problem, with

both continuous and discrete control variables.

The standard OPF problem can be formulated as a constrained optimization problem as follows:
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min f(x)
s.t. g(x) = 0

h(x) ≤ 0
, (1)

where f(x) is the objective function, g(x) represents the equality constraints, h(x) represents the inequality

constraints, and x is the vector of the control variables, such as the generator’s real power Pg, generator voltages

Vg, transformer tap setting T , and reactive generations of volt-ampere reactive (VAR) sources Qc. Therefore,

x can be expressed as:

xT = [Pg1 · · ·Pgng, V g1 · · ·V gng, T1 · · ·Tnt, Qc1 · · ·Qcnc] , (2)

where ng is the number of generator buses, nt is the number of transformer branches, and nc is the number of

shunt compensators.

The essence of the OPF problem resides in reducing the objective function and simultaneously satisfying

the load flow equations (equality constraints) without violating the inequality constraints.

2.1. Objective function

2.1.1. Economic objective function

The most commonly used objective in the OPF problem formulation is the minimization of the total operation

cost of the fuel consumed for producing the electric power within a scheduled time interval (1 h). The individual

costs of each generating unit are assumed to be the function of only the real power generation and are represented

by quadratic curves of the second order. The objective function for the entire power system can then be expressed

as the sum of the quadratic cost model at each generator [8,9]:

Fec (x) =

ng∑
i=1

(
ai + biPgi + ciPg2i

)
$/h, (3)

where ai ,bi , and ciare the cost coefficients of the generator at bus i .

2.1.2. Emission objective function

The emission control cost results from the requirement for power utilities to reduce their pollutant levels below

the annual emission allowances assigned for the affected fossil units. The total emission can be reduced by

minimizing the 3 major pollutants: nitrogen oxide (NOx), sulfur oxide (SOx), and carbon dioxide (CO2). The

objective function that minimizes the total emissions can be expressed in a linear equation as the sum of all 3

of the pollutants resulting from the generator’s real power, Pg i [10].

In this study, the NOx emission is taken as the index from the viewpoint of environmental conservation.

The amount of NOx emission is given as a function of the generator’s output (in t/h), i.e. the sum of the

quadratic and exponential functions [11]:

FE =

ng∑
i=1

(
ai + biPgi + ciPg2i + di exp (eiPgi)

)
, (4)

where ai , bi , ci , di , and ei are the coefficients of the generator’s emission characteristic.
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The pollution control cost (in $/h) can be obtained by assigning a cost factor to the pollution level,

expressed as:

Fpc = w · FE$/h , (5)

where w is the emission control cost factor in $/t [11].

2.1.3. Total objective function

The total objective function considers at the same time the cost of generation and the cost of pollution level

control. These objectives have complicated natures and are conflicted in some points (the minimization of the

generation cost can maximize the emission cost and vice versa). However, solutions may be obtained in which

the fuel cost and emission are combined in a single function with a different weighting factor. This objective

function is described by [5]:

minF = α · Fec + (1− α) · Fpc, (6)

where α is a weighting that satisfies 0 ≤ α ≤ 1. The boundary values α = 1 and α = 0 give the conditions for

the pure minimization of the fuel cost function and the pure minimization of the pollution control level.

2.2. Types of equality constraints

While minimizing the objective function, it is necessary to make sure that the generation still supplies the

load demands plus the losses in the transmission lines. The equality constraints are the power flow equations

describing the bus-injected active and reactive powers of the ith bus.

Here, active and reactive power injections at bus i are defined in the following equations:

Pi = Pgi − Pdi =
nb∑
j=1

ViVj (gij cos θij + bij sin θij), (7)

Qi = Qgi −Qdi =
nb∑
j=1

ViVj (gij sin θij − bij cos θij), (8)

where Qg i is the reactive power generation at bus i ; Pd i and Qd i are the real and reactive power demands

at bus i ; Vi and Vj are the voltage magnitudes at bus i and j , respectively; θij is the admittance angle; bij

and gij are the real and imaginary parts of the admittance; and nb is the total number of buses.

2.3. Types of inequality constraints

The inequality constraints of the OPF reflect the limits on the physical devices in the power system, as well as

the limits created to ensure the system’s security. The most usual types of inequality constraints are the upper

bus voltage limits at the generations and load buses, lower bus voltage limits at the load buses, VAR limits

at the generation buses, maximum active power limits corresponding to the lower limits at some generators,

maximum line loading limits, and limits on the transformer tap setting.

The inequality constraints on the problem variables considered include:

• Upper and lower bounds on the active generations at the generator buses Pgmin
i ≤ Pg i ≤ Pgmax

i , i = 1,
ng.
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• Upper and lower bounds on the reactive power generations at generator buses Qgmin
i ≤ Qg i ≤ Qgmax

i , i =

1, ng.

• Upper and lower bounds on the reactive power injection at the buses with VAR compensation Qcmin
i ≤

Qc i ≤ Qcmax
i , i = 1, nc.

• Upper and lower bounds on the voltage magnitude at the all of the busesV min
i ≤ Vi ≤ V max

i , i = 1, nb.

• Upper and lower bounds on the bus voltage phase angles ?min
i ≤?i ≤?max

i , i = 1, nb.

• For secure operation, the transmission line loading Sl is restricted by its upper limit as Sli ≤ Smax
li , i = 1,

nl, where Sli and Smax
li stand for the power of the transmission line and the limit of the transfer capacity

of the transmission line, and nl is the number of transmission lines.

It can be seen that the generalized objective function F is nonlinear and the number of equality and

inequality constraints increases with the size of the power distribution systems. Applications of a conventional

optimization technique, such as the gradient-based algorithms, to a large power distribution system with very

nonlinear objective functions and a great number of constraints are not good enough to solve this problem,

because it depends on the existence of the first and second derivatives of the objective function and on the

efficient computing of these derivatives in a large search space.

3. Overview of the ABC algorithm

The ABC algorithm is one of the most recently defined algorithms, motivated by the intelligent behavior of

honeybees. The ABC algorithm as an optimization tool provides a population-based search procedure, in which

individuals called food positions are modified by the artificial bees with time and the bee’s aim is to discover

the locations of food sources with a high nectar amount and, finally, the one with the highest nectar amount.

In the ABC algorithm, the colony of artificial bees contains 3 groups of bees: employed bees, onlookers,

and scouts. A bee waiting on the dance area to make a decision about choosing a food source is called an

onlooker and a bee going to a food source visited by it previously is called an employed bee. A bee carrying

out a random search is called a scout. In the ABC algorithm, the first half of the colony consists of employed

artificial bees and the second half constitutes the onlookers. For every food source, there is only one employed

bee. In other words, the number of employed bees is equal to the number of food sources around the hive. The

employed bee whose food source is exhausted by the employed and onlooker bees becomes a scout [12,13].

4. Application of the ABC algorithm on the OPF problem

In the ABC algorithm, the position of a food source represents a possible solution to the optimization problem

and the nectar amount of a food source corresponds to the quality (fitness) of the associated solution. The

number of employed bees is equal to the number of food sources, each of which also represents a site being

exploited at the moment, or to the number of solutions in the population. In ABC optimization, the steps given

below are repeated until a stopping criterion is satisfied [4].

The following steps describe how the ABC algorithm is applied to the problem under consideration:

Step 1: Input data.

Line data, bus data, generator cost coefficients, and generation limits for each unit are read.

Step 2: Initialization of parameter setup.
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The 5 control parameters used in the ABC algorithm, i.e. the colony size, number of employed bees,

number of unemployed bees or onlooker bees, value of limit initialized, and number of cycles for foraging {a
stopping criteria, maxCycle} .

Step 3: Initialization of population with random solutions.

In this step, an initial population of N solutions is generated randomly, where N denotes the size of the

employed bees, which is equal to the number of food source positions. Each solution xi = (i = 1, 2........N)

is represented by a D-dimensional vector, where D is the number of parameters to be optimized and each

parameter is real-coded.

Step 4: Evaluation of the fitness of the population.

Evaluate the fitness value for each employed bee using the following the formula:

fitness = 1/ (1 + Fi) , (9)

where Fi is the cost value of the objective function.

Step 5: Modification of position by employed bees.

An employed bee produces a modification on the position (solution) in her memory depending on the local

information (visual information) and tests the nectar amount (fitness value) of the new source (new solution).

In order to produce a candidate food position from the old one in memory, the following equation is used:

Vij = xkj .+Φij (xij − xkj) , (10)

where k ∈ { 1, 2........, N} and j ∈ { 1, 2........, D} are randomly chosen indexes (D is the number of parameters to

be optimized and each parameter is real-coded), and although K is determined randomly, it has to be different

from i . Φij is a random number in [–1, 1]. If the resulting value falls outside of the acceptable range for

parameter j , it is set to the corresponding extreme value in that range.

Step 6: Select sites for the neighborhood search.

Bees that have the highest fitness are chosen as the selected bees and sites visited by them are chosen for

the neighborhood search.

Step 7: Recruit onlooker bees for the selected sites and evaluate the fitness.

If the nectar amount of the new position is higher than that of the previous one, the bee memorizes the

new position and forgets the old one. Otherwise, the position of the previous one is kept in memory. After

all employed bees complete the search process, they share the nectar information of the food sources and their

position information with the onlooker bees in the dance area. An onlooker bee evaluates the nectar information

taken from all of the employed bees and chooses a food source, where the probability Pi of selecting a food

source i is determined using the following expression:

Pi = Fiti/

SN∑
n=1

Fitn, (11)

where Fiti is the fitness of the solution and is represented by the food sources i , and SN is the total number

of food sources.

Step 8: Modification of the position by the onlookers.

As in the case of the employed bee, the onlooker produces a modification on the position in its memory

using Eq. (16) and checks the nectar amount of the candidate source. If the new food has equal or better nectar
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than the old source, it is replaced with the old one in the bee’s memory. Otherwise, the old one is retained in

the memory.

Step 9: Abandon sources exploited by the bees.

Determine the abandoned solution, if it exists, and replace it with a new randomly produced solution xi

for the scout bees using the following equation:

xij = xj min + rand (0, 1) ∗ (xj max − xj min) ,

where xj min and xj max are the minimum and maximum limits of the parameter to be optimized.

Step 10: Memorize the best solution achieved so far.

Step 11: Cycle = cycle + 1.

Step 12: Stop the process if the termination criterion is satisfied. Otherwise, go to Step 5.

5. Application study

The OPF using the ABC method has been developed by the use of MATLAB 7, tested on a Pentium 4 with

1.5 GHz and 128 MO, and consistently acceptable results were observed. The IEEE 30-bus system with 6

generators is presented here. The total load was 283.4 MW. The upper and lower active power generating limits

and the unit costs of all of the generators of the IEEE 30-bus test system are presented in Table 1. The NOx

emission characteristics of generators are grouped in Table 2. The emission control cost factor for IEEE 30-bus

system was taken as 550.66 $/t [5].

Table 1. Power generation limits and cost coefficients for IEEE 30-bus system.

Bus Pgmin(MW) Pgmax (MW) a ($/h) b ($/MW h) c. 10−4 ($/MW2 h)
1 50.00 200.00 0 2.00 037.5
2 20.00 080.00 0 1.75 175.0
5 15.00 050.00 0 1.00 625.0
8 10.00 035.00 0 3.25 083.0
11 10.00 030.00 0 3.00 250.0
13 12.00 040.00 0 3.00 250.0

Table 2. Pollution coefficients for the IEEE 30-bus system.

Bus a. 10−2 b. 10−4 c. 10−6 d. 10−4 e. 10−2

1 4.091 –5.554 6.490 02.00 2.857
2 2.543 –6.047 5.638 05.00 3.333
5 4.258 –5.094 4.586 00.01 8.000
8 5.326 –3.550 3.380 20.00 2.000
11 4.258 –5.094 4.586 00.01 8.000
13 6.131 –5.555 5.151 10.00 6.667

The results, including the generation cost, the emission level, and power losses, are shown in Table 3,

where the optimum generations for the minimum total cost in 3 cases is given: the minimum generation cost

without taking into account the emission level as the objective function (α = 1), an equal influence of the

generation cost and pollution control in this function, and, finally, a total minimum emission is taken as the

objective of main concern (α = 0). The active powers of the 6 generators as shown in Table 3 are all within

1521



SLIMANI and BOUKTIR/Turk J Elec Eng & Comp Sci

their allowable limits. We can observe that the total cost of the generation and pollution control is the highest

at the minimum emission level (α = 0), with the lowest real power loss (3.8912 MW). As seen by the optimal

results shown in Table 3, there is a trade-off between the fuel cost minimum and the emission level minimum.

The difference in the generation cost between these 2 cases (802.1649 $/h compared to 935.275 $/h) in the real

power loss (9.7286 MW compared to 3.8912 MW) and in the emission level (0.3781 t/h compared to 0.2176 t/h)

clearly shows this trade-off. To decrease the generation cost, one has to sacrifice some of the environmental

constraints. The minimum total cost at α = 0.5 is of the order of 969.511 $/h. The security constraints are

also checked for the voltage magnitudes, angles, and branch flows. The voltage magnitudes and the angles are

between their minimum and maximum values. The results, including the voltage magnitude of the different

values of α , are shown in Figure 1. The transmission line loadings do not exceed their upper limits. In addition,

it is important to point out that this algorithm converges in an acceptable time, where for this test system, it

was approximately 8 s.

Table 3. Results of minimum total cost for IEEE 30-bus system in 3 cases (α = 1, α = 0.5, and α = 0) by ABC.

Variable Generation cost min. Gen. cost + emission min. Emission min.
Pg01 (MW) 180.5218 130.3310 68.3474
Pg02 (MW) 48.7845 58.2344 71.0885
Pg05 (MW) 21.2598 26.2496 50.0000
Pg08 (MW) 18.6469 35.0000 35.0000
Pg11 (MW) 11.8145 21.3800 30.0000
Pg13 (MW) 12.1011 18.9294 32.8553
Production cost ($/h) 802.1649 820.1666 935.275
Emission (t/h) 0.3781 0.2712 0.2176
Total cost ($/h) 1010,4 969.511 1055.10
Power loss (MW) 9.7286 6.7256 3.8912
Σ|Vi – Vref| 0.4403 0.3596 0.3773
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Figure 1. The results of voltage magnitude by different values of α (alpha = 0, alpha = 0.5, and alpha = 1).

1522



SLIMANI and BOUKTIR/Turk J Elec Eng & Comp Sci

5.1. Comparison of the ABC algorithm with the global method (PSO)

A comparison of results between the ABC method and PSO is shown in Table 4, where it can be observed that

the proposed method can find the optimum value when compared with PSO [14].

Table 4. Comparison between ABC and PSO applied to OPF for IEEE-30 bus system.

Generation cost minimum
Generation cost +

Emission minimum
emission minimum

ABC PSO ABC PSO ABC PSO
Generation cost ($/h) 802.1649 802.377 820.1666 822.092 935.275 948.399
Emission (t/h) 0.3781 0.372 0.2712 0.268 0.2176 0.218
Total cost ($/h) 1010.4 1007.577 969.511 969.845 1055.10 1068.854

5.2. Comparison with PSAT and MATPOWER OPF solver

For the purpose of verifying the robustness of the proposed algorithm, we made a second comparison with the

Power System Analysis Toolbox (PSAT) and MATPOWER packages under severe loading conditions.

PSAT is a MATLAB toolbox for electric power system analysis and the control was designed by Vanfretti

and Milano [15]. A robust method known as the interior point was integrated into PSAT to resolve the OPF

problem.

MATPOWER is a package of MATLAB M-files for solving power flow and OPF problems. MATPOWER

was developed by Zimmerman et al. [16]. The default OPF solver of the MATPOWER package is a high-

performance primal-dual interior point solver implemented in pure MATLAB code.

In this study, the increase in the load is regarded as a parameter that affects the power system to the

point of voltage collapse.

PL = Kld · PL0

QL = Kld ·QL0

Here, PLoand QLo are the active and reactive base loads, PL and PL are the active and reactive loads for the

current operating point, and Kld represents the loading factor.

The results, including the generation cost, power losses, reactive power generation, and angles, are shown

in Table 5. We can clearly observe that the total cost of the generation and the power losses are comparable

to the results obtained by PSAT and MATPOWER at both loading factors (Kld = 18% and Kld = 32%).

For example, at loading factor 32% (PD = 374.088), the difference in the generation cost between the ABC

algorithm and the 2 packages was 1160.73 $/h compared to 1160.56 $/h and 1164.1706 $/h, and in real power

loss it was 13.5558 MW compared to 13.556 MW and 14.385 MW, as obtained from MATPOWER and PSAT,

respectively. At loading factor Kld = 48%, the 2 simulation packages (PSAT and MATPOWER) did not

converge. The ABC algorithm proposed gives an acceptable solution and the minimum total cost is 1401.4 $/h.

The security constraints are also checked for the voltage magnitudes, angles, and branch flows at the 3 loading

factors (Kld = 18%, Kld = 32%, and Kld = 48%). Figure 2 shows that the voltage magnitudes are within the

specified security limits. Figure 3 shows clearly that the voltage angles of the buses do not exceed their upper

limits.
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Table 5. Results of the minimum cost compared with PSAT and MATPOWER package for IEEE 30-bus.

Variable
ABC MATPOWER PSAT ABC MATPOWER PSAT ABC
(Kld = 18%) (Kld = 18%) (Kld = 18%) (Kld = 18%) (Kld = 18%) (Kld = 18%) (Kld = 18%)

P1 (MW) 199.6521 200.00 200.00 199.6683 200.0 200.0 199.0635
P2 (MW) 55.8103 55.00 54.9925 70.4857 69.74 69.9368 80.0000
P5 (MW) 23.4431 23.70 23.6957 28.1711 28.40 28.5135 50.0000
P9 (MW) 35.0000 35.00 35.00 35.0000 35.00 35.00 35.0000
P11 (MW) 16.8175 17.01 17.0154 28.3793 28.03 28.2596 30.0000
P13 (MW) 15.8480 15.84 15.8827 25.9394 26.47 26.7635 40.0000
Q1 (MVAR) –21.33 –13.94 –15.6226 –21.86 –17.66 –9.4127 3.17
Q2 (MVAR) 36.94 37.18 38.5416 49.73 43.69 60.4752 39.04
Q5 (MVAR) 36.87 36.10 36.5254 32.93 42.62 49.5412 40.76
Q8 (MVAR) 37.87 47.96 49.525 51.05 60.00 50.00 50.45
Q11 (MVAR) 25.96 3.680 4.6425 29.57 6.910 21.1631 34.78
Q13 (MVAR) 36.43 –11.68 2.3642 35.97 –2.270 19.7389 37.23
θ1 (deg) 0 0.00 0.00 0 0.00 0.00 0
θ2 (deg) –4.1603 –4.028 –4.0412 –4.1630 –4.022 –4.026 –3.9513
θ5 (deg) –12.0129 –11.841 –11.8475 –12.6984 –12.518 –12.6009 –12.4762
θ8( deg) –9.0074 –8.737 –8.7607 –9.3179 –9.065 –8.7792 –9.5664
θ11 (deg) –9.2959 8.931 –8.9022 –7.8262 –7.386 –7.0128 –7.8312
θ13 (deg) –11.0262 –10.642 –10.6419 –10.1305 –9.751 –9.8547 –8.7472
Ploss (MW) 12.1590 12.141 12.174 13.5558 13.556 14.385 14.3430
cost ($/h) 994.0151 993.98 994.1047 1160.73 1160.56 1164.1706 1401.4
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Figure 2. The results of voltage magnitude at the 3 loading factors (Kld = 18%, 32%, and 48%).
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Figure 3. The results of voltage angles at the 3 loading factors (Kld = 18%, 32%, and 48%).

5.3. Application to the 59-bus Algerian network

To verify the proposed approach and for comparison purposes, we perform simulations on a part of the 59-bus

Algerian network (Figure 4). It consists of 59 buses, 83 branches (lines and transformers), and 10 generators.
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Figure 4. Topology of the Algerian production and transmission network before 1997.

Table 6 shows the technical and economic parameters of the 10 generators of the Algerian electrical

network, knowing that the generator of the bus No. 13 is not in service.

Table 6. Power generation limits and cost coefficients for the Algerian network.

Bus number Pmin (MW) Pmax (MW) a ($/h) b ($/MWh) c ($/MW2 h)
1 8 72 0 1.50 0.0085
2 10 70 0 2.50 0.0170
3 30 510 0 1.50 0.0085
4 20 400 0 1.50 0.0085
13 15 150 0 2.50 0.0170
27 10 100 0 2.50 0.0170
37 10 100 0 2.00 0.0030
41 15 140 0 2.00 0.0030
42 18 175 0 2.00 0.0030
53 30 450 0 1.50 0.0085

The comparisons of the results obtained by the proposed approach (ABC) with those found by the ACO

algorithm [6] and a fuzzy-controlled GA [7] are reported in Table 7. The results obtained with the proposed

approach are better than those obtained by the fuzzy GA (FGA) and ACO. The ABC method gives a more

important profit in the fuel cost of 1703.80 $/h compared to the results obtained from the FGA (1768.50 $/h)

and ACO (1815.76 $/h). The optimum value has been obtained at a reduced execution time. The optimum

value of 1768.50 $/h has been obtained after 10 s. This value takes into account the exact cost of the total

real power losses by proceeding to a Newton–Raphson type of power flow calculation in order to compute the

reactive generated powers and the voltages of all the buses, and to readjust the slack generator that takes into
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consideration the exact losses of real powers. It is important to note that none of the results obtained by the

proposed approach violate the physical generation capacity constraints. The security constraints are satisfied

for the voltage magnitudes (0.9 < V < 1.1 pu) and line flows.

Table 7. Comparison of the results obtained with conventional and global methods for the Algerian electrical network.

FGA ABC ACO
Pg1 (MW) 11.193 62.1194 64.01
Pg2 (MW) 24.000 23.8331 22.75
Pg3 (MW) 101.70 102.1578 82.37
Pg4 (MW) 84.160 114.3495 46.21
Pg13 (MW) 0.000 0.00 0.00
Pg27 (MW) 35.22 24.7478 47.05
Pg37 (MW) 56.80 50.6371 65.56
Pg41 (MW) 121.38 99.9633 39.55
Pg42 (MW) 165.520 132.1497 154.23
Pg53 (MW) 117.32 106.2719 202.36
PD (MW) 684.10 684.1 684.1
Ploss (MW) 33.1930 31.1785 39.98
Cost ($/h) 1768.50 1703.8 1815.7
Time (s) - 10 25

6. Conclusion

In this paper, ABC optimization has been presented and applied to the economic power dispatch of a power

system with pollution control where minimization of cost occurs. The feasibility of the proposed method for

the economic power dispatch of a power system with pollution control is demonstrated on the IEEE 30-bus

system. The simulation results show that the ABC method is able to minimize the total cost along with the

minimization of loss in the system. Moreover, it is found that the results of the ABC are better than those

obtained using PSO. The proposed approach has shown better results in terms of convergence, flexibility, and

consistency in different runs and a lower generation cost compared to the PSAT and MATPOWER OPF solver.

The performance of the proposed approach was tested on the Algerian 59-bus test case with 59 buses, 83

branches (lines and transformers), and 10 generators. When the proposed algorithm was compared with the

conventional method and with recent evolutionary algorithms (ACO, FGA), it was found that the proposed

approach can converge at near solutions and obtain a competitive solution at a reduced time.
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