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doi:10.3906/elk-1111-29

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Outlier rejection fuzzy c-means (ORFCM) algorithm for image segmentation

Fasahat Ullah SIDDIQUI,1 Nor Ashidi Mat ISA,1,∗ Abid YAHYA2

1Imaging and Intelligent System Research Team, School of Electrical and Electronic Engineering,
University Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, Malaysia
2School of Computer and Communication Engineering, University Malaysia Perlis,

Kuala Perlis, Perlis, Malaysia

Received: 16.11.2011 • Accepted: 14.05.2012 • Published Online: 02.10.2013 • Printed: 28.10.2013

Abstract: This paper presents a fuzzy clustering-based technique for image segmentation. Many attempts have been

put into practice to increase the conventional fuzzy c-means (FCM) performance. In this paper, the sensitivity of the soft

membership function of the FCM algorithm to the outlier is considered and the new exponent operator on the Euclidean

distance is implemented in the membership function to improve the outlier rejection characteristics of the FCM. The

comparative quantitative and qualitative studies are performed among the conventional k-means (KM), moving KM, and

FCM algorithms; the latest state-of-the-art clustering algorithms, namely the adaptive fuzzy moving KM , adaptive fuzzy

KM, and new weighted FCM algorithms; and the proposed outlier rejection FCM (ORFCM) algorithm. It is revealed from

the experimental results that the ORFCM algorithm outperforms the other clustering algorithms in various evaluation

functions.
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1. Introduction

Image segmentation is a process of subdividing an image into multiple regions of interest (ROIs) according to

their sense of similarities. Clustering is an unsupervised learning method of segmentation. It categorizes a large

set of patterns into disjointed clusters so that the data in each cluster are similar and extensively different from

those in other clusters. This portioning process is terminated when the objects of interest in an application are

completely isolated. Due to its simplicity and high speed, it is gaining more attraction in different applications,

such as the identification of road signs [1], detection of the vacant vehicles in parking spaces [2], classification of

the objects of interest in a digital camera image [3], characterization of the microscopic feature of bone for the

determination of age at death [4], automatic dental identification system to recognize missing and unidentified

persons [5], and face recognition systems, where the clustering technique is applied to extract the required

region from an unwanted background region [6,7]. The background region is excluded from further processing

and the execution time process can then be reduced [8,9]. In addition, the clustering is frequently used in a

morphological investigation as a more reliable disease diagnostic tool, in which the size, edges, texture, and

shape are measured for the segmentation of normal and abnormal tissues [10,11] or cells [12,13].

Different clustering algorithms are implemented to find a better segmentation result. One of them is

known as the k-means (KM) algorithm [14]. The KM algorithm is an unsupervised and iterative method. It
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assigns each point to the nearest cluster center. The center is an average of all of the points in the cluster.

It is a fundamental method in many computer vision applications, whereby region extracting and recognition

are 2 examples. However, it has many weaknesses, such as: 1) it is sensitive to initialization and different

initial parameters could significantly produce different results (in worse cases, even poor results), and 2) objects

that are far away from the cluster centers pull the centers away from the local optimum location. The fuzzy

c-means (FCM) algorithm that contains soft membership was introduced in [15], which provides an opportunity

for the data to belong partly to all of the clusters, if possible. Due to a degree of portioning, it becomes more

flexible to locate the best possible center. The introduction of the fuzziness concept makes FCM less sensitive

to initialization and it avoids the dead center problem of KM, but usually it could not minimize the intracluster

variance and could not maximize the intercluster variance due to the overlapping of regions or sensitivity to the

outlier.

Mashor proposed an algorithm in 2000 called the moving KM (MKM) [16]. In his work, he found 2 factors,

i.e. dead center and center trapping at the local minima, as the main causes that underlie poor segmentation.

The MKM minimizes these problems by keeping all of the centers in an active region and bringing the criteria

of fitness into the picture, where all of the centers should have quite similar fitness. During the process, the

fitness of each center is constantly checked and upon an unsatisfying condition, the cluster center with a lower

variance is moved towards the region where the active center is located. Although it becomes less sensitive to

initialization, it segments the data with a high intracluster variance. Further extensions have been done by

transferring the elements or pixels in the appropriate clusters rather than to the cluster with a lower fitness

value [17]. The approach called the adaptive fuzzy moving KM (AFMKM) incorporates a fuzzy concept to

homogeneously segment an image. However, it fails to prevent the center from being trapped in local minima,

which introduces poor segmentation [18].

Attempts have been made to increase the robustness of the conventional clustering algorithms. One of

the previous attempts performed on the FCM shows that the Euclidean distance is very sensitive to the outlier

and the problem may be reduced by replacing it with the L1 norm distance [19,20]. It is an effective approach

with a limitation; the dimension must be more than one. Usually, one dimension of space (gray level) is used

for image segmentation to make it cost-effective. In another study, the weight feature was introduced to adjust

the sensitivity of the fuzzy membership to the outlier, such that the final solution could converge to the global

optimum location [21]. This approach, called the weighted FCM (WFCM) algorithm, is performed better if

the feature weight is appropriately selected [22]. Therefore, the bootstrap method based on the statistical

variations in the data, called the bootstrap WFCM algorithm, is employed as the feature weight. This approach

performed better than the WFCM [22]. However, both the WFCM and the bootstrap WFCM are also limited

to the segmentation of an image with more than one feature vector. A few years ago, Li et al. [23] applied

the concept of a weighted mean to the FCM to create a new FCM-like clustering algorithm, named the fuzzy

weighted c-means (FWCM) algorithm. However, its accuracy is highly dependent on the value of the degree of

fuzziness. This approach was further studied by Hung et al., who proposed a modified version of the FWCM

called the new WFCM (NW-FCM) algorithm for solving similar high-dimensional multiclass pattern recognition

problems [24]. On the other hand, the adaptive fuzzy KM (AFKM) algorithm was introduced to strengthen the

performance of both the FCM and the KM algorithms [25]. In the AFKM, the belongingness criteria have been

proposed to ensure a strong relationship between the cluster and the members within a cluster. However, the

sum of the belongingness degree for a pixel among all of the clusters is not equal to 1, which could lead to the

dead center problem during the segmentation process. In this study, an adaptive version of the FCM algorithm
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is introduced, named the outlier rejection FCM (ORFCM). The proposed ORFCM algorithm is specifically

designed to overcome the outlier problem and define nonoverlapping regions with a lower cluster variance and

higher intercluster variance. The performance of the proposed algorithm is examined on 104 standard images.

The remainder of this paper is organized as follows. Section 2 outlines the background concept of the

FCM and its limitations. The implementation of the proposed ORFCM algorithm is presented in Section 3.

Section 4 presents the capability of the proposed algorithm on the bases of the qualitative and quantitative

analyses and comparisons with other algorithms. Finally, the conclusion is presented in Section 5.

2. Background

2.1. FCM segmentation

As mentioned earlier, FCM groups the pixels of an image in overlapping regions. In terms of definition, an

image X = {xi}, i ∈{1, 2 ...n} is partially divided into knumber of clusters, where xi are the pixels of an

image X and n is the total number of pixels. FCM clustering allows each pixel to belong to all of the clusters.

It is based on the minimization of the following objective function:

FCM =

n∑
i=1

k∑
j=1

um
ij ∥xi − cj∥2 , (1)

where uij is the degree of membership of xi in the j th cluster and m is the degree of fuzziness, which is

typically equal to 2. When m is close to 1, then the FCM algorithm is similar to the KM. A fuzzy partition is

carried out through an iterative optimization of Eq. (1), by updating the cluster center cj :

cj =

n∑
i=1

(
um
ij × xi

)
n∑

i=1

um
ij

(2)

and membership uij :

uij =
1

k∑
p=1

[
∥xi − cj∥
∥xi − cp∥

](2/m−1)
. (3)

The iteration will stop when
∥∥∥u(t+1)

ij − ut
ij

∥∥∥ < ε is fulfilled. Here, ε is the termination criterion between 0 and

1, typically set to 0.001, and t is the iteration step. Generally, the implementation of the FCM is as follows:

1. Initialize the parameters ε (i.e. termination criterion) and k (i.e. number of clusters).

2. Initialize the fuzzy partition membership function uij and let t = 0.

3. Calculate the cluster center cj according to Eq. (2).

4. Let t = t+1 and compute the new membership function uij according to Eq. (3).

5. Repeat steps 3 to 4 until the condition
∥∥∥u(t+1)

ij − ut
ij

∥∥∥ < ε is fulfilled.
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2.2. FCM limitations

In the conventional FCM, each point or data is associated with a membership value for each cluster. This

property of FCM, with the restriction that the sum of the membership value of data point xi in all of the

clusters is equal to 1, tends to give a sufficient membership value for the outlier points (points located far from

the center) to become a member of the cluster, and it increases the intracluster variance and further reduces

the intercluster variance [26].

As stated above, the points are assigned to the cluster with the highest membership value, and it is

sufficient to assume that it should be close to 1 or that it is at least greater than the sum of all of its remaining

membership values to the other clusters. This problem is common when involving a range of data that is located

between 2 neighboring clusters. To illustrate the above context, the manually generated data in the intensity

range of 1 to 120 are portioned in 3 regions, c1 , c2 , and c3 , by the FCM algorithm, as shown in Figure 1.

At the end of the implementation, the FCM groups the data into 3 regions, c1 , c2 , and c3 , with membership

functions u1 , u2 , and u3 , respectively. As shown in Figure 1, each membership function is represented by

dotted, dashed, or solid lines, respectively. For function u1 , in the range of 0 to 60, the membership is assigned

to the outliers for cluster c1 and these outliers could significantly produce insufficient effects by pulling away

the center from their optimum level. The same behavior is also observed in the other clusters’ membership

functions, u2 and u3 . This behavior increases the intracluster and decreases the intercluster variance.
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Figure 1. Membership function generated by the FCM algorithm for data of intensity range 1 to 120.

3. Proposed method

Let X = {xi}, where i ∈{1, 2 ...n} denotes an image with n pixels to be partitioned into k clusters, where

2 ≤ k ≤ n , and let cj (for j = 1,2,. . . .k) be the j th cluster. Consider the matrix U = (uij)k×n , called a fuzzy

partition matrix, in which each element uij indicates the membership degree of each pixel in the j th cluster,

cj . The ORFCM is designed based on the minimization of the following objective function:

ORFCM =
n∑

i=1

k∑
j=1

um
ijβ

∥xi − cj∥2

. (4)

The mathematical model of the ORFCM is given by:

minORFCM =

n∑
i=1

k∑
j=1

um
ijβ

∥xi − cj∥2

, (5)
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subject to :
uij ∈ [0, 1] for i = 1, 2, ..n j = 1, 2, ..k

k∑
j=1

uij = 1, i = 1, 2, ...n
.

As discussed in Section 1, the Euclidean distance is very sensitive to the outliers, leading to the unrealistic

nature of the FCM. In this study, the membership function of the conventional FCM algorithm is modified.

The proposed ORFCM algorithm overcomes the outlier’s sensitivity by changing the original Euclidean distance

term in Eq. (3) (i.e. ∥xi −cj∥) to (β)∥xi − cj∥ . Thus, the modified equation in calculating the membership uij

is given by:

uij =
1

k∑
p=1

[
β∥xi − cj∥

β∥xi − cp∥

](2/m−1)
. (6)

The exponent variable β limits the partial distribution of the points among the 2 neighboring clusters rather

than to all of the clusters. The β is defined as:

β =
(Range of intensity in an image) + 1

Maximum range of intensity + 1
+ 1. (7)

For an 8-bit grayscale image, Eq. (7) could be defined as:

β =
(Imax− Imin) + 1

256
+ 1, (8)

where Imax is the maximum intensity in an image and Imin is the minimum intensity in an image. The

approximate range of β is between 1 and 2. If an image contains data with a large range of intensity, then the

value of β is close to 2 and it could reduce the partial distribution of the points between 2 adjacent clusters.

Meanwhile, if an image contains data with a small range of intensity, then the value is close to 1 and it shows

more flexibility to partially distribute the points among the adjacent clusters only. Thus, it may also avoid the

dead center in the small range of intensity images.

To illustrate the capability of the proposed ORFCM algorithm, the aforementioned data used to show the

limitation of the FCM in Section 2.2 are revisited. Using the proposed technique, the final obtained regions, c1 ,

c2 , and c3 , with their membership functions, u1 , u2 , and u3 , are, respectively, shown in Figure 2a. From the

graph, it can be clearly seen that the outliers have approximately a zero membership value. In addition, all of

the data are partially distributed between only the 2 clusters. Here, observably, the data of the large intensity

range are confined to less partial distribution between the 2 adjacent clusters. In Figure 2b, the data of the

small intensity range, typically 1 to 60, are distributed in 3 regions, c1 , c2 , and c3 , with their membership

functions, u1 , u2 , and u3 , respectively. It is observed that most of the data between 2 adjacent clusters are

partially distributed among the adjacent clusters only. Thus, the contribution of the outliers in the central

calculation has been successfully reduced, which also possibly lowers the chance of the dead center in the data

of the small intensity range. Generally, the implementation of the proposed ORFCM is as follows:
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Figure 2. Membership function generated by the ORFCM algorithm for data of intensity ranges a) 1 to 120 and b) 1

to 60.

1. Initialize the parameters ε (i.e. termination criterion) and k (i.e. number of clusters).

2. Initialize the fuzzy partition membership function uij and let t = 0.

3. Calculate the cluster center cj according to Eq. (2).

4. Let t = t+1 and compute the new membership function uij according to Eq. (6).

5. Repeat steps 3 to 4 until the condition
∥∥∥u(t+1)

ij − ut
ij

∥∥∥ < ε is fulfilled.

4. Experimental results and discussion

This section presents experimental results that demonstrate the robustness of the proposed ORFCM algorithm

over the conventional algorithms. The performance of the proposed ORFCM algorithm is evaluated using both

qualitative and quantitative analyses. This work is focused on reducing the outlier’s sensitivity in a manner to

group the data into clusters with less variance within the clusters and high variance among the clusters. A total

of 104 images have been employed to evaluate the performance of the proposed ORFCM algorithm over the

conventional KM, MKM, and FCM algorithms, and the latest state-of-the-art algorithms, namely the AFMKM,

AFKM, and NW-FCM algorithms. Among them, 6 images (namely Aircraft, Camera Man, Golden Gate, Light

House, Football, and Microscopic images) were selected to be visualized and to serve as testimonials to the

capability of the ORFCM, as shown in Figures 3a–3f, respectively.

Figure 3. Original images named a) Aircraft, b) Camera Man, c) Golden Gate, d) Light House, e) Football, and f)

Microscopic.
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4.1. Qualitative analysis

Qualitative analysis has been proven useful to validate the ROIs from an unwanted background on the scale

of human visual perception. In short, it functions to provide a visual opinion about the performance of the

proposed clustering algorithm. The images in Figure 3 were implemented with the proposed ORFCM and

conventional algorithms with 3, 4, and 5 clusters, as shown in Figures 4, 5, and 6, respectively. In Figures

4–6, the images in the first row are the original images, and the 2nd, 3rd, 4th, 5th, 6th, 7th, and 8th represent

the resultant images after the application of the KM, MKM, FCM, AFMKM, AFKM, NW-FCM, and ORFCM

algorithms, respectively. Arrows are used throughout to indicate significant differences.

4.1.1. Image segmentation in 3 clusters

Figure 4 shows the segmentation results of the tested images in 3 clusters. In Figure 4, the ORFCM images have

more homogeneous background regions when a comparison is drawn with the other conventional algorithms.

Specifically, the clouds in the Aircraft, Light House, and Golden Gate images, for example, are more uniformly

segmented in the ORFCM when compared to the scattered segmented results of the conventional algorithms.

In addition, the ORFCM reasonably segments the text written on the bottom of the Aircraft and the ropes

of the Golden Gate images. The laces of the Football, as shown in Figure 4, are also successfully clustered

by the ORFCM, which is not observed in the KM, MKM, FCM, AFKM, and NW-FCM. In the image named

Camera Man, except for the ORFCM and AFMKM, all of the other algorithms fail to cluster the background

regions smoothly. The building structure in the Camera Man image is successfully segmented by the ORFCM,

NW-FCM, and FCM. In Figure 4, for all of the tested images, the MKM, AFKM, and AFMKM show the worst

results in terms of the brightness and sharpness. The bad contrasts provide evidence that the MKM, AFKM,

and AFMKM fail to segment images with low intracluster variance and large intercluster variance. Particularly,

the AFKM has completely failed to segment any object in any of the images, except in the Microscopic and

Aircraft images. Although the FCM, NW-FCM, and ORFCM show brighter and sharper resultant images, only

the ORFCM successfully clusters the ROIs (objects) from unwanted backgrounds in the first 5 images. For

the Microscopic image that contains a short range of intensity levels, the performance differences between the

ORFCM, NW-FCM, and FCM are not easily identified. When compared to the FCM, NW-FCM, and ORFCM,

the KM, MKM, AFKM, and AFMKM fail to cluster the texture in the final image labeled Microscopic.

4.1.2. Image segmentation in 4 clusters

The tested images were also segmented into 4 clusters, as shown in Figure 5. Based on Figure 5, the ORFCM has

reasonably segmented the ROIs with all of the significant texture features (e.g., shapes, edges). For the results

obtained by the ORFCM, text on the tail, edges of the building, and ropes of the bridge with the bridge deck rig

are clearly observed in the Aircraft, Camera Man, and Golden Gate images, respectively. Furthermore, in the

Aircraft, Light House, Camera Man, and Golden Gate images, the ORFCM produces a uniform background,

particularly for the sky, where it is clustered in fewer regions when compared to the other algorithms. The NW-

FCM and AFKM algorithms fail to segment the laces in the Football image, which are successfully segmented

by the other algorithms. In addition, the AFKM produces the worst results for all of the images and segments

the images into fewer clusters than the initialized number of clusters. For the Microscopic image, the KM shows

the same results as produced in Section 4.1.1, which indicates the occurrence of the dead center problem. As a

result, the segmented regions are not homogeneous, with many unwanted holes.

4.1.3. Image segmentation in 5 clusters

The test images having been clustered into 5 clusters are shown in Figure 6. The results obtained favor the

performance of the ORFCM algorithm over the array of the KM, MKM, FCM, AFMKM, AFKM, and NW-
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Figure 4. Segmented images in 3 clusters after applying the 1st row: original images, 2nd row: KM, 3rd row: MKM,

4th row: FCM, 5th row: AFMKM, 6th row: AFKM, 7th row: NW-FCM, and 8th row: ORFCM.
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Figure 5. Segmented images in 4 clusters after applying the 1st row: original images, 2nd row: KM, 3rd row: MKM,

4th row: FCM, 5th row: AFMKM, 6th row: AFKM, 7th row: NW-FCM, and 8th row: ORFCM.
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Figure 6. Segmented images in 5 clusters after applying the 1st row: original images, 2nd row: KM, 3rd row: MKM,

4th row: FCM, 5th row: AFMKM, 6th row: AFKM, 7th row: NW-FCM, and 8th row: ORFCM.
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FCM algorithms. The aforementioned outcomes of Sections 4.1.1 and 4.1.2 are observed here, as well. In the

Golden Gate image, the ropes are well segmented by the ORFCM when compared to the others. The uniformly

clustered objects are observed by the ORFCM in the Camera Man image. For all of the images, the AFKM

completely fails to segment the object of interest and produces dead centers. In the Football image, the MKM

and NW-FCM produce better performance than the other algorithms, with a more homogeneous background,

but the laces are still not completely observed on the football. Similarly, the scattered background region is

observed in the Light House and Aircraft images by the KM. These problems have successfully been reduced

by the proposed ORFCM. When compared to the KM, MKM, FCM, AFMKM, AFKM, and NW-FCM, the

ORFCM in general has clustered the best possible features of the objects, with more homogeneous regions, and

it has been able to avoid dead center problems.

4.2. Quantitative analysis

Quantitative analysis is a statistical analysis to numerically compute the algorithms’ performances. Compared

to the qualitative analysis, where the results may differ from person to person and are subjectively evaluated,

a quantitative analysis measures the performance significantly without any human dependency. In this paper,

3 quantitative methods are employed to compare the performance of the proposed ORFCM algorithm with the

conventional KM, MKM, FCM, and AFMKM algorithms.

To measure the accuracy of the proposed ORFCM algorithm over the conventional algorithms, the intra-

and intercluster variances could be calculated using a few benchmarks. The most fundamental benchmark is the

mean square error (MSE). It measures the mean of the variance within the clusters and it could be described
as:

MSE =

k∑
j=1

∑
i∈cj

∥vi − cj∥2

N
, (9)

where the N is total number of pixels in an image and vi is the pixels to be grouped in the j th cluster. The

smaller value of the MSE reflects that the clusters contain more similar data. The findings are tabulated in

Table 1 for the 5 images used in Section 4.1 and the best scores are in bold font. For the measurement of the

variance among the clusters, the following formula is applied:

INTER = mean∀q ̸=r(∥cq − cr∥2), (10)

where q = 1, 2..., (k-1) and r = (q+1). . . , k.

Here, the intercluster variance is measured by taking the mean of the differences among the clusters’

centers. The large value of INTER shows that the grouped data in the clusters are significantly different from

those of the other clusters. The results obtained are tabulated in Table 2 and the best scores are in bold font.
The average value of the INTER and MSE for 104 test images with 3, 4, and 5 clusters are tabulated in Table
3.

In this paper, the validity Xie-Beni (VXB) function is also applied to measure the compactness and

separation of the clustered data by the fuzzy-based algorithms [27]. The ratio of the compactness and separation

of the data describes the VXB value, which should be smaller if the clusters are nonoverlapping and significantly

different from the other clusters. It is defined as:

V XB =

N∑
i

k∑
j

u2
ij ∥vi − cj∥2

N min∀q ̸=r ∥cq − cr∥2
. (11)

The VXB scores for the selected images are tabulated in Table 4.
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Table 1. Intracluster variance (MSE) of the 6 segmented images.

Algorithm Image
MSE for the clusters

3 4 5

KM

Aircraft 206.035 131.256 84.4880

Camera Man 236.261 162.763 106.135

Golden Gate 100.942 48.4598 32.0318

Light House 305.610 207.768 112.347

Football 330.295 116.033 76.8388

Microscopic 82.5460 82.5460 35.3870

MKM

Aircraft 229.003 240.297 101.150

Camera Man 1281.65 1069.83 146.829

Golden Gate 105.953 103.858 39.5253

Light House 721.010 229.465 328.044

Football 499.047 342.259 404.263

Microscopic 35.9880 21.9970 18.9450

FCM

Aircraft 207.086 133.492 84.7713

Camera Man 237.715 163.484 106.776

Golden Gate 98.1213 48.3278 32.7767

Light House 307.394 209.735 113.640

Football 339.695 116.365 77.6773

Microscopic 35.7275 19.9714 13.0037

AFMKM

Aircraft 961.559 247.730 170.131

Camera Man 1174.86 194.612 130.690

Golden Gate 158.192 123.065 159.703

Light House 4599.98 217.871 193.651

Football 252.016 168.422 113.12

Microscopic 76.7827 77.5768 17.5840

AFKM

Aircraft 687.130 724.974 6340.66

Camera Man 4069.05 5799.31 3279.34

Golden Gate 750.551 640.484 834.584

Light House 4399.75 2771.23 3519.53

Football 1857.27 1524.92 2269.29

Microscopic 101.793 294.237 333.631

NW-FCM

Aircraft 240.639 161.453 124.274

Camera Man 252.602 179.856 139.869

Golden Gate 157.000 114.840 40.1922

Light House 307.383 377.89 321.345

Football 387.831 331.106 283.184

Microscopic 41.0898 25.5013 20.0310

ORFCM

Aircraft 205.607 129.474 84.5635

Camera Man 236.116 160.843 105.993

Golden Gate 92.6246 48.0506 31.9101

Light House 305.593 189.828 112.032

Football 230.773 115.514 76.3284

Microscopic 35.3870 19.8858 13.1373
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Table 2. Intercluster variance (INTER) of the 6 segmented images.

Algorithm Image
INTER for the clusters

3 4 5

KM

Aircraft 78.6666 77 76.8

Camera Man 98.6666 84.1666 83.6

Golden Gate 48 47 43.4

Light House 103.333 89.3333 87.4

Football 66.6666 102.5 90

Microscopic 35.3333 30.3333 33.2

MKM

Aircraft 74.6666 70 74.2

Camera Man 65.3333 52.8333 72.8

Golden Gate 45.3333 45.1666 42.4

Light House 45.3333 74.8333 64.4

Football 41.3333 62.8333 36

Microscopic 26.6666 24.3333 27.4

FCM

Aircraft 80 78.5 78

Camera Man 100.666 85 84.4

Golden Gate 52 48.5 44.2

Light House 104 91.6666 89.4

Football 60 105.5 92.6

Microscopic 28.6666 26.8333 25.4

AFMKM

Aircraft 91.3333 75.3333 60

Camera man 49.3333 95.1666 88.4

Golden Gate 34.6666 34.1666 21

Light House 23.3333 102.5 94.4

Football 125.333 111.5 112.6

Microscopic 20.6666 15.5 28.6

AFKM

Aircraft 82.666 55.166 24.4

Camera Man 88.666 44.333 22

Golden Gate 26.666 20.5 12.4

Light House 74 47.833 85.8

Football 128 81.833 51

Microscopic 16.666 11.666 18.4

NW-FCM

Aircraft 70 68 63.8

Camera Man 97.333 82 72.8

Golden Gate 29.333 28.5 37

Light House 104 47.333 46.6

Football 48.666 43.166 44.2

Microscopic 23.333 21.333 19.8

ORFCM

Aircraft 80.666 80 78

Camera Man 98.666 83.8333 84.8

Golden Gate 50.666 48.166 42.2

Light House 104 95.5 87.8

Football 118 103.166 90.8

Microscopic 28 27 25.6
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Table 3. Average of the INTER and MSE for 104 segmented images.

Algorithm
Average INTER for the clusters Average MSE for the clusters

3 4 5 3 4 5

KM 84.62 82.68 80.33 301.4 180.4 114.9

MKM 71.30 67.69 67.28 490.1 314.0 227.6

FCM 83.05 79.88 77.51 294.9 170.2 108.8

AFMKM 84.89 84.15 75.99 941.9 452.5 257.6

AFKM 55.78 46.31 43.23 3710.3 3511.4 3512.2

NW-FCM 65.61 61.28 59.86 372.5 241.6 172.2

ORFCM 82.54 80.17 77.01 292.3 167.9 107.8

Table 4. VXB of the 6 segmented images.

Algorithm Image
VXB for the clusters

3 4 5

FCM

Aircraft 0.22820 0.49276 0.546751

Camera Man 0.28890 0.43875 0.47128

Golden Gate 0.37485 0.41863 0.48109

Light House 0.25844 0.59068 0.49493

Football 0.51325 0.44267 0.47202

Microscopic 0.31238 0.36032 0.39321

AFMKM

Aircraft 1.38437 2.96964 11.8139

Camera Man 5.10747 0.57515 0.39228

Golden Gate 1.67189 11.0739 2.07037

Light House 9.15403 0.38327 0.60250

Football 0.21405 0.47198 0.75681

Microscopic 1.38044 4.07399 0.61558

AFKM

Aircraft ∞ ∞ ∞
Camera Man ∞ ∞ ∞
Golden Gate 3.95 × 1053 ∞ ∞
Light House ∞ ∞ ∞
Football 1.74 × 1054 ∞ ∞

Microscopic ∞ ∞ ∞

NW-FCM

Aircraft 0.7699 1.2540 1.6340

Camera Man 0.599 1.0419 1.3862

Golden Gate 1.03 1.0557 1.1681

Light House 0.258 1.1999 1.5284

Football 0.932 1.1851 1.3131

Microscopic 0.6243 0.7628 1.0272

ORFCM

Aircraft 0.1984 0.24798 0.36345

Camera Man 0.23917 0.28623 0.30722

Golden Gate 0.27226 0.30162 0.29502

Light House 0.20878 0.29164 0.33430

Football 0.20680 0.33938 0.31954

Microscopic 0.25287 0.26253 0.27574
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Based on the experimental results in Table 1, the ORFCM is found to be better for clustering the data

with a small intracluster variance when compared to all of the other algorithms for all of the images for each

number of clusters by providing the smallest MSE values. The AFKM shows the largest MSE value for almost

all of the images. From Table 2, the results obtained show a comparable performance among all of the clustering

algorithms. The ORFCM, AFMKM, and FCM algorithms show the best results alternately. Particularly for

the Microscopic image, the KM produces quite similar INTER values for all of the clusters, which confirms that

the Microscopic image is segmented into the same number of clusters for all of the cases. This phenomenon can

be further seen from Figures 4–6, where the KM has segmented the Microscopic image into 3 clusters for all

of the cases. This shows the occurrence of the dead center problem in the KM algorithm. The average of the

MSE and INTER for the 104 test images is shown in Table 3. The lowest average values of the MSE confirm

the robustness of the ORFCM to reduce the outlier effect and group the data with a small intracluster variance.

Furthermore, the algorithm that has been ranked third after the AFMKM and KM, the ORFCM, is also shown

to have a good capability in demonstrating a large intercluster variance.

Next, the VXB values are measured to prove the robustness of the ORFCM to cluster data in a less

overlapping region. Table 4 shows that the ORFCM produces smaller VXB values for all 6 of the selected

images at all of the selected values of the cluster numbers when compared to the conventional FCM, AFMKM,

AFKM, and NW-FCM. After the ORFCM, the FCM, NW-FCM, and AFMKM are ranked 2nd, 3rd and 4th,

respectively. In the AFKM, the infinity value of the VXB for almost all of the images indicates that the centers

of 2 or more clusters have the same intensity. Due to this phenomenon, one of those clusters may get all of

the members, while the others will have no members and become empty clusters or dead centers. Table 5

tabulates the statistical summary of the VXB that favors the ORFCM algorithm’s performance over the other

algorithms for all of the cluster numbers. In addition, graphs have been drawn between the ORFCM and its

closest competitor, the FCM algorithm, to describe the ORFCM’s effectiveness with 3, 4, and 5 clusters. In

Figure 7, it is found that the ORFCM defines the least overlapping region for all of the images and for all of

the cluster numbers, which indicates its robustness to reduce the outlier’s effect.

Table 5. Statistical summary of the VXB for 104 segmented images.

Algorithm Summary of the statistics
VXB for the clusters

3 4 5

FCM

Average 0.3347 0.3860 0.4196

Maximum 0.6318 0.6282 0.6474

Minimum 0.1421 0.1690 0.1930

AFMKM

Average 2.4219 2.9044 1.8417

Maximum 34.582 46.849 17.620

Minimum 0.1505 0.1495 0.1667

AFKM

Average ∞ ∞ ∞
Maximum ∞ ∞ ∞
Minimum 3967.9 9.57 × 1053 6.3 × 1054

NW-FCM

Average 0.7160 1.0145 1.4318

Maximum 1.3683 2.9031 24.573

Minimum 0.2539 0.3504 0.3894

ORFCM

Average 0.2593 0.2796 0.2920

Maximum 0.3619 0.4030 0.4131

Minimum 0.1217 0.1239 0.1431
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Figure 7. The VXB validity comparison between the FCM and ORFCM in clusters a) 3, b) 4, and c) 5.

In addition, the processing time of the proposed ORFCM and other conventional clustering algorithms

is also measured. The processing time for the selected images is tabulated in Table 6, whereas the average

processing time is tabulated in Table 7. Except for the AFKM, all of the selected fuzzy-based clustering

algorithms require a long processing time to segment the image when compared to the hard membership

clustering algorithms (i.e. KM and MKM). Among the fuzzy-based clustering algorithms, the proposed ORFCM

algorithm is ranked second, as shown in Tables 6 and 7. In general, the proposed ORFCM algorithm has

significantly segmented the images with a negligible high execution time.

1816



SIDDIQUI et al./Turk J Elec Eng & Comp Sci

Table 6. Processing time (in seconds) of the 6 segmented images.

Algorithm Image
Processing time for the clusters

3 4 5

KM

Aircraft 1.6792 1.8490 3.1467

Camera Man 0.2377 0.2058 0.5415

Golden Gate 1.2830 1.4100 3.0059

Light House 0.9189 0.9903 1.6955

Football 0.4925 0.7273 0.7749

Microscopic 0.1430 0.3296 0.8896

MKM

Aircraft 0.2495 13.688 10.483

Camera Man 0.4191 0.3744 0.7691

Golden Gate 26.678 6.3715 25.638

Light House 8.1587 0.2949 53.210

Football 12.504 39.144 15.440

Microscopic 0.2572 0.6383 1.2892

FCM

Aircraft 8.2168 11.645 14.121

Camera Man 1.7982 3.2204 3.3894

Golden Gate 8.9701 8.9906 10.784

Light House 10.496 14.268 12.424

Football 6.9715 8.2329 11.603

Microscopic 2.3315 3.2810 3.8109

AFMKM

Aircraft 0.5297 55.366 0.8027

Camera man 0.2117 5.5066 15.063

Golden Gate 19.438 0.5904 0.8132

Light House 0.2634 11.491 24.379

Football 0.4349 0.5836 7.9003

Microscopic 2.2732 4.2566 11.201

AFKM

Aircraft 0.3223 0.4846 0.6088

Camera Man 0.1003 0.1357 0.1576

Golden Gate 0.3001 0.4394 0.5748

Light House 0.1987 0.4363 0.5639

Football 0.2011 0.1552 0.1983

Microscopic 0.2754 0.3956 0.5444

NW-FCM

Aircraft 17.637 21.286 23.232

Camera Man 3.7567 4.4886 5.2314

Golden Gate 16.390 22.326 28.312

Light House 8.8700 10.686 32.234

Football 5.4192 10.394 16.643

Microscopic 14.963 18.823 27.177

ORFCM

Aircraft 11.681 21.172 19.684

Camera Man 1.8140 2.0023 3.3127

Golden Gate 9.2304 9.9510 14.707

Light House 9.2245 9.4364 11.961

Football 7.4190 10.032 12.803

Microscopic 3.6462 3.3936 6.8116
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Table 7. Average processing time (in seconds) for 104 segmented images.

Algorithm
Average processing time for the clusters

3 4 5

KM 0.7458 1.2901 1.9996

MKM 10.248 10.621 10.718

FCM 5.9813 7.8723 10.708

AFMKM 6.9501 11.358 29.367

AFKM 0.2493 0.3528 0.4575

NW-FCM 13.744 20.071 26.453

ORFCM 6.5341 8.4583 11.732

5. Conclusion

In this paper, an ORFCM algorithm has been introduced as a modified version of the conventional FCM

algorithm. Unlike the conventional membership functions in the FCM, the proposed membership function is

less sensitive to the outlier. The ORFCM has introduced the exponent operation of the Euclidean distance

in its membership function in order to assign a lower value to any far-located point that could neutralize the

outlier’s effect. Both qualitative and quantitative analyses have been performed on the conventional clustering

algorithms and the proposed ORFCM algorithm. When compared to the conventional algorithms, the proposed

algorithm is found to be more efficient and robust against the outlier, and it can better assist in segmenting the

images with a small intracluster variance and large intercluster variance. Furthermore, the experimental results

show that the ORFCM algorithm achieves more consistent segmentation accuracy, irrespective of the number

of clusters.
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