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Abstract: In this paper, a robust sliding mode prediction model is combined with a sliding mode voltage model observer

to achieve a sensorless predictive torque control method. In order to compensate the uncertainties of the stator and rotor

resistances and the offset of measured current, sliding mode feedbacks were added to the voltage model observer. To

reduce the effect of the errors that are injected from the observer to the prediction model in the sensorless application,

the prediction model was also reinforced by a sliding mode feedback. The feedback gains for the prediction and observer

models are assigned by a robustness H∞ analysis. This method reduces the sensitivity of the sensorless predictive

algorithm to the parameter variation. In order to verify the proposed method, simulation and experimental results are

presented in a wide speed range.
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1. Introduction

The predictive torque control (PTC) method was introduced to overcome the problems of the direct torque

control (DTC) method, e.g., high torque ripple and variable switching frequency. However, the speed sensor has

been utilized in most kinds of PTC methods that were investigated to date. This is a dominant disadvantage

compared to the DTC method. The different kinds of PTC methods will be briefly reviewed below.

Direct mean torque control controls the mean value of the torque by means of predicting the slope of

the torque [1–3]. The deadbeat method calculates the voltage reference, which will direct the motor to produce

torque and flux references [4]. If a cost function, which is a function of errors of control variables, is minimized,

this method is known as model predictive control (MPC) [5]. A special kind of MPC is generalized predictive

control, in which the minimization method is based on a CARIMA model [5–7]. There is another approach for

the cost function minimization. Finite control set-model predictive control (FCS-MPC) examines all feasible

voltage vectors (VVs) in the cost function. The VV that minimizes the cost function is selected [8–12].

Since accurate prediction in all kinds of predictive methods is necessary, a speed dependent full order

model of the induction motor is used for prediction. This model is known as a prediction model. In order

to perform an accurate prediction, the measured speed has been mostly used in the prediction model to date.

Furthermore, accuracy of the observer affects the prediction accuracy because the outputs of the observer are

used in the prediction model. Therefore, in a sensorless predictive method there are 2 problems to be considered:
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1) Accurate prediction of the torque and flux without measuring the speed.

2) Accurate estimation of the torque, flux, and speed without using the measured speed.

There have been few investigations to implement PTC without using the speed sensor. In [13], a sensorless

deadbeat control was proposed. Though the full order observer was utilized, because of the weak robustness of

the deadbeat method [14], this method was not reliable for the sensorless application. Saliency based sensorless

PTC method was used for the reluctance motor in [15]. The problem of parameter sensitivity was solved by

means of the techniques based on the reluctance motor characteristic [16]. In [17–19], a sensorless predictive

current control was used in the field oriented control (FOC) method. The speed estimation was performed by

Kalman filter in [18]. The method that was introduced in [19] utilizes the reduced order observer for the flux and

speed estimation and it implements a sensorless predictive current control. Though the reduced order observer

has less complexity and it has a low calculation burden, it can easily be affected by the offset and parameter

variation. In [20], the offset and inverter model compensation techniques were used in order to improve the

performance of the sensorless PTC method. In this method, an accurate model of the inverter and a method

for parameter adaptation are needed. A closed loop reduced order observer was proposed in [17] for a predictive

current control in the FOC method.

In this paper, a robust closed loop sliding mode reduced order observer is used for the sensorless PTC

method. Feedback gains are assigned by H∞ analysis. Furthermore, in order to compensate the errors that are

injected from the sensorless observer to the prediction model, the model is reinforced by sliding mode robust

feedbacks. By using the proposed method, the sensitivity of the sensorless PTC method to the parameter

variation and measurement offset is reduced and the need for parameter adaptation is eliminated. The robustness

is one of the main challenges in the sensorless PTC methods because both prediction and observer models are

influenced in sensorless application. The proposed method increases the accuracy of the estimation of the flux,

torque, and speed, and it also decreases the sensitivity of the prediction model to the errors that are injected

from the observer model.

2. Robust reduced order observer

Since the accurate prediction of the controlled states depends on the accurate estimation of the states (flux and

torque) in present time, the accuracy of the observer for sensorless predictive method is critical. It should be

noted that in the PTC method, the stator flux has to be estimated in addition to the speed. This is opposite

to the FOC method. Therefore, the methods that are not dealt with through a model based observer, such as

the methods that were introduced in [21] and [22], are not considered in this paper. Although the full order

observer, which was introduced in [23] and [24], considers the full dynamic model of the motor that increases

the accuracy of the model, there are 2 drawbacks when it is used in sensorless applications:

1. The full order observer is not inherently sensorless and it needs speed adaptation.

2. It increases the complexity of the control algorithm. Therefore, combination of this method with the

complex control methods, such as predictive control, increases the processor’s price.

Hence, if the problems of the voltage model observer are solved, it is preferred that it is used for the

sensorless PTC method. The voltage model observer is a reduced order observer. It has been used as an open

loop observer prevalently. Therefore, it is extremely vulnerable to parameter variation and current offset. In [20]

and [25], the accurate model of the inverter, the parameter adaptation, and the offset compensation techniques

are used to maintain the observer’s robustness. However, the access to the accurate model of the power switches
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is necessary. Besides, the parameter adaptation could cause a cumulative error. In [17], the closed loop voltage

model observer is proposed and it is used for sensorless predictive control. In this paper the feedback gains of

the closed loop reduced order observer are adjusted by the H∞ method. In order to increase the robustness, a

sliding mode feedback is used.

The state space equations of the induction motor in stationary frame are given by:

Ẋ = A X + B U, (1a)

Y = C X, (1b)

X =

[
ψ̄s

ψ̄r

]
, U = V̄s, Y = Īs, (1c)

A =

[
− Rs

σLs

RsLm

σLsLr
RrLm

σLsLr

−Rr

σLr
+ jωr

]
, (1d)

B =

[
I
0

]
, (1e)

C =
[

Lr

σLsLr

−Lm

σLsLr

]
, (1f)

where ψ̄s is the stator flux; V̄s and Īs are the stator voltage and current, respectively; and Rs is the stator

resistance. Ls, Lr , and Lm are the stator, rotor, and mutual inductances, respectively, and σ = 1−L2
m

/
LsLr .

ωr is the rotor speed.

In the voltage model observer, the first differential equation is used for speed and flux estimation. The

sliding mode feedback has been proposed for the full order observer before in [24]. In this paper, this idea is

proposed for the voltage model observer as below.

d

dt
ˆ̄ψs = − Rs

σLs
ˆ̄ψs +

RsLm

σLsLr

ˆ̄ψr + V̄s +K sgn (Y − Is) (2)

Here, the superscript ∧ indicates the calculated variables and the variables without this superscript are measured

variables.

The rotor flux should be calculated via a nondifferential equation, as follows:

ˆ̄ψr =
1

Lm

(
Lr

ˆ̄ψs − σ Ls Lr Īs

)
. (3)

The synchronous speed is calculated from the rotor flux, as follows:

ω̂s =
d

dt

(
arctan

(
ψ̂rq

ψ̂rd

))
=

ψ̂rd (k − 1) ψ̂rq (k)− ψ̂rq (k − 1) ψ̂rd (k)

ts

∣∣∣ψ̂r (k)
∣∣∣2 , (4)

where ω̂s is the estimated synchronous speed, k is the number of sample, and ts is the control interval.

The rotor speed is calculated by subtracting the slip speed from the synchronous speed.

ω̂r = ω̂s −
Rr T̂

3 p
4

∣∣∣ψ̂r (k)
∣∣∣2 (5)
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Here, ω̂r is the estimated rotor speed, Rr is the rotor resistance, p is the number of pair poles, and T̂ is the

estimated torque, which is calculated as follows:

T̂ =
3p

4
ˆ̄ψs × ˆ̄Is. (6)

In order to achieve a robust sensorless observer without parameter adaptation, feedback gains can be calculated

by means of the H∞ analysis. For the reduced order observer, the absolute error approximation method can

be used [26].

min
K

∥ G (s) − Gr (s) ∥∞ (7)

Here, G (s) and Gr (s) are the transfer function of induction motor model and the reduced order closed loop

observer model, respectively.

By using the balanced truncation method, which is introduced in [26], Eq. (7) can be solved by means

of the following equation:

∥ G (s)−Gr (s) ∥∞ ≤ 2 × ( hr+1 + · · ·+ hn ) , (8)

where hi is the ith Hankel singular value of the main system and r and n are the orders of the reduced order

and full order model, respectively. In the case of the induction motor model and voltage model observer, n =2

and r =1. Since Hankel singular values of the induction motor model are speed dependent, the minimum

value of h2 among the values for a wide speed range should be used in Eq. (13). Figure 1 shows the Hankel

singular values variation when the speed is changed from 0 to a nominal value for a 2.2 kW induction motor

(parameters of the motor will be elaborated on later). It can be seen that h2 has the minimum value at zero

speed. Therefore, the most critical speed, from the robustness point of view, is zero speed. Therefore, Eq.

(13) should be solved with h2 = 0.7. Solving Eq. (13) by means of the Doyle–Glover algorithm, which was

introduced in [26], for the test motor gives the robust gain as K = 5.1272 +j 12.8180.
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Figure 1. Hankel singular values’ variation with speed change.

3. Robust closed loop prediction model

Despite all of the techniques that have been proposed to reinforce the accuracy of the reduced order observer,

the estimation error for the speed and flux that are injected into the prediction model can affect the prediction

accuracy in sensorless application. In this paper a robust closed loop prediction model is proposed to reduce
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the sensitivity of the prediction model to the errors that are being injected from observer.

ˆ̄ψs [k + 1] = ˆ̄ψs [k] − ts Rs Īs + ts V̄s + ts K1 sgn
(
ˆ̄Isp − Īs

)
ˆ̄Is [k + 1] =

{
tsRr

σLsLr
− j

ω̂rts
σLs

}
ˆ̄ψs [k] +

{
tsRs

σLs
+

(
1− tsRr

σLr

)
+ jω̂rts

}
Īs (9)

+
ts
σLs

V̄s + ts K2 sgn
(
ˆ̄Isp − Īs

)
Here, sgn is the sign function and ˆ̄Isp is the last predicted current. Note that ˆ̄ψs and ω̂r are estimated flux

and speed, respectively, which are received from observer.

By applying the predicted stator flux and stator current, the next step torque can be calculated as follows:

T̂ ( k + 1 ) =
3p

4

{
ψ̂sd (k + 1) Îsq (k + 1) − ψ̂sq (k + 1) Îsd (k + 1)

}
. (10)

Since the closed loop prediction model has not been investigated before, calculating the feedback gains will be

a new challenge. In order to assign these gains in the closed loop prediction model, the investigations on the

gains of the closed loop full order observers are contemplated. In [27], the Lyapunov theory, and in [28], the

pole placement method are used. With the pole placement method the dynamic behavior of the model can be

tuned. However, the robustness of the model is not considered. Therefore, parameter adaptation was utilized

in [29].

In this paper, a combination of the pole placement method and H∞ theory is proposed to calculate the

gains of the closed loop predictive model. The poles are shifted to the left and the amount of shift is calculated

by the robustness theory to reduce the sensitivity of the closed loop model to the variation of the resistances

and the speed estimation error.

The measured current and the feasible VVs are considered as the inputs of the prediction model.

Therefore, the uncertain closed loop prediction model can be explained as follows:

Ẋ = (A′ + ∆A′) X + B′ U, (11a)

Y = C ′ X, (11b)

X =

[
ˆ̄ψs

ˆ̄Is

]
, U =

[
V̄s
Īs

]
, Y = ˆ̄Is, (11c)

A′ =

[
0 −Rs +K1

Rr

σLsLr
− j ω̂r

σLs

−Rr

σLr
− Rs

σLs
+ jω̂r +K2

]
, (11d)

∆A′ =

[
0 −∆Rs

∆Rr

σLsLr
− j∆ω̂r

σLs

−∆Rr

σLr
− ∆Rs

σLs
+ j∆ω̂r

]
, (11e)

B′ =

[
1 −K1
1

σLs
−K2

]
C ′ =

[
0 1

]
, (11f)

where ∆Rs and ∆Rr are the errors for the stator and rotor resistances, and ∆ω̂r is the speed estimation error.
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The model poles can be shifted to the left by feedback gains [30,31]. This method guarantees that the

poles of the model remain in the stable region by the speed variation.

For pole shifting, by the amount of Ksh , feedback gains are calculated as below:

k11 =
[
K2

sh
Rs σ as ar +K

sh
Rs σ as ar (as + ar) + K

sh
ω2 Rs as

] /
f, (12a)

k12 =
[
as ω

(
K2

sh
Rs +K

sh
Rs (as + ar)

)
−K

sh
Rs σ as arω

] /
f, (12b)

k21 = 2 Ksh, (12c)

k22 = 0, (12d)

where

as =
Rs

σLs
, ar =

Rr

σLr
, (12e)

f = R2
s σ

2 a2s a
2
r + ω2 a2s. (12f)

However, the variation of the poles in the case of the parameter estimation error or the speed estimation error

is not considered. Therefore, the robustness of the method is not guaranteed. In order to show the effect of the

stator and rotor resistances’ uncertainties, Figure 2 shows the relocation of the shifted closed loop poles after

100% variation of the stator and rotor resistances simultaneously.
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Figure 2. Root locus of model.

In this paper, the shifting amount is calculated via the H∞ method to achieve the minimum sensitivity

of the closed loop system to the uncertainties. For this purpose, Ksh should satisfy the following equation [26].

min
Ksh

∥∥∥ C ′ (s I − A′)
−1

B′
∥∥∥
∞

(13)

Since the maximum values for the errors of the stator and rotor resistances, and the estimated speed error, can

be forecasted, the suboptimal solution can be replaced instead of Eq. (13):

∥∥∥C ′ (sI −A′)
−1

B′
∥∥∥
∞

<
1

∥∆A′∥∞
. (14)

In this paper, the maximum error for the stator and rotor resistances is assumed to be 100% and the maximum

of the speed estimation error is set to 50%.
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Considering Eq. (11) and Eq. (12) it is clear that the solution of Eq. (14) depends on the value of the

speed. Trying to solve Eq. (14) indicates that it does not have any solution at speeds that are lower than 60

rpm (2% of nominal synchronous speed). The minimum pole shift that satisfies Eq. (7) is Ksh = 367.02 at

the aforementioned speed. In order to be sure that this amount of the pole shifting satisfies Eq. (14) at higher

speeds, Figure 3 shows the infinity norm of the closed loop model at different speeds. It can be seen that the

infinity norm decreases when the speed increases.
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Figure 3. Variation of infinity norms of the closed loop model at various speeds.

4. Predictive torque control method

When the next torque and stator flux are predicted without using the speed sensor, the sensorless PTC method

can be implemented. The predicted torque and stator flux are placed in the following cost function. This is a

criterion for the minimum control error.

Jn =
1

2

( ∣∣∣ T̂n (k + 1) − T ∗
∣∣∣2 + Q

∣∣∣∣ ∣∣∣ ˆ̄ψsn (k + 1)
∣∣∣2 −

∣∣ ψ̄∗
s

∣∣2 ∣∣∣∣2
)

(15)

n = 1, 2, ...., 7

Here, T̂n (k + 1) and ˆ̄ψsn (k + 1) are the predicted torque and stator flux, respectively, which are calculated by

means of a proposed prediction model considering the application of the nth voltage vector. T ∗ and
∣∣ψ̄∗

s

∣∣ are
the torque and flux references, respectively. Q is a weighting factor that determines the importance of the flux

control compared to the torque control.

In this paper, FCS-MPC is used for the cost function minimization. Therefore, all 7 possible VVs are

examined in the cost function and the best application is selected.

Combining the proposed sensorless predictive model and the sensorless observer leads to sensorless PTC.

Figure 4 shows the whole block diagram for the sensorless predictive torque control method.

5. Results

In order to verify the proposed sensorless predictive method, the simulation and experimental results are

presented. The VVs are exerted by a 2-level inverter. The Table shows the specification of the experimental

setup. The simulations are performed with the model of the experimental system. The control interval duration

is set to 100 µs.
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Figure 4. Sensorless FCS-MPC block diagram.

Table. System specifications.

Induction motor
Pn = 2.2 [kW] Rs = 2.65 [Ω]
Vn = 220 [V] Rr = 2.24 [Ω]
In = 4.61 [A] Ls = 301 [mH]
ωn = 2772 [rpm] Lr = 301 [mH]
P = 1 Lm = 291 [mH]
Tn = 7.57 [Nm] fsn = 50 [Hz]
Inverter
Vdc = 580 [V] In = 25 [A]
IGBT nominal voltage = 1200 [V] Control interval = 100 [µs]
Controlling hardware (industrial PC)
CPU = INTEL Pentium Clock frequency = 600 MHz

5.1. Simulation results

The following conditions are considered for simulations. Note that when the effect of a special uncertainty is

being investigated, extra error will be considered. The amount of the uncertainty will be determined in those

conditions.

1. 5% error for the stator resistances.

2. 5% error for the rotor resistances.

3. 0.1% offset voltage from the measured currents.

4. 1 V threshold voltage for the switches.

5. The friction factor for the whole system (fans and internal friction) is assumed to be 0.02 Nm s rad−1 .
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Figure 5 shows the transient response of the speed step for the proposed sensorless PTC. The accuracy

of the method can be seen here. In order to investigate the robustness of the proposed method against the

stator and rotor resistances’ variation, these resistances are varied simultaneously and the results are shown in

Figure 6. The speed is kept low for studying the most sensitive region. It can be seen that when both observer

and prediction models are open loop, the method keeps its robustness up to 18% error for the stator and rotor

resistances. If the closed loop models are used but the feedback gains are assigned by the pole shifting method,

the method will be robust until 22% error, and when the robust gains assignment is used it keeps its robustness

up to 38% error.
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Figure 5. Speed step performance of proposed sensorless PTC: simulation results.
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Figure 6. Robustness testing of proposed sensorless PTC against stator and rotor resistance variation: simulation

results.
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One of the most serious uncertainties that affect the reduced order observer is the offset of the current
measurement. In Figure 7 this uncertainty is investigated. Here, 0.75 A is considered for the offset of the

current measurement. It is depicted that if both observer and prediction models are closed loop and robust,

the oscillations will be reduced compared to the pole shifting closed loop models.

Figure 8 shows the low speed performance of the sensorless PTC with 3 strategies. It can be seen that

at 200 rpm (6.6%) when the robust closed loop method is used, the method is robust. When it switches to the

pole shifting closed loop method, despite some oscillations, the robustness is still kept. However, it is unstable

when the open loop method is applied.
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Figure 7. Performance of proposed sensorless under offset

condition: simulation results.

Figure 8. Low speed performance of sensorless PTC:

simulation results.

5.2. Experimental results

Figure 9 shows the experimental setup. An industrial PC, which includes a Pentium processor, is used. The

dead-time for the inverter is set to 2.5 µs. The integrated power module PM25RSB120 is used for the 2-level

voltage source inverter.

In order to have a short time delay and also avoid the measurement noise, the switching is done in the

middle of the control interval. The sequence of the actions in every control interval is as follows:

1. Running the specified timer.

2. Taking the measured samples.

3. Performing all computations of the algorithm.

4. If the timer’s value has passed the prescribed point, applying the selected VV and setting the timer’s

value to zero.
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Figure 9. Experimental setup.

In this paper, the switching instant is set to 25% of the control interval. That means the delay time will

be 25 µs. If the computations take more than this time, the switching will take place after the finishing of

the computations. Since the delay time is less than a complete control interval, there is no need for delay time

compensation.

Figure 10 shows the positive and negative speed step responses of the proposed sensorless PTC method.

In Figure 11 the low speed performance of the proposed sensorless PTC method is depicted. It can be seen that

the method is stable at 220 rpm (7.3%).
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Figure 10. Speed control for proposed sensorless PTC: experimental results.
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Figure 11. Low speed performance of proposed sensorless PTC: experimental results.

In order to investigate the transient response to the torque step under the load condition, Figure 12 shows

the transient torque response when the load torque is 3 Nm.
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Figure 12. Torque step response of proposed sensorless PTC: experimental results.

6. Conclusion

A novel robust sensorless PTC method with a reduced order observer was proposed. A closed loop sliding mode

reduced order observer was proposed and used for the speed and flux estimation. The feedback gains of this

observer were assigned with the robustness H∞ analysis. The outputs of the observer were used in a proposed

closed loop sliding mode full order prediction model to predict the torque and flux. Using the robust closed

loop models for both the observer and prediction models eliminates the need for the speed or the parameter

adaptation in the observer or the prediction model.

The proposed method was verified by the simulation and experimental results. The results show that

the method is robust in the low speed range up to 7.3%. The method keeps its robustness against the stator

and rotor resistances’ error up to 38% in a low speed region. The method can compensate 0.75 A offset for the

current measurement.

This method can be a better alternative for the DTC method because it has the advantages of DTC and

PTC together.
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