
Turk J Elec Eng & Comp Sci

(2013) 21: 1603 – 1614

c⃝ TÜBİTAK

doi:10.3906/elk-1109-40

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Opposition-based discrete action reinforcement learning automata algorithm case

study: optimal design of a PID controller

Fatemeh MOHSENI POUR,∗ Ali Akbar GHARAVEISI
Department of Electrical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman,

Kerman, Iran

Received: 20.09.2011 • Accepted: 09.04.2012 • Published Online: 02.10.2013 • Printed: 28.10.2013

Abstract: In this paper, the discrete action reinforcement learning automata (DARLA) method is expressed. The

performance of the reinforcement learning algorithm is improved using the opposite concepts. This is an automatic

method that can find the global optima without any knowledge about the parameters of the research space. To find the

global optimal point, the interval that contains the optima is determined by DARLA as the cost function is minimized.

In the opposition-based DARLA method, learning is performed based on opposition. The main idea in the opposition

is to consider the search direction and its opposite at the same time to reach the candidate solution. This concept

has increased the convergence rate and accuracy, and this algorithm can be used for many real-time applications. To

prove this, the opposition-based DARLA is proposed to design a proportional-integral-derivative (PID) controller for the

automatic voltage regulator system. The experimental results for the optimizing PID controller problem demonstrate

the superior performance of the proposed approach.

Key words: Opposite concepts, discrete action reinforcement learning automata algorithm, automatic voltage regulator

system

1. Introduction

The reinforcement learning method is a computational method for goal-directed and decision-making prob-

lems. The proposed method is different from other intelligent computational methods because it relies on the

interaction with the environment, considering uncertainty and a nonexact model of the environment.

This process is performed by a reinforcement learning agent, in a framework that consists of 3 elements:

state, decision, and reward. Although this framework is very simple, it covers a wide range of artificial

intelligence problems. This method is based on the action–reaction concept while considering uncertainty.

To increase the probability of finding better points, an automaton based on the probability density functions

and manipulating them is applied [1,2].

In this paper, the discrete action reinforcement learning automata (DARLA) method is expressed. This

method has a main disadvantage; it is a single-point search algorithm, so the convergence rate is not good for

real-time problems. In this paper, the opposition concept is used to improve the accuracy and convergence rate.

In the simulation part, first, both DARLA and its improved version have been applied to some benchmark

functions mentioned in the Appendix. According to this comparison, the development and improvement of this

algorithm is discussed, and then the proposed method is used to design a proportional-integral-derivative (PID)

∗Correspondence: fomopo1986@yahoo.co.uk

1603

MOHSENI POUR and GHARAVEISI/Turk J Elec Eng & Comp Sci

controller for an automatic voltage regulator (AVR) system. For a stable electrical power service, it is very

important to make the response of the AVR of its synchronous generator very efficient and fast. Due to the

simplicity and low cost of the analog PID, it is still used as the AVR controller. However, the parameters of the

PID controller are not tuned easily. In this paper, the opposition-based DARLA method is proposed to find

the optimum values of these parameters.

2. DARLA

The reinforcement learning automata method, was first presented [1,3,4] by Howell et al. in 1997 [1,5]. In this

paper, the DARLA algorithm is used. This method is based on interaction with the environment and employs

probability density functions to find the optimum value of the decision variables of the problem. The simplified

mechanism of DARLA is that if a set of the decision variables improve the system’s performance, the probability

of choosing them must be increased. The decision variables in DARLA have discrete values. Thus, for finding

the global optimal solution of a problem, the search space is divided into fine intervals. One point in each of

these intervals is selected to represent the behavior of that interval and the performance of the system at that

point is used to estimate the system’s performance over all of the points of that interval. In this paper, the

middle point of each interval is selected as the decision variable and the interval that contains the optima is

determined by DARLA.

The algorithm steps:

1. Randomly select a set of decision variables according to their cumulative distribution functions.

2. Supply the selected set to the test function.

3. Calculate the output of the test function and calculate the cost function.

4. Calculate the reinforcement signal according to the cost function.

5. Change the probability density functions using the reinforcement signal.

6. Find the cumulative distribution functions by integrating the density functions and return to step 1.

The initial probability density functions are defined as [1–4]:

f
(0)
i (d) =


1
Ni

d = 1, 2, ..., Ni

0 other
; i = 1, 2, ..., n (1)

where n is the number of decision variables and Ni is the number of intervals of the ith decision variable.

When the algorithm starts, the new set of decision variables is selected in each step according to probability

density functions and is fed into the test function. This selection is done using the cumulative probability of

each variable according to Eq. (2) [1–4]:

C
(k)
i (d) =

d∑
q=1

f
(k)
i , d = 1, 2, ..., Ni (2)

where C
(k)
i (x) is the cumulative probability of the ith decision variable in the k th iteration. After calculating

the cumulative probability, a uniform random number r ∈ (0, 1] is used to choose the decision variable or

1604

MOHSENI POUR and GHARAVEISI/Turk J Elec Eng & Comp Sci

interval number d . Obviously, the variable value that has a higher corresponding probability density has a

greater chance of being selected. After selecting the variable values in the previous step, these values are

applied to the test function or plant, and then the cost function is calculated. The cost function structure is

very important and has the main role in finding the solution of any optimization problem. Usually, the cost

function is in the form of a weighted combination of performance indices, like Eq. (3) [1–4]:

J (k) = G1P1 (Y) +G2P2 (Y) + ...+GmPm (Y) , (3)

where Gi , Pi , and Y = [y1, y2, ..., yl] are the weighted coefficient, performance index, and output vector,

respectively. In this paper, the test function is used as the cost function itself.

The DARLA structure is designed to minimize the cost function. In each iteration, when the cost function

value is calculated, it will be compared with the cost value of the previous iterations, and then the reinforcement

signal is calculated accordingly [1–4]. The reinforcement signal is the suitability criterion of the selected variable

values, so when the set of the selected values is more suitable, the value of the proposed signal is larger. For

calculating the reinforcement signal, Eq. (4) is used [1–4]:

β (J) = min

{
1,max

{
0,

Jmean − J

Jmean − Jmin

}}
, (4)

where Jmean and Jmin are the average and minimum of the previous cost values. The range of the β variation

is between 0 and 1. Cost values that are larger than the mean of the previous cost values lead to a zero

reinforcing (0), while cost values that are smaller than the mean lead to a reinforcing value equal to 1 [1–5].

After calculating the reinforcement signal, the probability density functions are manipulated proportional to

the reinforcement signal and the shapes of the probability density functions change.

One of the methods for changing the probability density function is to use the Gaussian function Q as in

Eq. (5):

Q (d, r) = λ2−(d−r)2 (5)

where the positive number λ is an effective parameter on the accuracy and convergence rate [1–4]. Probability

density functions are updated by Eq. (6), where α is used for normalizing the probability density function and

is defined as in Eq. (7) [1–4].

f
(k+1)
i (d) = α

(k)
i

(
f
(k)
i + β (k)Q

(
d, d̃i

))
; d = 1, 2, ..., Ni; i = 1, 2, ..., n (6)

α
(k)
i =

1
Ni∑
q=1

f
(k)
i + β (k)Q

(
d, d̃i

) (7)

After changing the probability density functions, the algorithm iterates. By repeating this cycle enough times,

the probability density functions will be maximized at the optimal points.

Hence, by the last iteration, in which these functions reach their maximum value, the selected points are

the optimal points. DARLA has a repetitive structure and a criterion is needed for terminating the algorithm,

so in this paper, a ‘repeating algorithm for a certain number of iterations’ is used as the terminating condition

[1–4].

1605

MOHSENI POUR and GHARAVEISI/Turk J Elec Eng & Comp Sci

3. Opposition concept

In most of the artificial intelligence algorithms, learning begins at an initial random point and moves toward

the desired solutions available. If the initial guess selects a point not too far from the optimal solution, the

algorithm converges to it quickly [6–8]. However, it is usual to begin with an initial guess much farther away

from the optimal solution. In the worst case, the optimal solution is in the ‘opposite location’ of the initial

guess, so the approximation, search, or optimization will take considerably more time or becomes intractable

[6,7,9]. Of course, without any prior knowledge, it is not possible to make the best initial guess. Logically, if

a search for the optimal solution is done in a specific direction, it must be done in the direction opposite to it

simultaneously [6–9]. Thus, if we are looking for x , then calculating the opposite value x̃ is the first step [6]. It

must be considered that opposition points are different from each other based on their calculation criteria. If the

criterion of opposition is the ‘central point’, then all of the dimensions of a specific point will be opposed, and

the result is the ‘opposite point’ or ‘absolutely opposite point’. If the opposition is done according to an axis or

a plane, then the result is called the ‘semiopposite point’, because at least one dimension remains unchanged

and the result point is not a complete opposite point; in other words, it is only partially opposed.

3.1. Opposite number

If x ∈ R is a real number defined on a certain interval, x ∈ [a, b] , then the opposite number x̃ is defined as

follows [6,8,9]:

x̃ = a+ b− x. (8)

For example, if a = 0 and b = 0 , then the opposite number is:

x̃ = −x. (9)

Similarly, when the opposite number is in a multidimensional space, it can be defined also [6,8,9].

3.2. Opposite point

If P (x1, x2, ..., xn) is a point in an n-dimensional coordinate system with x1, x2, ..., xn ∈ R ∀i ∈ {1, 2, ..., n} ,

then the opposite point of P is completely defined as P̃ (x̃1, x̃2, ..., x̃n) by its components x̃1, x̃2, ..., x̃n [6–8],

where:

x̃i = ai + bi − xi i = 1, ..., n (10)

By this definition, all of the dimensions of a specific point are opposed. While the definition in Eq. (10) is

the criterion of the opposition regarding the central point of a certain domain, the result point is called ‘the

opposite point’ or ‘the absolutely opposite point’.

3.3. Semiopposite point

The main idea in this method is to oppose according to an axis or a plane, so that at least one dimension remains

unchanged and the result point is not completely on the opposite side. This point is called the ‘semiopposite

point’. If the proposed point P (x1, x2, ..., xn) has n dimensions and each dimension can take 2 states (xi and

x̃i), then 2n points can be obtained by various combinations of states. One of these points is the main point

(P (x1, x2, ..., xn)) and another is the opposite point(P̃ (x̃1, x̃2, ..., x̃n)), so the rest of the 2n − 2 points are all

semiopposite points.

1606

MOHSENI POUR and GHARAVEISI/Turk J Elec Eng & Comp Sci

For example, for n = 2 and P (1, 0) as the main point, where x1 ∈ [0, 1] and x2 ∈ [0, 1], the set of opposite

points (including the absolutely opposite point and 2 semiopposite points) are obtained as the following:

x̃1 = a1 + b1 − x1 = 0 + 1− 1 = 0

x̃2 = a2 + b2 − x2 = 0 + 1− 0 = 1

P̄ (x̃1, x2) = P̄ (0, 0)

P̄ (x1, x̃2) = P̄ (1, 1)

}
: semi-oppsite

P̃ (x̃1, x̃2) = P̃ (0, 1) : Absolutely opposite

The opposition-based optimization can be defined using the set of opposite points.

3.4. Opposition-based optimization

Let P (x1, x2, ..., xn) be a candidate solution in an n-dimensional space, where xi ∈ [ai, bi] , ∀i ∈ {1, 2, ..., n}
[6,8]. Let f (x)be the cost function used in finding the optimal solution [6,8,9]. According to the opposite

definitions, P̃ (x̃1, x̃2, ..., x̃n)(opposite to P (x1, x2, ..., xn)) and the set of semiopposite points are calculated.

Next, in each iteration, these points are applied to the cost function f (.). Any point that has the smallest

cost function is the fitness point regarded by all of the points (main point, absolutely opposite point, and

semiopposite points), and the learning continues according to it [6–9].

The opposite definition helps the optimization algorithm to find more suitable places in the search space

and to reach the solution faster. The comparison between the main point and its opposites increases the

convergence rate by shortening the search intervals in each dimension of the search space. Considering the

interval [a1, b1] in Figure 1 [6–9], the solution for a given problem can be found by a repeated examination

of a primary guess and the counter-guess [6–9]. In Figure 1, the opposite number xo of the initial guess x is

generated [6–9]. Based on whether the estimate or its opposite is closer to the solution, the search interval can

be halved repeatedly until either an estimate or its opposite stand close enough to the solution [6–9].

k = 0 1a

1b

Solution

k = 1 1a

1b

x xo

x
k = 2 1a

2b

xo

x
k = 3 2a

2b

xo

x
k = 4 2a

2b

xo

Figure 1. Solving a 1-dimensional equation via repeatedly halving the search interval with respect to the optimality of

the estimate x or the opposite-estimate xo [6–9].

4. Opposition-based DARLA algorithm

Reinforcement learning automata algorithms are single-point search algorithms, so their convergence time is

very long. By using a set of opposite points, the convergence rate is increased. We use this concept in the point

1607

MOHSENI POUR and GHARAVEISI/Turk J Elec Eng & Comp Sci

generation part and the cost function evaluation part. In the opposition-based DARLA algorithm, instead of

selecting just one point, a set of points containing the main point, absolutely opposite point, and semiopposite

points is used for searching the problem space. The cost function is evaluated for each point of this set and the

point that has the smallest cost value is chosen as the fitness point, and the algorithm continues based on it.

A flowchart of the opposition-based DARLA is shown in Figure 2. The operation related to the opposite

concept is shown in the gray block.

Start ith

iteration

Choose the random interval of

decision variable ()im between the

half of intervals (the first half)

[]iiii
T

mmmA ~=

[]iiii
T

jjjJ
~

=

No

Yes

Yes

Calculate the opposite and

semiopposite of im

()ii mm ,~

T
iA are applied to the test

function or plant

Comparison between the cost values

and choosing the fitness interval by

the minimum cost function

[]()pp ii jm

Is the selected

value better than

previous one?

Calculate the reinforcement signal

iβ according to []pp ii jm and

change probability density functions

The finishing

criteria?

(repeating algorithm

for a certain number

of iterations)

Start next

iteration

((i+1) th)

like i th

Calculate the cost function:

)(ii YFJ =

[]iii
T
i yyyY ~= No

Finish the

algorithm and

finding optimal

point

Figure 2. The flowchart of the opposition-based DARLA for the ith iteration.

5. Simulation

5.1. Benchmark functions

The proposed algorithm (DARLA) and its improved version (opposition-based DARLA) are applied to some

benchmark functions. These test functions and their properties are summarized in Table 1 [10]. There

are 2 unimodal (F1 − F2) and 6 multimodal (F3 − F8) functions, among which 4 of them are nonseparable

(F2, F3, F5, F8) and 4 are separable (F1, F4, F6, F7) [10].

1608

MOHSENI POUR and GHARAVEISI/Turk J Elec Eng & Comp Sci

1609

MOHSENI POUR and GHARAVEISI/Turk J Elec Eng & Comp Sci

The results are given in Table 2 and the values of the cost function (which are test functions themselves)

are shown in Figures 3–10.

The symbols used in Table 2, Jmin and C
(k)
i (d) =

d∑
q=1

f
(k)
i , d = 1, 2, . . . NiTsim , are the smallest value of

the performance index (the cost function) and the simulation time, respectively. In Table 2, m is the optimal

interval and iteration is the iteration in which the optimal interval is obtained.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

Iteration

F
1

Opposition-based DARLA

DARLA

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

Iteration

F
2

Opposition-based DARLA

DARLA

Figure 3. Performance comparison between DARLA and

the opposition-based DARLA forF1 .

Figure 4. Performance comparison between DARLA and

the opposition-based DARLA forF2 .

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
x 105

Iteration

F
3

Opposition-based DARLA

DARLA

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration

F
4

Opposition-based DARLA

DARLA

Figure 5. Performance comparison between DARLA and

the opposition-based DARLA forF3 .

Figure 6. Performance comparison between DARLA and

the opposition-based DARLA forF4 .

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

Iteration

F
5

DARLA

Opposition-based DARLA

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

Iteration

F
6

DARLA

Opposition-based DARLA

Figure 7. Performance comparison between DARLA and

the opposition-based DARLA forF5 .

Figure 8. Performance comparison between DARLA and

the opposition-based DARLA forF6 .

1610

MOHSENI POUR and GHARAVEISI/Turk J Elec Eng & Comp Sci

0 20 40 60 80 100 120 140 160 180 200
-10

0

10

20

30

40

50

Iteration

F
7

DARLA

Opposition-based DARLA

0 20 40 60 80 100 120 140 160 180 200
-1000

-900

-800

-700

-600

-500

-400

-300

Iteration

F
8

Opposition-based DARLA

DARLA

Figure 9. Performance comparison between DARLA and

the opposition-based DARLA forF7 .

Figure 10. Performance comparison between DARLA

and the opposition-based DARLA forF8 .

Table 2. A comparison between DARLA and the opposition-based DARLA.

Test function
DARLA Opposition-based DARLA

Jmin iteration Tsim Jmin iteration Tsim

F1 0 133 0.09446 0 98 0.03530
F2 0 162 0.09536 0 114 0.04118
F3 50.81 68 0.05651 0.01785 41 0.02228
F4 0.5186 199 0.05951 0 45 0.03471
F5 0.3162 200 0.057202 0.00386 164 0.01612
F6 0 182 0.058602 0 113 0.04166
F7 –0.00760 43 0.067898 0.00034 27 0.03958
F8 417.4 57 0.059541 416 42 0.5621

In Table 3, the results of test functions for DARLA and its opposite-based version are summarized. For

each function, the best, median, worst, mean, and standard deviation of 25 runs are presented.

All of the results have been averaged over 25 runs per test function. The best, mean, and worst in Table

3 indicate the best solution, average of the solutions, and the worst solution among the solutions of 25 runs,

respectively, and ‘Std dev’ stands for the standard deviation. These results show the robustness of the proposed

algorithm.

Table 3. DARLA and the opposition-based DARLA.

Test function F1 F2 F3 F4 F5 F6 F7 F8

DARLA

Best 0 9.8 × 10− 9 51.73 0.5327 0. 3958 2.6 × 10− 12 0.3630 –419.24

Mean 0 1.6 × 10− 7 65.77 0.7198 0.6290 3.5 × 10− 9 0.9813 –432.68

Worst 0 3.27 × 10− 7 89.65 0.95123 0.9229 9.2 × 10− 9 1.0527 –446.239

Std dev 0 1.8 × 10− 7 38.78 3.5 × 10− 2 0.2893 6.4 × 10− 9 0.271 20.234

Opposition- Best 0 0 0.02472 3.8 × 10− 18 4.6 × 10− 3 0 4.2 × 10− 4
–418.13

based Mean 0 0 2.5 × 10− 2 6.2 × 10− 14 4.1 × 10− 2 1.1 × 10− 16 6.1 × 10− 4
–423.309

DARLA Worst 0 0 0.03356 1.5 × 10− 14 4.3× 10− 2 2.7 × 10− 16 7.9 × 10− 4
–428.132

Std dev 0 0 1.1 × 10− 2 3.4 × 10− 14 2.1 × 10− 2 3.8 × 10− 16 3.2 × 10− 5
–4.3459

5.2. AVR system

The responsibility of an AVR is to hold the terminal voltage of a synchronous generator at a specified level.

Hence, the performance and stability of the AVR seriously affects the reliability of the power system. Due to

1611

MOHSENI POUR and GHARAVEISI/Turk J Elec Eng & Comp Sci

the simplicity and low cost of the analog PID, it is still used as the AVR controller. However, the parameters

of PID controller are not tuned easily [11,12]. In this paper, the AVR system under study has been modeled

based on the IEEE standard in [11] and [12]. The AVR system model controlled by the PID controller can be

expressed by Figure 11.

)(Svref
sk

s

k
k D

I
P ++

s

K

A

A

τ+1 s

K

E

E

τ+1 s

K

G

G

τ+1

s

K

R

R

τ+1

PID
Controller

Amplifier Exciter Generator

Sensor

sv

ev Rv Fv tv

+ _

Figure 11. Closed-loop block diagram of the AVR system.

Here, vs is the output voltage of the sensor, ve is the error voltage between vs and the reference input

voltagevref (S) , vR is an amplified voltage made by the amplifier, vF is a output voltage of the exciter model,

and vt is the output voltage of the generator [11,13]. The transfer functions of the AVR components can be

represented as follows: 1) PID controller model, 2) amplifier model, 3) exciter model, 4) generator model, and

5) sensor model. Their transfer functions are described in Figure 11 [11].

In this plant, Ki is a gain and τi is a time constant. The AVR parameters and some other symbols used

in this plant are mentioned in Table 4 [11,12].

Table 4. The AVR system parameters [11,12].

Description Parameter Value
Amplifier gain KA 10

Amplifier time constant τA 0.1
Exciter gain KE 1

Exciter time constant τE 0.4
Generator gain KG 1

Generator time constant τG 1
Sensor gain KR 1

Sensor time constant τR 0.01

Selection of the cost function is very important. While the suitable performance of the controller is

dependent on the quality of tracking the reference input (i.e. the unit step), the cost function must be a

combination of the important tracking parameters. Here, an effective cost function is suggested for designing

the PID controller [1,3,4]:

J = Ge

τ∫
0

te2 (t) dt+Gu

τ∫
0

u2
c (t) dt+GMMp +GsMp +GsEss +Gd sup

t

∣∣∣∣de (t)dt

∣∣∣∣ , (11)

where xi ∈ [ai, bi] is the total simulation time and must be sufficiently large, i.e. for this study, xi ∈ [ai, bi] =

20 s; e(t) is the tracking error; uc (t) is the control input; Mp is the amount of the overshoot; Ess is the

steady-state error; and the coefficients denoted as G are the weights of the cost function elements [1–4,6]. Their

1612

MOHSENI POUR and GHARAVEISI/Turk J Elec Eng & Comp Sci

values are: Ge = 10 , Gu = 1, GM = 10, Gs = 10, and Gd = 5 [1,3,4]. The normal ranges of the 3 controller

parameters that arekP , kI , and kD , considered in [11,12,14], are available and are taken as [0,1.5], [0,1], and

[0,1], respectively. However, we want to show our algorithm’s robustness and convergence rate, so these intervals

are taken as [0,10].

Each term in Eq. (11) has a special effect on the cost function;
τ∫
0

te2 (t) dt is the integral of time

multiplied by the squared error performance criterion and makes the tracking error diminish in the shortest

time [14],
τ∫
0

u2
c (t) dt limits the control energy, Mp and Ess decrease the overshoot and steady-state error,

respectively, and sup
t

∣∣∣de(t)dt

∣∣∣ makes the response track the reference input smoothly [1,3,4].

Figure 12 shows the original step response of the AVR system without a controller. In this case study,

MP% = 50.51, Ess% = 9.09, Tr = 0.2843 s, andTs = 6.153. These parameters are the overshoot percentage,

steady-state error percentage, rise time, and settling time, respectively.

The PID controller parameters are calculated by the Ziegler–Nichols method [11,12,14]:

kP = 1.02, kI = 0.31, kD = 0.1847.

The proposed algorithm (opposition-based DARLA) and the DARLA method are run and their results are given

in Table 5. The AVR system with these controller gains is then simulated and the results are shown in Figure

13.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

X: 7.483
Y: 0.9271

Time (s)

V
o

lt
ag

e
o

u
tp

u
t

X: 0.7682
Y: 1.505

X: 14.65
Y: 0.909

Step input

Without controller

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

V
o
lt

ag
e

o
u
tp

u
t

Ziegler-Nichols controller

DARLA

Opposition-based DARLA

Figure 12. Step response of the AVR system without a

controller.

Figure 13. The step response of the AVR system corre-

sponding to the Ziegler–Nichols, DARLA, and opposition-

based DARLA controllers.

Table 5. A comparison between the opposition-based DARLA and DARLA.

Iteration
DARLA Opposition-based DARLA

kP kI kD MP % Ess% Jmin Tsim kP kI kD MP % Ess% Jmin Tsim

5 0.605 0.621 0.200 19.5 0.056 31.985 1.745 2.5602 1.0204 0.910 7.6 0 24.5345 0.9273

20 0.900 0.460 0.186 2.74 0 19.5194 4.0815 1.0607 0.232 0.4148 1.24 0 16.8599 3.9862

100 0.809 0.172 0.264 0 0 10.452 15.848 0.9076 0.2156 0.3092 0 0 8.4646 9.3122

200 0.834 0.175 0.284 0 0 6.9504 25.8654 0.948 0.256 0.232 0 0 4.8695 18.9883

The symbols used in Table 5 are Jmin , Tsim , MP%, and veEss%, which represent the minimum value

of the performance index (the cost function), simulation time, percentage of the overshoot, and percentage of

the steady-state error, respectively.

1613

MOHSENI POUR and GHARAVEISI/Turk J Elec Eng & Comp Sci

The results in Table 5 and Figure 13 prove that the proposed algorithm is robust and converges fast, so

it can optimize the PID controller parameters quickly and efficiently.

6. Conclusion

In this paper, the performance of a reinforcement learning algorithm is improved using opposite concepts.

The proposed method is the opposition-based DARLA. By using opposite concepts, the convergence rate

and accuracy can be increased and the method is applicable for many real-time applications. The superior

performance, robustness, and efficiency of the proposed method have been proven through extensive simulation

results, including the comparison between DARLA and the opposition-based DARLA operation for some

benchmark functions and an AVR system. The results show that this approach is robust and suitable for

optimizing various control problems, including adaptive control systems with large-scale dimensions.

References

[1] F. Mohseni Pour, A.A. Gharaveisi, A. Afroomand, S.M.A. Mohammadi “Optimizing a fuzzy logic controller for a

photovoltaic grid independent system”, 1st Annual Clean Energy Conference on International Center for Science,

High Technology & Environmental Sciences pp. 237–241 2010.

[2] M. Kashki, A. Gharaveisi, F. Kharaman, “Application of CDCARLA technique in designing Takagi-Sugeno fuzzy

logic power system stabilizer (PSS)”, IEEE International Conference on Power and Energy, pp. 280–285, 2006

[3] G. Heydari, A.A. Gharaveisi, M. Rashidinejad, “Optimized PI controller design in motor speed control by compo-

sition reinforcement learning automata approach” 1st Annual Clean Energy Conference on International Center for

Science, High Technology & Environmental Sciences, pp. 69–76, 2010.

[4] G. Heydari, A.A. Gharaveisi, S.M.R Rafie, “Optimized PID controller design in voltage control of boost regulator

by composition reinforcement learning automata approach”, 1st Annual Clean Energy Conference on International

Center for Science, High Technology & Environmental Sciences, pp. 204–211, 2010.

[5] T. Fukuda, Y. Hasegawa, K. Shimojima, F. Saito, “Reinforcement learning method for generating fuzzy controller”,

IEEE International Conference on Evolutionary Computation, Vol. 1, pp. 273–278, 1995.

[6] HR. Tizhoosh, “Opposition-based learning: a new scheme for machine intelligence”, Proceedings of the International

Conference on Computational Intelligence for Modeling, Control and Automation, Vol. 1, pp 695–701, 2005.

[7] HR. Tizhoosh, “Opposition-based reinforcement learning”, Journal of Advanced Computational Intelligence and

Intelligent Informatics, Vol. 10 pp. 579–586 2006.

[8] HR. Tizhoosh, “Reinforcement learning based on actions and opposite actions”, International Artificial Intelligence

and Machine Learning Conference pp. 94–98 2005

[9] H.R. Tizhoosh, M. Ventresca, Oppositional Concepts in Computational Intelligence, New York, Springer, 2008.

[10] X Yao, Y Liu, G. Lin, “Evolutionary programming made faster”, IEEE Transactions on Evolutionary Computation,

Vol. 3, pp. 82–102, 1999.

[11] Z.L. Gaing, “A particle swarm optimization approach for optimum design of PID controller in AVR system,” IEEE

Transactions on Energy Conversion, Vol. 19, pp. 384–394 ,2004.

[12] H. Yoshida, K. Kawata, Y. Fukuyama, Y. Nakanishi, “A particle swarm optimization for reactive power and voltage

control considering voltage security assessment,” IEEE Transactions on Power Systems, Vol. 15, pp. 1232–1239,

2000.

[13] F. Naderi, A.A. Gharaveisi, M. Rasidinejad, “Optimal design of type 1 TSK fuzzy controller using GRLA for AVR

system”, Large Engineering Systems Conference on Power Engineering, pp. 106–111, 2007.

[14] K.H. Ang, G. Chong, Y. Li, “PID control system analysis, design, and technology”, IEEE Transactions on Control

System Technology, Vol. 13, pp. 559–576, 2005.

1614

