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Abstract: Motivated by the dynamic characteristics of underactuated mechanical systems with 2 degrees of freedom,

a decoupling adaptive fuzzy sliding mode decoupling controller (DAFSMDC) is presented in this paper. By exploiting

the universal approximation property of fuzzy logic systems and the sliding mode control method, this paper proposes

a new decoupling strategy of the system into 2 second-order subsystems and introduces an adaptive control algorithm

that guarantees the convergence of both subsystems. Since fuzzy systems are used to approximate an unknown ideal

controller, the adjustable parameters of the used fuzzy systems are updated using a gradient descent algorithm that

is designed to minimize the error between the unknown ideal controller and the fuzzy controller. Based on Lyapunov

stability theory, proofs and conditions are then given to ensure the stability of the closed-loop system. Two examples are

provided to illustrate the effectiveness and potential of the DAFSMDC technique for the stabilization of underactuated

mechanical systems.

Key words: Underactuated mechanical system, sliding mode control, fuzzy systems, adaptive control, overhead crane,

beam and ball

1. Introduction

During recent decades, an essential effort with several works has been devoted to underactuated mechanical

systems (UMSs) [1–3]. These systems are characterized by a number of actuators less than the number of

degrees of freedom (DOF) to be controlled. Furthermore, compared to fully actuated mechanical systems,

UMSs present many advantages, including lower numbers of actuators, lightening of the system, and reduction

of the cost [3]. Lately, there has been extensive and remarkable research effort into the control of UMSs and

several classifications and papers including modeling, stability, and controllability issues have been discussed,

focusing on linear control, optimal control, adaptive control, and nonlinear control theories. Moreover, because

of the certain need to deal with the presence of uncertainties in real-life control systems, a robust control theory

has been introduced for UMS control.

Sliding mode control (SMC) is an important robust control approach that was developed using a sys-

tematic scheme based on a sliding surface and Lyapunov’s stability theory [4–6]. Recently, it has been widely

applied to control of nonlinear systems [7–9]. Mainly, the effectiveness of maintaining the stability and consis-

tent performances inherent to SMC has influenced many researchers to adopt such methods [10–12]. The main
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feature of SMC is that the system’s response remains insensitive, to a certain extent, to modeling inaccuracies

and disturbances [7,8].

During the last 2 decades, there has been significant progress in the area of adaptive control design of

nonlinear systems [7,13,14]. In a general case, it is difficult to perfectly model a nonlinear system by known

nonlinear functions; therefore, the problem of controlling nonlinear systems with incomplete model knowledge

remains a challenging task. As a model-free design method, fuzzy control has found extensive applications for

complex and ill-defined plants [14–18]. One major feature of fuzzy logic is its ability to express the amount

of ambiguity in human thinking [16]. This ability is driven accordingly by fuzzy membership functions and

fuzzy rules. However, it is sometimes difficult to find the matched membership functions and fuzzy rules for

some plants, or the need may arise to tune the controller parameters if the plant dynamics change. In the

hope of overcoming this problem, based on the universal approximation theorem and online learning ability

of fuzzy systems, several stable adaptive fuzzy control schemes have been developed to incorporate the expert

knowledge systematically [14,16,17]. The stability analysis in such schemes is performed using the Lyapunov

approach. Conceptually, there are 2 distinct approaches that have been formulated in the design of a fuzzy

adaptive control system: direct and indirect schemes. The direct scheme uses fuzzy systems to approximate

unknown ideal controllers, while the indirect scheme uses fuzzy systems to estimate the plant dynamics and

then synthesizes a control law based on these estimates [16,17,19].

Nowadays, there has been a lot of research on the design of fuzzy logic controllers based on the SMC

scheme, referred to as fuzzy SMC (FSMC) [20–24]. FSMC, which is an integration of fuzzy logic systems

(FLSs) and SMC, provides a simple way to design fuzzy logic control systematically. The main advantage

of FSMC is that the control system can achieve asymptotic stability. Recently, a fuzzy sliding mode (FSM)

decoupling control design method was proposed to achieve the decoupling performance of a class of nonlinear

coupled systems [6]. However, UMSs represent a challenging class of coupled nonlinear systems and the problem

of adaptive fuzzy control of UMSs presents more difficulties because of the coupling that exists between the

control input and the outputs. In the literature, many researchers have incorporated a decoupled approach into

the fuzzy adaptive control design for those systems by considering plant uncertainties, which were studied in

[25–28]. In the papers mentioned above, the adjustable parameters of the fuzzy systems are updated by an

adaptive law based on a Lyapunov approach, i.e. the parameter adaptive laws are designed in such a way as

to ensure the convergence of a Lyapunov function. However, for an effective adaptation, it is more judicious to

directly base the parameter adaptation process on the identification error between the unknown function and

its adaptive fuzzy approximation [29].

This paper presents a direct decoupling adaptive fuzzy control scheme for a class of UMSs with 2 DOF.

The proposed adaptation idea is based on the results in [29]. In this direct approach, since fuzzy systems

are used to approximate unknown ideal controllers, the adjustable parameters of the used fuzzy systems are

updated using a gradient descent algorithm that is designed to minimize the error between the unknown ideal

controller and the fuzzy controller. Basically, the control scheme is extracted from the decoupling of the UMSs

into 2 second-order subsystems, and then 2 sliding surfaces are constructed through the state variables of the

decoupling subsystems. Hence, this paper is organized as follows: the problem formulation and preliminaries on

fuzzy systems are given in Section 2. The direct decoupled adaptive fuzzy controller and a proof of the stability

results are presented in Section 3. Section 4 is devoted to the simulation results of the proposed strategy applied

to the overhead crane and beam-and-ball systems. Finally, Section 5 concludes the paper.
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2. Problem formulation and preliminaries

2.1. Problem formulation

This work focuses on the design of a fuzzy control algorithm for a class of underactuated systems with 2 DOF

given by the following dynamic equations [1,2]:

ẋ1 (t) = x2 (t)
ẋ2 (t) = f1 (x) + b1 (x)u (t)
ẋ3 (t) = x4 (t)
ẋ4 (t) = f2 (x) + b2 (x)u (t)

, (1)

where x = (x1(t), x2(t), x3(t), x4(t))
T
is the state variable vector, u(t) is the control input, and f1 (x), f2 (x),

b1 (x), and b2 (x) are the uncertain smooth nonlinear functions. In the remainder of this paper, the time

variable is omitted for abbreviation reasons. However, without loss of generality, the following assumptions are

considered.

Assumption 1 The state vector x is available for measurement.

Assumption 2 Each control gain bi (x) is finite, nonzero, and of a known sign for each x . It is assumed that

the sign of bi (x) does not change, and without loss of generality, this sign can be taken as positive. In addition,

the functions bi (x) are unknown and bounded, i.e. 0 < bmin ≤ bi (x) ≤ bmax .

The system of Eq. (1) can be viewed as 2 subsystems with a second-order canonical form including the

states (x1, x2) and (x3, x4), for which we define the following pair of sliding surfaces:

S1 = ẋ1 + λ1x̃1 = x2 + λ1x̃1, (2)

S2 = ẋ3 + λ2x̃3 = x4 + λ2x̃3, (3)

where x̃1 = x1 − x1d , x̃3 = x3 − x3d (x1d and x3d are constant desired values), and λ1 and λ2 are positive

constants. Next, from Eqs. (2) and (3), it follows that:

Ṡ1 = f1 + b1u+ λ1x2, (4)

Ṡ2 = f2 + b2u+ λ2x4. (5)

If fi (x) and bi (x) are known, using the equivalent control law of each subsystem, we can obtain:

ueq1 = −f1 + λ1x2

b1
, (6)

ueq2 = −f2 + λ2x4

b2
. (7)

The control objective is to design an adaptive fuzzy controller so that the overall system is stabilized and the

outputs, x1 and x3 , are forced to follow the desired values, x1d and x3d . Since the control laws in Eqs. (6) or

(7) cannot ensure the control objective because they are designed to only stabilize the corresponding subsystem,

as an obvious concept, the total control law should include some parts of the control law of each subsystem or

a sliding surface should be defined as a combination of the sliding surfaces of the 2 subsystems.

1617



NAFA et al./Turk J Elec Eng & Comp Sci

2.2. Fuzzy logic systems

In this subsection, the FLS is briefly described. The basic configuration of the FLS [15] includes a fuzzy base

that consists of a collection of fuzzy IF-THEN rules, which can be written as:

Rl : ifx1isA
l
1and...xnisA

l
nthenyisB

l. (8)

The FLS performs a mapping from U = U1×....×Un ⊆ Rn to R , where the input vector is x = [x1, ..., xn]
T ∈ Rn

and the output variable is y ∈ R . Al
i and Bl are labels of the input and output fuzzy sets, respectively. Let

i = 1, 2, ..., n denote the number of inputs for the FLS, and let l = 1, 2...,m denote the number of the fuzzy

IF-THEN rules.

The output of the fuzzy system with a fuzzy rule base as in Eq. (8), product inference engine, singleton

fuzzifier, and center average defuzzifier can be expressed as follows [16,17]:

y (x) =

m∑
l=1

(
n∏
i

µAl
i
(xi)

)
yl

m∑
l=1

n∏
i

µAl
i
(xi)

, (9)

where µAl
i
(xi) is the membership function of the linguistic variable xi , and yl represents a crisp value for

which the membership function µBi (xi) reaches its maximum value (usually we assume µBi(yl) = 1).

By introducing the concept of fuzzy basis functions (FBFs) [16,17], the fuzzy output in Eq. (9) can be

rewritten in the following compact form:

y (x, θ) = ξT (x) θ, (10)

where θ =
[
y1, y2, ..., ym

]T
is the parameter vector and ξ = [ξ1, ξ2, ..., ξm]

T
is a set of FBFs defined as:

ξl (x) =

n∏
i

µAl
i
(xi)

m∑
l=1

n∏
i

µAl
i
(xi)

. (11)

The fuzzy system in Eq. (10) is assumed to be well defined, such that
m∑
l=1

n∏
i

µAl
i
(xi) ̸= 0 for each x . In this

paper, it is assumed that the structure of the fuzzy system and the FBF parameters are properly specified

in advance by the designer. This means that the designer’s decision is needed to determine the structure of

the fuzzy system (that is, to determine the relevant inputs, number of membership functions for each input,

membership function parameters, and number of rules), and the consequent parameters should be calculated

by the appropriate learning algorithms. The Gaussian-type membership function is used for Al
i (.) in this paper

and it is given as [14]:

µAl
i
(xj) = e−0.5(ωsxj−ωc)

2ω2
d , (12)

where the parameter ωc represents the center value and the parameter ωd denotes the reciprocal value of the

deviation from the center. The input xj is scaled by the parameter ωs .
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3. Controller design

3.1. Decoupling SMC

If the plant dynamics are known, i.e.fi (x) and bi (x) are completely known, the overall ideal SMC input is

given by:

u∗ = ueq1 − b−1
1 (Ksgn (S1) +QS1 + β (S1 − S2)) , (13)

where K , Q , and β are strictly positive design parameters and sgn(.) is the standard sign function defined for

the surface S1 .

Effectively, when we select the control input as u = u∗ , Eq. (5) simplifies to:

Ṡ1 = −Ksgn (S1)−QS1 − β (S1 − S2) . (14)

To guarantee that an ideal sliding motion takes place from any initial conditions after the sliding surface is

reached, the following inequalities must be satisfied:

K > max (|β (S1 − S2)|) , (15)

and, consequently, we have S1 → 0 as t → ∞ .

According to Fillipov, the system’s motion on the sliding surface can be given in an interesting geometric

interpretation, as an ‘average’ of the system’s dynamics on both sides of the surface [7]. The dynamics while

in sliding mode can then be written as Ṡ1 ≈ 0. Furthermore, when S1 → 0, we have sgn (S1) ≈ S1 , and then

Eq. (14) becomes Ṡ1 ≈ − (K +Q+ β)S1 + βS2 , or in the Laplace p-domain we can write:

S1 (p) =
β

(K +Q+ β) + p
S2 (p) . (16)

Lemma 1 For any 2 continuous and derivable functions ϕ and g , if the following relation holds:

ϕ̇ = −γ (ϕ− g) , with γ >> 1, (17)

then:
lim
t→∞

ϕ = g. (18)

Proof In the Laplace p-domain, Eq. (17) can be written as ϕ (p) = γ
p+γ g (p) =

1
1+(1/γ)pg (p). Then, ifγ >> 1,

we have 1/γ → 0 and ϕ (p) ≈ g (p).

Therefore, in the time domain one has ϕ (t) ≈ g (t). This means that for γ >> 1 and a function g (t)

continuous, derivable, and band-limited, we have lim
t→∞

ϕ = g .

Since in Eq. (16) the transfer function β/(p+ (K +Q+ β)) is stable with (K +Q+ β) >> 1, then

using lemma 1, the fact that S1 → 0 implies that S2 → 0.

However, due to the fact that f1 (x) and b1 (x) are unknown, the ideal control law in Eq. (13) is usually

difficult to obtain. To overcome this problem, we propose using adaptive fuzzy systems to construct this ideal

controller. On the other hand, the error between the fuzzy controller and the ideal controller will be used to

update the free parameters of the fuzzy controller.
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Next, in the following, we will show how to develop a direct adaptive fuzzy SMC to approximate the

unknown part of the total control through a rule adaptation and then construct the correct control to guarantee

the system’s stability. The proposed FSMC has an online self-tuning fuzzy rule without the trial-and-error

process to find the appropriate consequent parameters of the fuzzy rules. In addition, to improve the convergence

performance of the proposed control law, an adaptive tuning method of the coupling factor β is proposed. The

update law of β will be based on the descent gradient method.

3.2. Direct adaptive fuzzy sliding mode decoupling control

To develop the control law, we assume that the unknown ideal controller in Eq. (13) can be approximated using

a fuzzy system in the form of Eq. (11) as the following:

u∗ = ξT (S) θ∗, (19)

where S = [S1, S2]
T
, ξ (S) is a FBF vector assumed to be suitably specified by the designer.

Because the optimal vector θ∗ is unknown, let us consider its estimate θ instead to construct the adaptive

control:

u = ξT (S) θ. (20)

Consider now the approximation error between both controllers u∗ and u as:

eu = u− u∗. (21)

Clearly, the error eu represents the actual deviation between the unknown function u∗ and the online fuzzy

approximator in Eq. (20). Next, using Eqs. (19) and (20), Eq. (21) becomes:

eu = ξT (S) θ − u∗ = ξT (S) θ̃, (22)

where θ̃ = θ − θ∗ is the parameter estimation error vector. The optimal parameter vector θ∗ is defined as:

θ∗ = argθ min

[
sup
S∈Ωs

(u− u∗)

]
. (23)

Indeed, we assume that the used fuzzy system satisfies the universal approximation property on the compact

set ΩS , which is assumed to be large enough that the variable S remains inside it under closed-loop control.

The following theorem summarizes the main results of this paper.

Theorem 1 Consider a class of underactuated systems given by Eq. (1) and design the sliding surfaces as in

Eqs. (2) and (3). Suppose that Assumptions 1 and 2 hold and consider the control law given by Eq. (19) with

the following parameter update law:

θ̇ = −ηuξ (S)
(
Ṡ1 +Ksgn (S1) +QS1 − w

)
, (24)

where
w = −β (S1 − S2) , (25)

and K,Q ,β , and ηuare the positive design parameters. Next, all of the signals in the closed-loop system will be

bounded and the sliding surfaces given by Eqs. (3) and (4) will converge asymptotically to 0.
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Proof Step 1. Stability analysis of S1 .

Substituting Eq. (13) into the right-hand side of Eq. (4) and recalling that b1u = b1u
∗ + b1 (u− u∗),

then one has:

Ṡ1 = f1 + λ1x2 + b1u
∗ + b1eu

= b1
[
−Kb−1

1 sgn (S1)−Qb−1
1 S1 − b−1

1 β (S1 − S2) + ueq1

]
− b1ueq1 + b1eu

= b1eu −Ksgn (S1)−QS1 − β (S1 − S2)

. (26)

Finally we have:

Ṡ1 = b1eu −Ksgn (S1)−QS1 + w. (27)

Now, consider a quadratic cost function that measures the discrepancy between the ideal controller and the

actual fuzzy controller, defined as:

J (θ) =
1

2
b1e

2
u =

1

2
b1
(
ξT (S) θ − u∗)2 . (28)

We use the gradient descent method to minimize the cost function in Eq. (28) with respect to the adjustable

parameters θ . Accordingly, by applying the gradient method [7,29], the minimizing trajectory θ (t) is generated

by the following differential equation:

θ̇ = −ηu∇θJ (θ) . (29)

Clearly, from Eq. (28), the gradient of J (θ) with respect to θ is:

∇θJ (θ) =
∂J (θ)

∂θ
= ξ (S) b1eu. (30)

Therefore, the gradient descent algorithm can be written as:

θ̇ = −ηuξ (S) b1eu. (31)

However, because of the unavailability of b1 and u∗ , the adaptive law in Eq. (31) cannot be performed. Next,

Eq. (27) will be used to overcome this design inconvenience.

Clearly, from Eq. (27), the term b1eu is available and it is given as:

b1eu = Ṡ1 +Ksgn (S1) +QS1 − w. (32)

Eq. (31) then becomes:

θ̇ = −ηuξ (S)
(
Ṡ1 +Ksgn (S1) +QS1 − w

)
. (33)

Let the Lyapunov function candidate be defined as:

V =
1

2
S2
1 +

1

2ηu
θ̃T θ̃. (34)

Now, using Eq. (33), the time derivative of V along the dynamics in Eqs. (27) and (33) is given as:

V̇ = S1Ṡ1 +
1
ηu

θ̃T
˙̃
θ

= S1 (b1eu −Ksgn (S1)−QS1 + w)− θ̃T ξ (S) b1eu
= −S1 (Ksgn (S1)− w)−QS2

1 + S1b1eu − b1e
2
u

. (35)
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Let us now use the following inequality:

S1b1eu ≤ 1

2
b1e

2
u +

1

2
b1S

2
1 . (36)

Next, one can obtain the following from Eq. (35):

V̇ ≤ −S1 (Ksgn (S1)− w)−QS2
1 + 1

2b1S
2
1 − 1

2b1e
2
u

≤ −S1 (Ksgn (S1)− w)−QS2
1 + 1

2bmaxS
2
1 − 1

2b1e
2
u

≤ −S1 (Ksgn (S1)− w)−
(
Q− 1

2bmax

)
S2
1 − 1

2b1e
2
u

. (37)

It is easy to find from Eq. (37) that for Q ≥ 1/2bmax and K > max (|w|) + κ, κ > 0, we have:

V̇ ≤ −κ |S1| . (38)

This guarantees the boundedness of S1 and θ̃ . In addition, using Barbalat’s Lemma, the sliding surface S1 can

be shown to be asymptotically stable, i.e. S1 → 0 as t → ∞.

Step 2. Stability analysis of S2 .

This step is devoted to the stability analysis of S2 . From Eq. (27), we have:

Ṡ1 = b1eu −Ksgn (S1)−QS1 − β (S1 − S2) . (39)

On the other hand, on the average we have sgn (S1) ≈ S1, as t → ∞ . Next, Eq. (39) yields:

Ṡ1 = b1eu − (K +Q+ β)S1 + βS2. (40)

By assuming that the adaptation process converges and eu is very small, then Eq. (40) yields:

Ṡ1 = − (K +Q+ β)S1 + βS2. (41)

Consequently, using Lemma 1, the convergence of S1 implies the convergence of S2 to 0.

3.3. Direct adaptive fuzzy sliding mode decoupling control with adaptiveβ

In the previous subsection, we considered a constant design parameter β > 0. Since there is no systematic way

for selecting this parameter, we propose in this subsection to consider the parameter β as a free parameter

and design an adaptive law to improve the controller performance. Intuitively, such a procedure may speed up

convergence and reduce the large transients that may occur when β is chosen to be constant.

Proposition 1 For a small positive constant σ , the gradient adaptive law{
β̇ = ηβKsgn (S1) (S1 − S2) , if : S2

1 + S2
2 ≥ σ

0, otherwise
(42)

retains all of the asymptotic stability and convergence properties of the adaptive law in Eq. (24) established in

case of a constant coupling parameter and gives the best performance.
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Proof It follows from the previous proof that the use of the decoupled direct adaptive law in Eq. (19) with

the parameter adaptation law in Eq. (24) yields:

Ṡ1 = b1eu −Ksgn (S1)−QS1 + w. (43)

In addition, it was shown previously that under the condition β > 0, we ensure the asymptotic converge of all

sliding surfaces. Nevertheless, it is adequate to design a limit of adaptation of β to speed up the attraction of

the convergence rates of the whole system within a global set given as:

Ωσ =
{
S1, S2 : S2

1 + S2
2 ≤ σ

}
. (44)

For different values of β , we have different convergence behaviors, varying from slow to fast. Next, it is

worthwhile to find the best value of β that gives the suitable convergence rate. As a result, we use the gradient

descent method with respect to the parameter β by minimizing the following cost function:

Jβ (β) =
1

2

(
Ṡ1 +QS1 + b1eu + β (S1 − S2)

)2
. (45)

Next, by applying the gradient method [15,16], the minimizing optimal coupling parameter β is generated by

the following differential equation:

β̇ = −ηβ∇βJβ (β) . (46)

Clearly, from Eq. (45), the gradient of Jβ (β) with respect to β is:

∇βJβ (β) =
∂Jβ (β)

∂β
= (S1 − S2)

(
Ṡ1 +QS1 + b1eu + β (S1 − S2)

)
. (47)

Thus, by substituting Eq. (47) into Eq. (46), the gradient descent algorithm is given by:

β̇ = −ηβ (S1 − S2)
(
Ṡ1 +QS1 + b1eu + β (S1 − S2)

)
. (48)

Finally, recalling Eq. (27) and substituting in Eq. (48) yields:

β̇ = ηβKsgn (S1) (S1 − S2) . (49)

It is more reasonable to update the parameter β only when the signals S1 and S2 are large and switch off the

adaptation when these signals are small. Accordingly, the modified update law can be given as:{
β̇ = ηβKsgn (S1) (S1 − S2) , if : S2

1 + S2
2 ≥ σ

0, otherwise
. (50)

Remark 1 It is worth noting that the parameter updating law in Eq. (24) is not implementable in the case that

the derivative of S1 is not available. However, a discrete implementable version of Eq. (24) can be obtained by

rewriting Eq. (24) as:
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θ (t)− θ (t−∆t)

∆t
= −ηuξ (S)

(
S1 (t)− S1 (t−∆t)

∆t
+Ksgn (S1 (t)) +QS1 (t) + β (S1 (t)− S2 (t))

)
(51)

where ∆t is a small positive constant.

By assuming that ∆t is small enough, the discrete implementable version of Eq. (24) is given as follows.

θ (t) = θ (t−∆t)− ηuξ (S) ((1 + (Q+ β)∆t)S1 (t)− S1 (t−∆t)) +Ksgn (S1 (t))∆t− βS2 (t)∆t) (52)

Remark 2 In order to remedy the control discontinuity in the boundary layer, the sign function sgn (S1) all

through this paper is replaced by a saturation function of the following form:

sat(x) =

{
sgn (x) , if |x| ≥ 1

x, if |x| < 1
. (53)

4. Simulation results

In this section, we test the proposed direct adaptive fuzzy sliding control scheme for the stabilization of 2

different UMSs: the overhead crane and beam-and-ball systems.

4.1. Overhead crane

In this subsection, we apply our proposed adaptive controller for an underactuated overhead crane system

(Figure 1). The control objective of the overhead crane is to move the trolley to its destination and complement

the antiswing of the load at the same time.

F M

m

x

y

L

mx

my
α

Figure 1. Overhead crane system.

For simplicity, in this paper, the following assumptions are made:

a) The trolley and the load can be regarded as point masses.

b) The friction force that may exist in the trolley and the elongation of the rope due to the tension can be

neglected.

c) The trolley moves along the rail and the load moves in the x−y plane.

1624



NAFA et al./Turk J Elec Eng & Comp Sci

Using the Euler–Lagrange principle, we can obtain the following dynamic model for the overhead crane

system [26]:

x : (m+M)ẍ+mL(α̈ cosα− α̇2 sinα) = F
α : ẍ cosα+ Lα̈+ g sinα = 0

, (54)

where M and m are the masses of the trolley and the load respectively, x3 = r is the horizontal displacement,

α is the sway angle of the load, g is the gravitation, and L is the length of the suspension rope. In summary,

based on the system form in Eq. (2), we obtain f1, f2, b1 , and b2 as:
f1 = mLα̇2 sinα+mg sinα cosα

M+m sin2 α

b1 = 1
M+m sin2 α

f2 = − (M+m)g sinα+mLα̇2 sinα cosα
(M+m sin2 α)L

b2 = − cosα
(M+m sin2 α)L

. (55)

To synthesize the decoupling adaptive FSM decoupling controller (DAFSMDC), a fuzzy system in the form of Eq.

(10) is used to generate the control signals and the fuzzy system has Z =

[
S1 +

∞∫
0

β (S1 − S2) dt, Ṡ1 + β (S1 − S2)

]
as the input, and for each input variable, Zj ,j = 1, 2, we have 3 Gaussian membership functions defined as:

µF 1
j
(Zj) = exp

(
−0.5

(
Zj + 1

0.25

)2
)
, µF 2

j
(Zj) = exp

(
−0.5

(
Zj

0.25

)2
)
, µF 3

j
(Zj) = exp

(
−0.5

(
Zj − 1

0.25

)2
)
.

In the proposed DAFSMDC, the inputs are mapped onto a normalized domain of [–1,1] by scaling the input

variables of the fuzzy system by a partitioning coefficient φj (withj = 1, 2) given as φi = max (Zi). Figure 2

illustrates the membership functions for the normalized inputs, which are composed of Gaussian functions with

variable means and variances. Nine linguistic values (N = 3) are used to construct the control table to provide

stable and robust decision rules for the DAFSMDC. For this system, the following values are used [14]: M = 1

kg; m = 0.8 kg; L = 0.305 m; and g = 9.8 m/s2 .

i
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i
−φ  0   2

i
φ  
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0.5  
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1.5  

Negative Zero Positive 

i
φ

Figure 2. Input fuzzy membership functions.

The design parameters used in this simulation are chosen as follows: ηu = 3.5,ηβ = 0.5, σ = 0.05,λ1 =

2,λ2 = 19,K = 14. The initial conditions of the overhead crane system are (x0, ẋ0) = (0, 0);(α0, α̇0) =

(−π/3, 0). The objective is to control the trolley to its expected displacement: (xd, αd) = (5, 0). Accordingly,

Z (0) = [19π/3− 8, 0] and the initial values of the parameter estimates θ (0) = 0 are set equal to 0.
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Depending on the value of β , 3 cases are considered in the DAFSMDC: the small, big, and adaptive

values were tested as shown in Figures 3 and 4.

The dynamic responses of the position and the angle of the overhead crane system are shown in Figures

3a and 3b. Clearly, the position and the angle converge asymptotically to their desired values for all values of

β . The DAFSMDC shows good decoupling performance and ensures the asymptotic stability for all of the state

variables of the system. In addition, from Figures 3a and 3b, it appears that the trolley position and crane

angle are influenced differently by the linking coefficient β . Indeed, when β increases, the overshoot related

to x is more affected than that related to α . In the case of an adaptive β , the plant response is close to that

obtained for β = 35. However, due to its adaptation law, the variation of β is oscillatory, and this leads to a

control input that is less smooth than whenever β is constant (Figures 4a and 4b).
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Figure 3. Response of the overhead crane system for different values of β : a) the position of the trolley and b) the

angle of the crane.

0 1 2 3 4 5 
-40

-30 

-20 

-10 

0 

10 

C
o

n
tr

o
l 

in
p

u
t,

 N
T

 

  
(b)

0 1 2 3 4 5 
0 

1

2

3

Time (s) Time (s)

(a) 0 1 
-40 

-30 

-20 

-10 

0 

10 

β = 35
 

 Adaptive β
 

β = 2
 

A
d

ap
ti

v
e 

 β
 

}

Figure 4. The control input signal and the evolution of parameter β : a) the control input and b) the evolution of

parameter β .
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The control input is affected by the variation of β . As is illustrated in Figure 4b, an adaptive β yields

to the reduction of the input signal amplitude during the transient period. Compared to the case when β = 35,

a reduction of 65% is obtained. Therefore, an optimal design is brought to the DAFSMDC when using an

adaptive β .

4.2. Beam and ball

Consider a beam-and-ball system as illustrated in Figure 5. The center of rotation is assumed to be frictionless

and the ball is free to roll along the beam. It is required that the ball remains in contact with the beam and

that rolling occurs without slipping. The objective is to keep the ball close to the center of the beam and the

beam close to the horizontal position.

The mathematical expression of this system is given as follows [30]:

ẋ1 = x2

ẋ2 = u
ẋ3 = x4

x4 = B(x3x
2
2 − g sinx1)

, (56)

where x1 = α is the angle of the beam with respect to the horizontal axis, x2 = α̇ is the angular velocity of the

beam with respect to the horizontal axis, x3 = r is the position of the ball, x4 = ṙ is the velocity of the ball,

B = MR2
/(

Jb +MR2
)
, Jb is the moment of inertia of the ball, M is the mass of the ball, R is the radius of

the ball, and g is the gravitation.

The beam-and-ball system poses a challenging stabilization problem, representative of the difficulties

introduced by rapidly growing nonlinearities. For the ball, the critical nonlinearity is the centrifugal force x3x
2
2 .

This force destabilizes when it opposes the controlling gravitational force term −g sinx1 [30].

α

u

r

Figure 5. Beam-and-ball system.

The proposed DAFSMDC strategy allows for stabilizing the system and overcomes these drawbacks.

Similar to the previous simulations for the overhead crane, for the design of the controller, the fuzzy system

in the form of Eq. (10) is used to generate the control signal with Z =

[
S1 +

∞∫
0

β (S1 − S2) dt, Ṡ1 + β (S1 − S2)

]
as the input, and for each input variable Zj (j = 1, 2), 3 Gaussian membership functions are defined as:

µF 1
j
(Zj) = exp

(
−0.5

(
Zj + 1

0.25

)2
)
, µF 2

j
(Zj) = exp

(
−0.5

(
Zj

0.25

)2
)
, µF 3

j
(Zj) = exp

(
−0.5

(
Zj − 1

0.25

)2
)
.

Moreover, the inputs are mapped onto a normalized domain of [–1,1] by scaling the input variables of the fuzzy

system by a partitioning coefficient φj (withj = 1, 2) given as φi = max (Zi) (see Figure 2).

The beam-and-ball parameters are given as B = 0.7143, M = 0.05 kg; Jb = 2 × 10−6 , R = 0.01 m;

and g = 9.8 m/s2 . The design parameters used in this simulation are chosen as follows: ηu = 3.5,ηβ = 1.2,
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σ = 0.01,ε0 = 1,λ1 = 2;λ2 = 6;K = 8. The initial conditions of the beam-and-ball system are (x0, ẋ0) = (5, 0);

(α0, α̇0) = (π/3, 0). The objective is to control the ball to its expected displacement, (xd, αd) = (0, 0).

Accordingly, Z (0) = [10− 6π/3, 0] and the initial values of the parameter estimates θ (0) are set equal to 0.

The simulation results are done by considering different values of β. The responses of the position and

the angle of the ball and beam are shown in Figures 6a and 6b. Obviously, the position and the angle converge

asymptotically to their desired values for all values of β . The DAFSMDC shows good decoupling performance

and ensures the asymptotic stability for all of the states of the system. In this case, for β = 2, the overshoot

of the ball’s position is significant, and with adaptive β , the response is closer to the case with β = 35,

with a fast response time and the overshoot remaining satisfactory (Figures 6a and 6b). The variation of the

β coefficient is smooth and it favorably affects the control input, which is also smooth (Figures 7a and 7b).

Moreover, it is judicious to mention that the impact of adaptivity is very clear on the control input side, with

a reduction of the input signal value. As is shown in Figure 7b, the reduction rate is about 60%, varying from

β = 35 to adaptive β . Clearly, using adaptive β brings an optimal design to the DAFSMDC.
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Figure 6. Response of the beam-and-ball system: a) the position of the ball and b) the angle of the beam.
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Figure 7. The control input signal and the evolution of parameter β : a) the control input and b) the evolution of

parameter β .
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5. Conclusion

We have developed a DAFSMDC for a class of UMSs, considering a class of 2 DOF dynamic systems. Indeed,

the fuzzy system is directly used to estimate an existent ideal control law. This control law is determined based

on the sliding mode methodology, where the used dynamic sliding surface is linked to 2 sliding surfaces involved

in the first and second DOF. The adaptive parameters of the fuzzy system are updated based on the gradient

descent method by minimizing the quadratic error between the unknown sliding mode controller and the fuzzy

controller. The linking parameter influencing the dynamic sliding surface can be taken as constant or adaptive.

Its adaptive law is determined based on the gradient descent law by minimizing the quadratic error related to

the dynamic sliding surface. We have shown that this control law ensures the stability and convergence of the

considered outputs. Its application is carried out for 2 systems: the overhead crane and beam-and-ball systems.

The obtained results have revealed that it is possible to obtain satisfactory performances using a constant or

adaptive linking parameter despite a lack of information about the system. For further improvements, the

generalization of the proposed approach for higher-order underactuated mechanical systems will be considered

and will be the scope of potential works.
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