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Abstract: The solution accuracy of economic dispatch problems is associated with the accuracy of the fuel cost curve

parameters. Therefore, updating of these parameters is a very important issue to further improve the final accuracy

of economic dispatch problems. Estimating the parameters of the fuel cost curve may be the best solution for this

issue. This paper presents an application of the artificial bee colony (ABC) algorithm to estimate the fuel cost curve

parameters of thermal power plants. In the estimation problem, 1st-, 2nd-, and 3rd-order fuel cost functions are used,

and the estimation problem is formulated as an optimization one. The ABC algorithm is used to solve this optimization

problem by minimizing the total error in the estimated parameters. In this study, in order to evaluate the performance

of the ABC algorithm, it is tested on 3 different cases that have 3 different fuel cost types, such as coal, oil, and gas. The

results obtained from the proposed method are compared with the genetic algorithm, particle swarm optimization, and

least square error methods reported previously in the literature. The results show that the ABC algorithm is stronger

than the others at solving such a problem.
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1. Introduction

The cost of electrical energy (MW) production is described with 3 main sources, namely facility construction,

ownership cost, and operating costs. The operating cost is the most significant of these 3, and so the focus

will be on the economics of the operation. The optimal power flow (OPF) and economic dispatch (ED) or

economic/environmental dispatch (EED) have become the most important problems and commonly studied

subjects for optimal and economic operation and planning processes of modern power systems [1–4]. These

problems are formulated mathematically and aim to optimize a chosen objective function, such as fuel cost,

while satisfying the operational constraints [5]. Hence, solution of these problems helps to save generating costs,

especially in fossil fuel plants [6]. In the solving of these problems, the fuel cost curve is commonly represented

by a linear, quadratic, or cubic function. Since the parameters of these functions are affected by many factors,

such as the ambient operating temperature and aging of the generating units, one of the most important issues

is to have an accurate estimate of the thermal unit fuel cost curve parameters. Thus, a realistic approximation

of the fuel cost function to the actual cost curve by periodically estimating the cost function parameters is

crucial in order to improve the final accuracy of the results in solving OPF or ED problems. Therefore, using

a powerful and reliable estimation technique in estimation of the parameters of the fuel cost curve is a very

important issue [7].
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In recent decades, some researchers have studied the estimation of fuel cost curve parameters using

different techniques, such as conventional models or artificial intelligence (AI) and modern heuristic optimization

algorithms. The research on the estimation of fuel cost curve parameters has only currently continued, so there

are a limited number of studies in the literature on this subject. In early studies on this subject, researchers

used static estimation techniques (least square error (LSE), Gauss–Newton, etc.) to solve estimation problems

in power systems. Taylor and Huang [8] presented a study based on a recursive mathematical method in order

to estimate the cost curves of the generating units in a thermal power system. El-Hawary and Mansour [9]

proposed 4 algorithms, which were the LSE, Gauss–Newton method or Bard algorithm, Marquardt algorithm,

and Powell regression algorithm, for the estimation of the parameters of the models used in the optimal economic

operation of electric power systems. They compared all of these methods and reported that the methods gave

almost the same values, but the Gauss–Newton method took the most computational time. Shoults and Mead

[10] used the weighted least squares multiple linear regression method to calculate the coefficients of a cubic fuel

cost input/output (I/O) curve. Chen and Postel [11] presented a methodology of online I/O curve identification

based on the sequential regression technique implemented at the energy control center of the Southern California

Edison Company. El-Shibini and Osman [12] developed a practical method to establish mathematical models

for the fuel cost of thermal power stations in electrical power systems. Their new technique depended only on

the operating records of the power stations, which are stored on a computer, and they used those records to

estimate and continuously modify the fuel cost functions of the power stations. Soliman et al. [13] presented a

study based on the least absolute value approximations for estimating the coefficients of a fuel cost I/O curve

that exhibits nonmonotonically increasing characteristics. Liang and Glover [14] evaluated 2 polynomial curve-

fitting methods: Gram–Schmidt orthonormalization and least-squares. They reported that the Gram–Schmidt

method, which does require matrix inversion, gave more accurate fuel cost curves. These conventional static

estimation models have been studied extensively and their numerical stabilities and computational efficiencies

have been greatly improved by various techniques. However, in the presence of gross errors, these classical

estimators remain weak in the field of state estimations.

Afterwards, researchers interested in dynamic estimation techniques, such as the Kalman filter and AI,

due to these algorithms have some advantages such as being more accurate and more stable in predicting

the state of the system. Soliman and Al-Kandari [15] presented the application of the well-known Kalman

filtering algorithm for the online identification of the I/O curve of thermal power plants. They reported that

the advantage of this approach is the capability of keeping track of the state of the thermal unit by making the

coefficients of the I/O curve continuously adaptive to the real characteristic of the unit. Ferreira and Maciel

Barbosa [16] proposed a square root filter (SRF) for dynamic state estimation instead of the Kalman filter.

However, in [17], Shivakumar reported that the Kalman filter method has the disadvantage of not being able

to handle large changes in the system, and the SRF technique is algebraically equivalent to the Kalman filter

technique but is numerically more stable than the Kalman filter.

In recent years, AI techniques, such as artificial neural networks (ANN), and fuzzy logic (FL) and

optimization techniques such as particle swarm optimization (PSO) and the genetic algorithm (GA), have

been a great development. Thus, researchers have used these techniques in power system state estimation.

Sinha and Mandal [18] modeled the dynamics of the power system more realistically using an ANN technique.

Kumar and Srivastava [19] also used this technique for power system state forecasting. In general, the ANN is

the superior method for solving the estimation problem, especially when the process model is not well-defined

mathematically. However, the disadvantage of the ANN is the huge amount of data required for network training,
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which may not be available in some cases. FL [20] is one of the popular algorithms proposed by researchers

for power system state estimation to decrease the computation time. However, its main disadvantage is that

it is hard to create the fuzzy rules; doing so requires much experience. PSO and the GA are well known and

widely used optimization algorithms in the field of power systems. El-Kantari and El-Naggar [21] used the GA

and El-Naggar et al. [7] used the PSO method for estimating the parameters of thermal power plants’ fuel

cost function. Alrashidi et al. [22] proposed the PSO method to estimate the fuel cost function parameters of

thermal power plants with valve point effects.

In this paper, a new metaheuristic optimization algorithm called the artificial bee colony (ABC) algorithm

is proposed to estimate the fuel cost curve parameters of thermal power plants. The ABC algorithm was

introduced by Karaboga in 2005 [23] and was developed by Karaboga and Basturk in 2007 [24]. It finds

a possible solution for optimization problems with multivariable functions and is motivated by the foraging

behavior of honeybees. There are some studies in the literature related to the ABC algorithm [25–36]. Karaboga

and Akay reported in [36] that the ABC algorithm has a simpler and more flexible structure, has fewer control

parameters, and produces better solutions than other optimization algorithms, such as PSO and GA. Because of

this superiority of the ABC algorithm when compared to other heuristic techniques and the above disadvantages

of the classical estimation methods, the ABC algorithm is used to solve the estimation problem defined in this
paper.

In this study, the estimation problem of the fuel cost parameters is described as an optimization problem

to minimize the total error in the estimated state parameters based on [7]. Smooth fuel cost functions are studied

in 3 different cases. The ABC algorithm is used to find the optimal parameter estimation of the formulated

optimization problem. The results obtained from the ABC algorithm are compared to the results reported in

[7] and [21]. The comparison shows that the ABC algorithm produces better solutions than GA, PSO, and LSE

algorithms in the solution of fuel cost curve parameter estimation in thermal power systems.

The rest of the paper is organized as follows: Section 2 defines the mathematical formulation of the

fuel cost curve and in Section 3, the proposed approach of the ABC algorithm and its implementation to the

problem under consideration are presented. Section 4 presents the experimental study results of the simulation

and compares the results obtained from the ABC algorithm and the techniques reported in [7] and [21] for case

studies of the estimation problem. Finally, the conclusion is illustrated in Section 5.

2. Mathematical model of the fuel cost curve

In OPF or ED problems, the cost function can be described as a smooth function. The smooth fuel cost function

is defined by polynomial functions. However, if the generating units of the power plant have multivalve steam

turbines, the fuel cost curve of the generators is very different when compared with the smooth functions. In this

case, when valve point effects are considered, the fuel cost function is described as a nonsmooth cost function

by adding sinusoidal functions. Since the valve point effect is not considered, the smooth fuel cost function is

used in this study. The smooth fuel cost function is expressed as follows [7]:

FCj(Pgj) = aoj +

N∑
i=1

aij + Pgij + rj , j = 1, 2, ..M, (1)

where FC j is the fuel cost function of the j th unit, Pg j is the electrical power output of the j th generator in

MW, aij is the cost coefficient, rj is the error related to the j th equation, N is the equation order (for linear

it is 1, second-order it is 2, or cubic it is 3), and M is the total number of thermal generators in power system.
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Smooth cost functions can be modeled as linear, quadratic, or cubic forms. In this case, the cost function

is a 1st-, 2nd-, or 3rd-order equation. These different cost curves are illustrated in Figure 1 [7] and are formulated

as follows:

Type 1: Linear form

N will be 1 and Eq. (1) will be in the form of:

FCj(Pgj) = a0j + a1jPgj + rj . (2)

Type 2: Quadratic form

N will be 2 and Eq. (1) will be in the form of:

FCj(Pgj) = a0j + a1jPgj + a2jPg2j + rj . (3)

Type 3: Cubic form

N will be 3 and Eq. (1) will be in the form of:

FCj(Pgj) = a0j + a1jPgj + a2jPg2j + a3jPg3j + rj , (4)

where a0 , a1 , a2 , and a3are the fuel cost coefficients and Pg j is the generated power of the j th unit.

$/MW

MW

Linear (1st order)

Quadratic (2nd order)

Cubic (3rd order)

Figure 1. Three types of fuel cost function curves.

In this paper, the ABC algorithm is proposed to find an estimate of the coefficients of the fuel cost

function for thermal generating units. The fuel cost energy function (FCestimated) is calculated again at each

cycle using these estimates. Next, the error for each measurement is minimized. Now the problem formulation

is defined in a form so as to find an estimate for the fuel cost function coefficients that minimize the error εi .

The error vector associated with each measurement is calculated by subtracting the actual and estimated values

of the fuel function at each cycle, shown as follows [28]:

εi = FCi(actual) − FCi(estimated) (5)

The ABC algorithm is used to find an estimate for the cost coefficients given in Eq. (5), minimizing εi , subjected

to the equality and inequality constraints [28]. These constraints can be described as follows.
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Equality constraint (power balance): According to this constraint, the total power generated must supply

the total load demand and the transmission losses. It can be formulated as follows:

n∑
i=1

Pgi − (Pl + Ploss) = 0, (6)

where Pg i is the total power generated by the power system, Pl is the load demand, and Ploss is the transmission

loses. In this study, Ploss is equal to 0.

Inequality constraint (maximum and minimum limits of the fuel cost coefficients): According to this

constraint, fuel cost coefficients are constrained between the minimum and maximum limits. It can be formulated

as follows:
Cimin ≤ Ci ≤ Cimax, (7)

where Ci corresponds to the fuel cost coefficients and Cimin and Cimax are their minimum and maximum

limits.

3. ABC algorithm

3.1. Overview of the ABC algorithm

The ABC algorithm is explained here based on [23–27,29–36]. The ABC algorithm is a metaheuristic optimiza-

tion algorithm. It has been introduced by simulating the life processes and attitudes of honeybees in a colony.

In the search process of the ABC algorithm, artificial bees modify their food positions with time in order to

find the locations of food sources having a high nectar amount. Hence, they find the food source with the

highest nectar amount. There are 3 types of bees in the colony of artificial bees, namely employed, onlooker,

and scout bees. Employed bees exploit the food sources and give information about the nectar amount of the

food source to the onlookers. The onlookers wait at the dancing area and decide which food source should be

selected. The duty of a scout is to discover the new food sources. The number of employed bees is half of the

colony and the other half of the colony consists of onlooker bees. Since only one employed bee is assigned for

every food source, the number of employed bees corresponds to the number of solutions in the search space. In

the ABC algorithm, while the employed and onlooker bees control the exploitation process, the scouts perform

the exploration process. Performing both processes together makes the algorithm strong.

3.2. Implementation of the ABC algorithm for estimation of the fuel cost curve parameters

problem

In the ABC algorithm, a possible solution to the optimization problem is represented by the position of a food

source and the fitness of the associated solution is described by the nectar amount of this food source. Here,

how the ABC algorithm works and its implementation for estimation of the fuel cost curve parameters problem

are explained step by step.

Step 1: Input data.

In this step, the actual values of the fuel cost function, generation limits for each unit, and coefficient

limits are read.

Step 2: Initialization of the ABC algorithm parameters.

In this step, the parameters of the ABC algorithm, such as the colony dimension, maximum cycle number

(MCN), number of variables, and limit parameter, are initialized.

Step 3: Initialization of the population with a random solution.
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In this step, a set of food sources (initial population of S solutions xi(i = 1, 2, . . . S)) is generated randomly

by the bees and their nectar amounts are determined, where S corresponds to size of the employed bees. Each

solution xi is represented by a D-dimensional vector, where D corresponds to the number of parameters to be

optimized.

Step 4: Evaluation of the fitness.

In this step, evaluation of the fitness function of each food source position corresponding to the employed

bee in the colony is done using the error given in Eq. (5).

Step 5: Modification of the food source position and local selection by the employed bee.

In this step, an employed bee modifies the food source position, finds a new position (solution) using her

visual information belonging to that source in her memory, and tests the nectar amount of the new source. In

the ABC algorithm, the new food source found by the employed bee is described as follows:

vij = xij + δij(xij − xkj), k ∈ (1, 2, ..S), j ∈ (1, 2, ...D), (8)

where k and j are randomly chosen indices and δ is a random number in the interval of [–1,1]. In fact, δij

gives a comparison between 2 sources found, the new and the old. After vij is produced and its fitness is

evaluated, the comparison is done by the employed bees. According to the comparison, if the fitness value of

the new food source is better than that of the old one, the new food source is kept in the memory and the old

one is discarded; otherwise, the new one is discarded from the memory and the old one is kept. This selection is

called local searching or greedy selection process in the ABC algorithm. In this process, if the new food source

is selected instead of the old one, a limit count is set.

Step 6: Employ the onlookers for the selected sources and evaluate the fitness.

After completion of the local search process in Step 5 by the employed bees, they come back into the hive

and share the nectar amount information of the sources with the onlooker bees waiting at the dancing area. In

fact, these onlooker bees were called employed bees before going to the food source that they visited. In this

step, onlooker bees make a new food source choice according to the information they took from the employed

bees and the nectar amount is calculated. This process of choosing a food source depends on the probability

value Pi associated with the fitness of that food source and is formulated as follows:

Pi =
fiti

S∑
j=1

fitj

, (9)

where fit i is the fitness value of the ith solution and S is the total number of food sources.

Step 7: Modification of the food source position by the onlookers.

In this step, the onlookers modify the food source position to find a new position (solution) using the

visual information belonging to that source in their memory and check the nectar amount of the new source,

just as in the case of the employed bee in Step 5. The greedy selection process is done again for the onlookers

in this step. That is, if the fitness value of the new food source is better than that of the old one, the new food

source is kept in the memory and old one is discarded; otherwise, the new one is discarded from the memory

and the old one is kept.

Step 8: Abandon the exploited food sources.

This step is done according to the ‘limit’ parameter, which is a predetermined number of cycles for

releasing the food source. In the ABC algorithm, a solution is abandoned when that solution can not improve
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further for the determined limit value. In this step, when the nectar amount is abandoned in this way, one of

the employer bees is determined randomly as a scout bee to find a new food source. This process is described

as follows:

xj
i = xj

min + β(xj
max − xj

min), j ∈ (1, 2, ...D), (10)

where β is a random value in the interval of [0,1], and xj
min and xj

max are the minimum and maximum limits

of the parameter to be optimized.

Step 9: Keep the position achieved so far and increase the counter of the cycle.

Step 10: Stopping of the global searching process.

In the ABC algorithm, steps 5 through 10 are repeated until the criterion is met. Next, this global

searching process stops. The criterion is a predetermined cycle number called the MCN. The flow chart of the

ABC algorithm is shown in Figure 2 [25].

Initial positions of
food source

Compute nectar amounts

Determine the new food positions

for the employed bees

Compute nectar amounts

All onlooker bees are distributed?

Keep the position of best

food source

Find the abandoned food source

Produce new position for the

exhausted food source

Is the termination criterion is

 reached?

   Final

   positions

No
Yes

Yes

No

Determine a neighbor food position for the

onlooker bees

Select a food source for the onlooker bees

Figure 2. Flow chart of the ABC algorithm.

1833
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4. Experimental study and results

In this study, the steps of the algorithm explained above are implemented according to the flowchart given in

Figure 2. The implementation of the algorithm and problem formulation is done using MATLAB. The algorithm

is simulated on an Intel Core2 Duo processor with 2.2 GHz frequency and 2046 MB RAM. The parameters

of the ABC algorithm for estimating the fuel cost parameter problem in this paper are described as shown in

Table 1.

Table 1. Parameters of the ABC algorithm used in the simulation.

Values of the ABC algorithm 1st order 2nd order 3rd order
Colony dimension 20 20 20
MCN 400 400 400
Number of variables 2 3 4
Limit parameter 3000 3000 3000

In the experimental study, the ABC algorithm is applied to 5 test cases, which are described in Eqs.

(2)–(4), to estimate the fuel cost parameters. The test cases and data were obtained from [7] and [21] in order

to compare the results between those obtained from the ABC algorithm and those reported in [7] and [21]. The

results obtained from the ABC algorithm are illustrated for each test case in Tables 2–11, comparing the results

obtained from the GA reported in [21] and the PSO and LSE reported in [7].

Test case 1:

In this case, the linear fuel cost function described in Eq. (2) is used to estimate the parameters for 3

different thermal power plants with fuels such as coal, oil, and gas. Each power plant consists of 5 generating

units with 10, 20, 30, 40, and 50 MW. In this test case, the results obtained from the proposed algorithm are

compared to the PSO and LSE algorithms given in [7]. The estimated coefficients of the cost function (a0 and

a1) with the ABC algorithm, PSO, and LSE are shown in Table 2, and the simulation results are shown in

Table 3. In Table 3, the actual fuel cost data [7] for each unit; estimated fuel cost data obtained from the

ABC algorithm, PSO [7], and LSE [7]; error values calculated from the difference between actual and estimated

values; and total absolute error values for each algorithm are presented. As seen in Table 3, the ABC algorithm

can reduce the total error by about 3.69 when compared with PSO and 6.32 when compared with the LSE

for coal, by 4.52 when compared with PSO and 6.5 when compared with the LSE for oil, and by 4.37 when

compared with PSO and 6.57 when compared with the LSE for gas, respectively. It is clearly seen according to

these results that, for all of the fuel types, the estimated fuel cost values with the coefficients produced by the

ABC algorithm are closer to the actual values.

Table 2. Estimated parameters of the linear cost function for test case 1.

Unit Coefficients
Methods
ABC PSO [7] LSE [7]

1 (coal)
a0 45.2120 63.236 63.236
a1 10.5600 10.190 10.170

2 (oil)
a0 47.6520 66.001 66.160
a1 11.0310 10.570 10.631

3 (gas)
a0 48.3990 66.002 66.700
a1 11.2210 10.780 10.830
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Table 3. Simulation results for case study 1 (first-order model).

Unit P (MW) Factual (GJ/h)

Festimated (GJ/h) Error (Festimated – Factual)
Methods
ABC PSO [7] LSE [7] ABC PSO [7] LSE [7]

1 (coal)

10 176.62 150.8120 161.905 164.936 25.8080 14.715 11.684
20 256.40 256.4120 263.803 266.636 0.0120 7.403 10.236
30 361.50 362.0120 365.702 368.336 0.5120 4.202 6.836
40 467.60 467.6120 467.600 470.036 0.0120 0.000 2.436
50 579.50 573.2120 569.498 571.736 6.2880 10.002 7.764

|ΣError| 32.6320 36.322 38.956

2 (oil)

10 184.75 157.9620 171.701 172.470 26.7880 13.049 12.280
20 268.20 268.2720 277.400 278.780 0.0720 9.200 10.580
30 377.70 378.5820 383.100 385.090 0.8820 5.400 7.390
40 488.80 488.8920 488.800 491.400 0.0920 0.000 2.600
50 606.00 599.2020 594.499 597.710 6.7980 11.501 8.290

|ΣError| 34.6320 39.151 41.140

3 (gas)

10 187.20 160.6090 173.802 175.000 26.5910 13.398 12.200
20 272.80 272.8190 281.601 283.300 0.0190 8.801 10.500
30 384.30 385.0290 389.401 391.600 0.7290 5.101 7.300
40 497.20 497.2390 497.200 499.900 0.0390 0.000 2.700
50 616.50 609.4490 604.999 608.200 7.0510 11.501 8.300

|ΣError| 34.4290 38.801 41.000

Test case 2:

In this test case, the power plant consists of 1 unit with 8 generators and the linear fuel cost function

described in Eq. (2) is used to estimate the parameters for this power plant. In order to estimate the a0 and a1

parameters, the test data given in [21] were used. The estimated parameters produced by the ABC algorithm

and GA [21] are given in Table 4. In Table 5, the actual fuel cost data [21] for each unit, estimated fuel cost

data obtained from the ABC algorithm and GA [21], and percentage error values in the estimation process are

presented. As seen in Table 5, the percentage errors produced by both algorithms for all of the generating units

except for the unit with 165 MW are under 1%. However, the error values produced by the ABC algorithm are

less than those of the GA for all generating units, except for the units with 150 and 165 MW. In addition, the

percentage error values produced by the ABC algorithm reach 0 for 2 units, those with 75 MW and 120 MW.

It is clearly seen according to these results that the resultant error is more acceptable than that of the GA.

Thus, the linear fuel cost function approximates closer to the actual curve using the parameters produced by

the ABC algorithm.

Table 4. Estimated parameters of the linear cost function for test case 2.

Coefficients
Methods
ABC GA [21]

a0 0.09734 0.087973
a1 0.00896 0.0090778

Test case 3:

The quadratic fuel cost function described in Eq. (3) is used to estimate its parameters in this case for

the same thermal power plants in test case 1. In this test case, the results obtained from the proposed algorithm

are compared to those of the GA given in [21] and the PSO and LSE algorithms given in [7]. The estimated
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coefficients of the cost function (a0 , a1 , and a2) with the ABC algorithm, GA, PSO, and LSE are shown in

Table 6 and the simulation results are shown in Table 7. In Table 6, the actual fuel cost data [7,21] for each

unit; estimated fuel cost data obtained from the ABC algorithm, GA [21], PSO [7], and LSE [7]; error values

calculated from the difference between the actual and estimated values; and total absolute error values for each

algorithm are presented. As seen in Table 7, the total error produced by the ABC algorithm is less than that of

GA by about 5.84, PSO by about 0.3, and LSE by about 4.4 for coal; GA by about 6.62, PSO by about 1.71,

and LSE by about 4.33 for oil; and GA by about 9.96, PSO by about 2.97, and LSE by about 4.45 for gas,

respectively. It is clearly seen according to these results that the ABC algorithm produces a better solution for

reducing the total error values than the others for all fuel types for this case. Therefore, the quadratic fuel cost

function approximates closer to the actual curve using the parameters produced by the ABC algorithm.

Table 5. Simulation results for test case 2 (first-order model).

Unit P (MW) Factual (MBtu/h)

Festimated (MBtu/h) Percentage of the error (%)
Methods
ABC GA [21] ABC GA [21]

60 0.637 0.63467 0.63264 0.365714 0.684164
75 0.769 0.76900 0.76881 0 0.024832
90 0.901 0.90334 0.90498 –0.259168 −0.44131
105 1.034 1.03767 1.04114 –0.354686 −0.69085
120 1.172 1.17200 1.17731 0 −0.45312
135 1.301 1.30633 1.31348 –0.409850 −0.95909
150 1.453 1.44066 1.44965 0.848968 0.230910
165 1.602 1.57500 1.58581 1.685590 1.010485

Table 6. Estimated parameters of the quadratic cost function for test case 3.

Unit Coefficients
Methods
ABC GA [21] PSO [7] LSE [7]

1 (coal)

a0 96.6046 100.3937 96.279 95.856
a1 7.5874 6.9761 7.592 7.374
a2 0.0414 0.0533 0.042 0.047

2 (oil)

a0 101.5360 107.1688 101.000 100.710
a1 7.8779 7.7235 7.800 7.670
a2 0.0442 0.0467 0.046 0.049

3 (gas)

a0 101.8179 116.3854 102.000 101.100
a1 8.0991 6.7342 7.900 7.881
a2 0.0439 0.0667 0.048 0.049

Test case 4:

In this test case, the cubic fuel cost function described in Eq. (4) is used to estimate its parameters for

the same thermal power plants in test cases 1 and 3. In this test case, the results obtained from the proposed

algorithm are compared to the PSO and LSE algorithms given in [7]. The estimated coefficients of the cost

function (a0 , a1, a2 , and a3) with the ABC algorithm are shown in Table 8 and the simulation results are

shown in Table 9. In Table 9, the actual fuel cost data [7] for each unit; estimated fuel cost data obtained

from the ABC algorithm, PSO [7], and LSE [7]; error values calculated from the difference between the actual

and estimated values; and total absolute error values for each algorithm are presented. As seen in Table 9, the

total error produced by the ABC algorithm is less than that of PSO by about 3.21 and the LSE by about 4.9 for
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coal, PSO by about 0.3 and the LSE by about 5.81 for oil, and PSO by about 0.02 and the LSE by about 4.37

for gas, respectively. It is clearly seen according to these results that the ABC algorithm can reduce the total

absolute error values more than the others for all fuel types for this test case. In this case, the cubic fuel cost

function with the parameter values produced by the ABC algorithm can be computed as closer to the actual

cost curve.

Table 7. Simulation results for test case 3 (second-order model).

Unit
P Factual

Festimated (GJ/h) Error (Festimated – Factual)

(MW) (GJ/h)
Methods
ABC GA [21] PSO [7] LSE [7] ABC GA [21] PSO [7] LSE [7]

1 (coal)

10 176.620 176.619 175.485 176.358 174.252 –0.001 –1.135 –0.262 –2.368
20 256.400 264.913 261.236 264.765 261.968 8.513 4.836 8.365 5.568
30 361.500 361.487 357.647 361.500 359.004 –0.013 –3.853 0.000 –2.496
40 467.600 466.341 464.718 466.562 465.360 –1.259 –2.882 –1.038 –2.240
50 579.500 579.475 582.449 579.952 581.036 –0.025 2.949 0.452 1.536

|ΣError| 9.81 15.655 10.117 14.208

2 (oil)

10 184.75 184.735 184.295 183.6 182.346 –0.015 –0.455 –1.150 –2.404
20 268.2 276.774 272.449 275.4 273.862 8.574 4.249 7.200 5.662
30 377.7 377.653 373.089 376.4 375.258 –0.047 –4.611 –1.300 –2.442
40 488.8 487.372 485.729 486.6 486.534 –1.428 –3.071 –2.200 –2.266
50 606 605.931 610.369 606 607.69 –0.069 4.369 0.000 1.690

|ΣError| 10.133 16.755 11.850 14.464

3 (gas)

10 187.2 187.799 188.648 185.78 184.824 0.599 1.448 –1.420 –2.376
20 272.8 281.36 277.749 279.121 278.368 8.560 4.949 6.321 5.568
30 384.3 384.301 378.441 382.022 381.732 0.001 –5.859 –2.278 –2.568
40 497.2 496.022 492.473 494.484 494.916 –1.178 –4.727 –2.716 –2.284
50 616.5 616.523 619.845 616.507 617.92 0.023 3.345 0.007 1.420

|ΣError| 10.361 20.328 12.742 14.216

In Figure 3, a variation of the total error according to the cycle number for this case is illustrated in

order to show a sample of the convergence characteristic of the proposed algorithm. This graphic shows a good

convergence; the proposed method arrives at the desired solution within the first 250 iterations.
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Figure 3. Convergence characteristic of the ABC algorithm for test case 4.
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Table 8. Estimated parameters of the cubic fuel cost function for test case 4.

Unit Coefficients
Methods
ABC PSO [7] LSE [7]

1 (coal)

a0 124.5362 120.241 123.180
a1 3.4859 3.979 3.535
a2 0.1872 0.184 0.193
a3 –0.0015 −0.002 −0.002

2 (oil)

a0 129.2351 130.278 128.640
a1 3.4859 3.542 3.746
a2 0.1872 0.200 0.199
a3 –0.0015 −0.002 −0.002

3 (gas)

a0 126.0143 128.376 128.400
a1 3.8044 4.146 4.046
a2 0.1896 0.188 0.195
a3 –0.0015 −0.002 −0.002

Table 9. Simulation results for test case 4 (third-order model).

Unit P (MW) Factual (GJ/h)

Festimated (GJ/h) Error (Festimated – Factual)
Methods
ABC PSO [7] LSE [7] ABC PSO [7] LSE [7]

1 (coal)

10 176.62 176.6152 176.806 176.227 0.0048 0.186 0.393
20 256.40 257.1342 260.557 258.274 0.7342 4.157 1.874
30 361.50 357.0932 361.951 359.721 4.4068 0.451 1.779
40 467.60 467.4922 471.446 470.968 0.1078 3.846 3.368
50 579.50 579.3312 579.500 582.415 0.1688 0.000 2.915

|ΣError| 5.4224 8.641 10.329

2 (oil)

10 184.75 184.7391 184.076 184.301 0.0109 0.674 0.449
20 268.20 269.1631 268.200 269.562 0.9631 0.000 1.362
30 377.70 373.5071 373.010 374.223 4.1929 4.690 3.477
40 488.80 488.7711 488.863 488.084 0.0289 0.063 0.716
50 606.00 605.9551 606.119 600.945 0.0449 0.119 5.055

|ΣError| 5.2407 5.547 11.059

3 (gas)

10 187.20 187.1883 187.101 186.804 0.0167 0.099 0.396
20 272.80 274.6323 274.326 274.688 1.8323 1.526 1.888
30 384.30 380.5613 381.000 382.452 3.7387 3.300 1.848
40 497.20 497.1703 498.074 500.496 0.0297 0.874 3.296
50 616.50 616.6593 616.500 619.220 0.1593 0.000 2.720

|ΣError| 5.7767 5.799 10.148

Test case 5:

In this test case, the cubic fuel cost function described in Eq. (4) is used to estimate its parameters

for the same thermal power plants in test case 2 and the same data are used for the estimation of its a0 , a1 ,

a2 , and a3 parameters. The estimated parameters produced by the ABC algorithm and GA [21] are given in

Table 10. In Table 11, the actual fuel cost data [21] for each unit, estimated fuel cost data obtained from the

ABC algorithm and GA [21], and percentage error values in the estimation process are presented. As seen in

Table 11, for each unit, the maximum percentage error values produced by the ABC algorithm are less than

those of the GA. The percentage errors produced by the ABC algorithm for the generating units with 75, 90,

105, 120, 150, and 165 MW are under 1%. Against this, the errors produced by the GA for the generating units
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with 105, 120, 150, and 165 MW are under the same error level. Moreover, while the error values produced by

the ABC algorithm for 90, 105, and 120 MW are very close to 0, there is no error value close to 0 for the GA.

These results demonstrate that the error values in the estimation of the cubic fuel cost function using the ABC

algorithm are at more acceptable levels when compared with those of the GA. Therefore, the cubic fuel cost

function approximates closer to the actual curve using the parameters produced by the ABC algorithm.

Table 10. Estimated parameters of the cubic fuel cost function for test case 5.

Coefficients
Methods
ABC GA [21]

a0 0.1824 0.1181
a1 0.0074 0.008031
a2 0.000005 0.0000063
a3 0.000000016861239 0

Table 11. Simulation results for test case 5 (third-order model).

Unit P (MW) Factual (MBtu/h)

Festimated (MBtu/h) Percentage of the error (%)
Methods
ABC GA [21] ABC GA [21]

60 0.637 0.64811 0.62264 –1.74480 2.25432
75 0.769 0.77272 0.75586 –0.48325 1.70839
90 0.901 0.90128 0.89192 –0.03054 1.00777
105 1.034 1.03413 1.03081 –0.01285 0.30827
120 1.172 1.17163 1.17254 0.03152 −0.04608
135 1.301 1.31411 1.31710 –1.00767 −1.23770
150 1.453 1.46191 1.46450 –0.61335 −0.79147
165 1.602 1.61538 1.61473 –0.83512 −0.79479

5. Conclusion

In this paper, the ABC algorithm was applied to search for the optimal I/O curve parameters of thermal power

plants. The behavior of the proposed algorithm under 3 different test cases for 3 different power plants with

fuels such as coal, oil, and gas was also evaluated. The performance of the ABC algorithm was compared with

the GA, PSO, and LSE methods. The results showed that the ABC algorithm is more robust and produces a

lower error between the actual end estimated parameters compared to the others for all test cases. It is obvious

that the ABC algorithm is a useful and powerful algorithm for solving such a problem.

References

[1] A.A. Abou El Ela, M.A. Abido, S.R. Spea, “Optimal power flow using differential evolution algorithm”, Electric

Power System Research, Vol. 80, pp. 878–885, 2010.

[2] S. Sayah, K. Zehar, “Modified differential evolution algorithm for optimal power flow with non-smooth cost

functions”, Energy Conversion and Management, Vol. 49, pp. 3036–3042, 2008.

[3] P. Pao-La-Or, A. Oonsivilai, T. Kulworawanichpong, “Combined economic and emission dispatch using particle

swarm optimization”, WSEAS Transactions on Environment and Development, Vol. 6, pp. 296–305, 2010.

[4] M. Basu, “Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II”, Electrical Power

and Energy Systems, Vol. 30, pp. 140–149, 2008.

1839
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