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Abstract: A fully automated method for detecting microcalcification (MC) clusters in regions of interest (ROIs) extrac-

ted from digitized X-ray mammograms is proposed. In the first stage, an unsharp masking is used to perform the

contrast enhancement of the MCs. In the second stage, the ROIs are decomposed into a 2-level contourlet representation

and the reconstruction is obtained by eliminating the low-frequency subband in the second level. In the third stage,

statistical textural features are extracted from the ROIs and they are classified using support vector machines. To test

the performance of the method, 57 ROIs selected from the Mammographic Image Analysis Society’s MiniMammogram

database are used. The true positive and false positive rates are used to evaluate the performance of the classification,

and the results are compared with those from other studies presented in the literature. The results show that the

classification method of unsharp masking and low-band eliminated image statistics is convenient for MC cluster detection.

In particular, a true positive rate of about 94% is achieved at the rate of 0.06 false positives per image.

Key words: Image analysis, microcalcification detection, mammography, Mammographic Image Analysis Society

database, classification, support vector machines

1. Introduction

Breast cancer is the most common type of cancer among women [1]. Some important signs of breast cancer

that radiologists are seeking to find are microcalcifications (MCs), masses, and structural disorders. MCs are

observed in mammograms as white spots varying in size and shape. Important characteristics are their size,

shape/morphology, amount, and distribution. Their sizes vary from 0.1 mm to 1 mm [2]. MC detection is

very difficult in mammographies with overlapping breast tissues or high breast tissue density. Moreover, low-

contrast MCs can be perceived as noise while comparing them with the nonhomogeneous background. MCs

are observed in mammograms individually or in clusters. Clustered MCs are more likely to be malignant. A

cluster is defined as a group consisting of 3 or more MCs in a 1-cm2 area. As proposed in this study, many

computer-aided detection systems have been developed for MCs.

In [3], Yu and Guan first segmented out potential MC pixels in the mammograms using both multires-

olution and gray-level statistical features. Next, using a set of 31 features (mean, standard deviation, edge,

foreground and background ratio, area, compactness, elongation, moments, contrast, entropies, correlation,

variance, etc.), they grouped the detected individual MCs into clusters depending on their relative positions.
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Jing et al. [4] investigated the spatial distribution of MC clusters in mammograms. They modeled MCs and

background noise by gamma and Gaussian distribution, respectively. They also modeled the interaction of

neighbor MCs with each other by a marked point process. The MCs were then segmented via a maximum a

posteriori estimation. Halkiotis et al. [5] detected clustered MCs using mathematical morphology and artificial

neural networks. Yu and Huang [6] used combined model-based and statistical textural features to investigate

the performance of clustered MC recognition in mammograms. Nishikawa et al. [7] used morphological erosion

to reduce the false positives (FPs) after taking the difference image of 2 filter outputs, the first for enhancing

the MCs and the second for suppressing them. McLoughlin et al. [8] proposed a noise equalization scheme.

In this method, the quantum noise was illustrated using the square root of the gray levels. Qian et al. [9]

applied a cluster analysis-based region grouping approach for MC detection. The study of Linguraru et al. [10]

included image filtering based on anisotropic diffusion and curvilinear structure removal using local energy and

phase congruency. Gürcan et al. [11] used higher-order statistics (skewness, kurtosis). That study made the

assumption that the areas without MCs resemble a Gaussian distribution and the areas with MCs resemble

non-Gaussian. In [12], a mammogram was decomposed into subbands using a nonlinear filter bank. In the sub-

bands, the regions with high positive skewness and kurtosis values were marked as regions of interest (ROIs).

Afterwards, the MC locations were detected using an outlier labeling method. Caputo et al. used a generalized

Gaussian kernel energy function in a Markov random field (MRF) model for MC detection [13]. Casaseca-de-

la-Higuera et al. [14] compared different approaches based on Gaussian mixture models. MRF models define

the spatial gray level intensity distribution of an image. However, estimating the proper distribution is difficult

in these probabilistic approaches. Sankar and Thomas [15] used fractal analysis to model breast texture using

the local self-similarity. Huang et al. [16] proposed a new fast fractal image coding method for MC detection

in ROIs. Oliver et al. [17] built a dictionary using extracted local features using Sobel, Laplace, and Gaussian

filters to obtain a local description of the morphology of MCs. This dictionary was used to test data.

Strickland and Hahn [18] used a lossless undecimated biorthogonal wavelet transform. Mini et al. [19]

implemented wavelet transform, utilizing the pseudo-periodicity property of the image sequences. Nakayama

et al. [20] developed a filter bank based on the Hessian matrix to classify nodular and linear structures.

Regentova et al. [21] used wavelet transforms and hidden Markov trees. Rizzi et al. [22] reduced background

noise by thresholding mammograms through a biorthogonal wavelet filter according to the images’ statistical

parameters: mean and standard deviation. In order to detect MCs, they decomposed the reconstructed image

with an orthogonal wavelet and processed each decomposition level using a hard threshold technique. The

disadvantage of this method is that the parameter used in the algorithm depends on the database. Some of the

studies used machine learning in order to extract dependencies within the data.

Jiang et al. [23] and Peng et al. [24] proposed methods based on evolutionary genetic algorithms. Jiang

et al. performed MC detection and classification with the genetic algorithm, using 3 domains: pixel domain,

feature domain consisting of the local mean and variances, and cluster domain. Peng et al. used the knowledge

discovery mechanism incorporated with the genetic algorithm to improve the performance of the method. After

transforming the data from the pixel domain to the feature domain using the mean and standard deviation,

they selected 5 group centers to define the genes. These genes constituted the chromosomes that were used to

search for the bright spots in the mammogram. In [25–28], neural networks were investigated. However, the

main disadvantage of the neural networks is trapping in the local minima.

Support vector machines were recently stated to reach high accuracy in MC detection in the literature

[29,30]. El Naqa et al. [29] improved the detection rate by applying a successive enhancement learning procedure.
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Wei et al. [30] used a Bayesian learning approach (a relevance vector machine) to predict the MCs. Many studies

showed that machine learning methods are powerful classifiers. However, in these methods, overfitting the data

is also possible in cases where independent datasets or statistical resampling methods are not used. Compared

with the other methods, machine learning methods showed the best results.

Andreadis et al. [31] applied various feature extraction methods on ROIs with MCs to compare their

performance in terms of classification accuracy and discriminating power. They put forth that the combination

of all of the features improves the classification accuracy, with a performance better than that of individual

groups. Mohanalin et al. [32] used a type II fuzzy index for automatic MC detection. The thresholding was

performed with Tsallis entropy using a type II fuzzy index. Their results showed that the proposed Tsallis

entropy approach was better than the 2-dimensional nonfuzzy approach and the conventional Shannon entropy

partition approach. Dheeba and Tamil [33] applied support vector machines using Laws’ texture energy measures

to determine for each pixel whether it is an MC or not.

The purpose of this study is to achieve a fully automated detection of the MC clusters in digitized

mammograms. To this end, with the help of support vector machines, a classification of the texture features

of the high-frequency components extracted from mammogram images with enhanced contrast is made. From

the preprocessed mammograms, ROIs measuring 50 × 50 pixels are selected and sharpened by the filtering

operation. The filtered ROIs are decomposed into subbands, and then the feature extraction is performed from

the ROIs whose approximation image is eliminated. In the final stage, the ROIs are classified using support

vector machines.

The suggested MC detection method includes the main steps seen in Figure 1. Whether the ROIs contain

MCs or not is discovered after they undergo the stages of image processing.

 Contrast 
Enhancement 

Low-Frequency 
Elimination 

Feature  
Extraction Classification

 Input  Output  

Figure 1. Block diagram of the proposed method.

2. Materials and methods

2.1. Data set

In this study, the Mammographic Image Analysis Society (MIAS) database is used [34]. Within the data, there

are 2 mediolateral-oblique images belonging to each patient. The images with MCs are expressed by giving the

center location of the MC cluster and the radius of the region where the MCs are distributed. The radius of the

smallest MC cluster selected as the ROI is 6 pixels. The largest MC cluster distributes to the whole texture.

Each pixel in the mammogram has the dimension of 0.20 mm. Having the images in the MIAS prepro-

cessed and setting out with the cluster definition, the ROIs with a 1-cm width and height (50 × 50 pixels)

are chosen, and the method developed is applied to these ROIs. The ROIs were selected among the images of

breast tissues with different densities. A total of 33 MC ROIs, consisting of 21 malignant (5 F, 8 G, and 8 D

types) and 12 benign (2 F, 2 G, and 8 D types) types, and 24 ROIs of normal texture (with the 8 F, 8 G, and

8 D types) were used.

Figures 2 and 3 show the gray-level changes of a row of pixels of the MC involving ROIs of 2 mammograms

belonging to the MIAS database. In the graphs, you can observe the sharply increasing peaks in the positions

with MCs.
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Figure 2. Row values of the mdb211 mammogram. Figure 3. Row values of the mdb231 mammogram.

2.2. Methods

2.2.1. Preprocessing

Each pixel in an image means the probability of a 0.20-mm MC presence and any change in the gray level of the

pixels will also negatively influence the region segmentation with MC. Therefore, no specific image processing

algorithm has been applied to remove any imaging defect or noise.

Mammograms from the MIAS database involving malignant and benign MCs, and normal texture-type

mammograms without MCs, are first put through a linear stretching process with values in the range of 0

to 255. Histogram stretching is performed to enhance the visibility of the MC structures in the digitized

mammograms, providing greater separation between different gray levels by linearly remapping the pixel value

from the minimum to maximum gray level, as given in Eq. (1).

In order to improve the recognition of the MC structures in the digitized mammograms, histogram

stretching is applied. Thus, a significant difference between different gray levels is provided. The pixel values are

linearly remapped from the minimum to maximum gray levels, as given in Eq. (1), using histogram stretching:

Io(x, y) = 255.
Ii(x, y)−min

max−min
, (1)

where Io (x, y) is the gray level for the output pixel at (x, y) after the stretching process, I i (x, y) is the intensity

value of a pixel at (x, y) in the digitized mammogram, and max and min are the highest and lowest gray-level

values of the digitized mammogram, respectively.

After this process, the images whose MC locations are known ROIs of 50 × 50 pixels at different positions

are chosen, where the clusters are not only at the center of the image but also at the side regions. As mentioned

above, the selected tissue types and the distribution locations of the MC clusters are varied. A total of 57 ROIs

are used, 33 with and 24 without MCs.

2.2.2. Contrast enhancement

In the first stage, to clarify the MC structures in the ROIs, the contrast is enhanced by unsharp masking, which

is based on extracting the blurred state out of the image [35]. Unsharp masking is conducted using a Laplace

filter. Since the Laplace operator given in Eq. (2) is a second-level derivative operation, it suppresses the slowly
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changing gray levels while emphasizing the discontinuity of the gray levels. Since the gray-level change is high

in the positions having MCs, these positions are seen as gray in the image that has gone through the Laplace

filter. Normal texture regions are displayed in black because they involve less change. MC enhancement has

been done by extracting the Laplace image from the original (ROI) image due to the negative filter coefficient

at the center. Since the size of the smallest MC in the ROI is 1 pixel, a 3 × 3 pixel-sized Laplace filter is chosen.

The alpha parameter in the Laplace filter controls the direction of the Laplacian (difference operation) and can

be varied in the range of 0.0 to 1.0 for the unsharp masking. The 3 × 3 pixel-sized Laplace filter coefficients

are: [–0.5 0 –0.5; 0, 3, 0; –0.5 0 –0.5]. The algorithm is run for the different values of the alpha and the results

in Table 1 are obtained.

∇2 = (∂2/∂x2) + (∂2/∂y2) (2)

Figures 4 and 5 show the MC image in a mdb209 mammogram as its contrast is adjusted, which brings to the

foreground the details of the same mammogram via unsharp masking.

Figure 4. The mdb209 mammogram. Figure 5. The mdb209 mammogram after unsharp mask-

ing.

Table 1. Mean TP variations at different alpha values.

alpha Mean TP
0.1 0.9093
0.2 0.9254
0.3 0.9243
0.4 0.9225
0.5 0.9279
0.6 0.9289
0.7 0.9300
0.8 0.9361
0.9 0.9382
1 0.9411
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2.2.3. Low-frequency elimination

The MCs in the ROIs whose contrast is adjusted appear at high spatial frequencies. In the second stage

of this study, the images are decomposed into frequency components through multiresolution analysis. Low-

frequency images of the ROIs are thought to explain the bulk breast tissue. The extraction of the normal tissue

characteristics out of the ROI will make the MC structures more clarified and the statistical features more
distinctive. Eltoukhy et al. [36] compared wavelet and curvelet transform for breast cancer diagnosis. Having

defined the highest 100 coefficients as feature vectors, they determined that the successful classification rate of

the curvelet transform coefficients is higher than that of the wavelet coefficients.

In this study, contourlet transform is used to determine the image having high spatial frequency regions.

The contourlet transform, put forth by Do and Vetterli [37], was developed in the discrete domain via directional

multiresolution filtering. There is an orthogonal version of the contourlet transform that is faster than the

discrete curvelet algorithm. While the curvelet transform requires a circular operation in the 2-dimensional

frequency domain at polar coordinates, the contourlet transform operates easily at rectangular coordinates.

Therefore, it can be applied directly to digitized images.

Contourlet transform can extract the details in different directions, the edges that are not inclined in the

same direction and the geometric features involving knowledge in the image. Although MCs have point-like

appearances, they can be evaluated as objects having edges due to their forms with changing size. In wavelet

transform, detailed horizontal, vertical, and diagonal images are decomposed in addition to the approximation

image. As for the contourlet transform, the direction can be determined as far as the multiples of 2 for

the straight angle. Thus, wavelets are usually successful at extracting point-like features, whereas contourlet

transform is good at extracting line-like features in different directions.

In the proposed method, the ROI has undergone a filter bank process and has been decomposed into

second-level subbands. In Figure 6, the image is decomposed into 2 pyramidal levels, 8 and 16 directional

subbands. Since MCs are small in size and have a higher contrast compared to the tissues around them,

they are expected to be viewed as high-frequency components. Therefore, the elimination of the low-frequency

component in the contourlet transform will ensure the enhancement of the MCs.

In the filter bank, db9.7 is used as the pyramid filter (Figure 7), since it has a linear phase, is close to

orthogonal, and gives the best result [37]. For extracting information in different directions (Figure 8), the pkva

ladder filter that was suggested by Phoong et al. [38] is used.
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Figure 6. The 2-level contourlet transform. Figure 7. The 2-level contourlet transform subband de-

composition.

In the subband image, while high-frequency coefficients are used without any change, the second-level

approximation image is eliminated. The ROI is reconstructed from the coefficients whose low-frequency values

are erased.
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Figure 8. Directional filter frequency partition of the contourlet transform.

Shan et al. [39] compared wavelet, curvelet, and contourlet transform for denoising seismic waves. They

stated that curvelet and contourlet transforms give better results than wavelets. In this study, both second-level

contourlet transform and wavelet transform are applied using db9.7 and pkva wavelets. In the first step, a ROI

measuring 50 × 50 pixels is expanded to 64 × 64 pixels by copying the lateral pixels. Detailed images of the

contourlet transform are obtained in 8 directions for the first (4 of them 8 × 16 pixels, and 4 of them 16 × 8

pixels in dimension) and 16 for the second level (8 of them 8 × 32 pixels, 8 of them 32 × 8 pixels in dimension).

ROIs are reobtained by nullifying the coefficients of the 16 × 16 pixel-sized approximation images extracted at

level 2.

2.2.4. Feature extraction

In ROIs with clarified structures of MCs, to seize the changes caused from the MCs, kurtosis, skewness, entropy,

and energy criteria (Eqs. (3)–(6), respectively) of the distributions are investigated.

k =
E(x− µ)4

σ4
(3)

s =
E(x− µ)3

σ3
(4)

Ent = −
∑

p log2(p) (5)

E =
∑

I(x, y)2 (6)

When the feature values are examined, first kurtosis and then skewness are observed as the most distinct

statistics. As Gürcan et al. [11] stated, the statistical values of the regions without MCs seem to be closer to

the statistical values of the Gaussian distribution, whereas those of the regions with MCs seem to differ.

2.2.5. Classification with support vector machines

To detect whether the ROIs whose statistical values are detected have MCs or not, and also to accurately

classify the (background) regions without MCs, which cannot be defined by second-degree Gaussian statistics,

normal distribution statistical values have not been taken as threshold values, because a support vector machine

is used for classification, instead.

The reason why a support vector machine [40] is used for the classification of ROIs is its high performance

in the literature. A support vector machine is based on structural risk minimization. It classifies by taking the
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data to a higher dimensional space and forming a hyperplane [41,42]. While maximizing the distances of both

classes to the hyperplane, it minimizes the distances of those belonging to the same class.

d(x) =

yi∑
M

αik(x, xi) + b (7)

In Eq. (7), k is the kernel function, b is the deviation value, and y is the class label. The sign of the function

d(x) stands for the class membership of x. Where αi ̸= 0, all x i vectors show the support vectors of the most

convenience. The performance of the method was compared when linear, polynomial, and quadratic functions

are used as the kernel function of the support vector machine. The training and testing data to be used for this

method were selected through a cross-validation technique. The training and testing data with a probability

of 50% were picked out of a total of 57 ROIs, and after the support vector machine was trained with the data

used as the training data, the classification was made on the remaining testing data.

2.3. Performance evaluation and comparison

The criteria used to report the performance of the algorithms related to the detection of cancer are the sensitivity

and the number of FPs per image. A true positive (TP) rate is the number of signs detecting the presence of

cancer accurately. Sensitivity is the rate of detecting the TPs from all of the data with cancer (Eq. (9)), and

this is defined as the TP rate. A FP is the warning of cancer despite there being no cancer. The FP value is at

the same time calculated via the formula 1 – specificity (Eq. (10)).

sensitivity =
TP

TP + FN
(8)

FP = 1− specificity = 1− TN

TN + FP
=

FP

TN + FP
(9)

This study has taken the TP rate and FP amount per image as a basis in the classification of ROIs depending

on the presence of MCs in order to be able to compare with the other methods.

3. Results

In the first stage, the influence of the process of sharpening on the TP rate is examined. When MC detection

in ROIs is done without the sharpening process, the TP rate is 91% and the FP value is 0.09 as a result of

100 iterative classifications. When the sharpening step is added, the TP rate is 94% and the FP becomes 0.06.

The sharpening process thus increases the achievement rate in the detection of MCs. The mean classification

confusion matrix for the second situation is given in Table 2.

Table 2. Mean classification confusion matrix.

Ground truth
With MC Without MC

Classification With MC 11.22 (TP) 0.97 (FP)
result Without MC 0.78 (FN) 15.03 (TN)

In this study, both the second-level contourlet transform and the wavelet transform reveal the same performance

for the MC detection in this database and the selected size of the ROIs. To achieve a more general solution for

the MC detection and cover other types of databases, the contourlet transform is used.
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At the second stage, the influence on TP rate of the selection of kernel functions used in the support

vector machine for the classification is investigated in MATLAB. The TP rate graph obtained as a result of 100

iterative classifications made by the support vector machine using linear kernel function is given in Figure 9.

The average TP is 94%.

The TP rate graph obtained after 100 iterative classifications made by the support vector machine using

a polynomial kernel function is given in Figure 10. The average TP is 93%.
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Figure 9. TP rate for the support vector machine using

the linear kernel function.

Figure 10. TP rate with the polynomial kernel function

support vector machine.

The resulting average TP rate of 100 iterative classifications made by the support vector machine using

a quadratic kernel function is 91%. There are decreasing values in the TP rates, reaching down as far as 75%.

The classification made by the support vector machine using a linear kernel turns out to have a slightly higher

TP rate than the others.

Figures 11 and 12 show the values, measured only once, of the features extracted from the image

reconstructed in the contourlet transform after the approximation coefficients are eliminated. Of the 57 ROIs,
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Figure 11. Kurtosis (a) and skewness (b).
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1–21 are malignant, 22–33 are benign, and 34–57 are normal. When the graphs of the kurtosis and skewness

features are studied, it is seen that there is a discernible difference between the ROIs with and without MCs.

Since there are sharpening and subband erasing processes that strengthen the data irregularities in the algorithm,

entropy seems to make no distinction between the ROIs with and without MCs. As for the energy values,

although not as much so as in the features of kurtosis and skewness, there is a discernible difference in the

graph.

This study gives, in Table 3, a comparison of the method suggested for MC detection and other methods

put forward in recent years to be used by computer-aided systems.

Table 3. Comparison of the MC detection methods.

Study Method 

Database, 

number of 

ROIs 

TP (%) FP Year 

!e proposed 

method 

Unsharp masking, low-band elimination 

using contourlet transform, feature 

extraction, ROI classification using support 

vector machine. 

MIAS, 57  94 0.06 2012 

Yu and Guan 

[3] 

Wavelet transform, segmentation using 

statistical features, 31 feature extractions, 

feature selection using neural network. 

Nijmegen, 40  90 0.5 2000 

Jing et al. [4] 

Gray-level distribution modeling (MCs are 

modeled with gamma, background is 

modeled by Gaussian), the spatial distribution 

and amplitude parameter extraction of the 

clustered MCs, maximum a posteriori 

estimation. 

141 90 0.5 2011 

Halkiotis et al. 

[5] 

Mathematical morphology, artificial neural 

network. 
- 94.7 0.27 2007 

Yu and Huang 

[6] 

Wavelet filter and thresholding, model-based 

and statistical texture features. 
MIAS, 20 

94 

90 
1

 

 
0.65 

2010 

Sankar and 

!omas [15] 
Fractal analysis. - 91.81 - 2010 

Oliver et al. [17] Local feature extraction via filtering.  

3 databases, 2 

of them 

digitized 

a#erwards  

80 1 2012 

Rizzi et al. [22] 
Biorthogonal and orthogonal wavelet filter, 

thresholding. 
- 

98 

 

95 

1 

 

0.5 

2009 

Peng et al. [24] 
Knowledge-discovery mechanism in the 

genetic algorithm. 
DDSM 

96.8 

 

98.9 

0.20 

 

0.4 

2006 

Mohanalin et 

al. [32] 

Tsallis entropy, type II fuzzy index for 

thresholding. 

UCSF and 

MIAS, 

247 

96.55 0.4 2010 

Dheeba and 

Tamil [33] 

Feature extraction using Law’s texture energy 

measures, pixel classification via support 

vector machine. 

MIAS 86.1 - 2011 
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Figure 12. Entropy (a) and energy (b).

4. Conclusion

In this study, for fully automated MC cluster detection, unsharp masked and low-band eliminated images’

extracted features were classified using support vector machines on the MIAS database, consisting of normal

mammograms together with benign and malignant mammograms involving MCs. The ROIs, sharpened using a

Laplace filter-based unsharp masking method, were put through a subband decomposition process and then, by

eliminating the approximation image, the features were detected from the reconstructed image. For classifying

the testing data, a support vector machine, trained by the data picked among 57 ROIs through a cross-validation

method, was used.

Due to the difficulty of detecting MCs rendered by the density of the texture, the focus was especially

placed on the samples containing dense textures. The D-type texture ratio was 24/57. In ROI selection, to

ensure the independence of each datum from each other, one ROI out of each MC cluster was picked. In the

case of the MCs distributed in a large area in the mammograms, more than one ROI was picked from the same

mammogram, provided that they were in positions that did not overlap.

In the method proposed, first, the MC structures were further clarified, and then the texture that they

form with the texture surrounding these structures was analyzed. For classification, a feature-based approach

was used: while the gray levels in the normal texture showed smooth rises and falls, the statistical features were

observed to be close to a Gaussian distribution, but in the regions of irregularities involving regional maximums

like MCs, they diverged from the Gaussian distribution. In this method, the inadequacy of the non-MC noisy

background regions (described by second-order Gaussian statistics) is compensated for by the generalization

ability of the support vector machines.

The method proposed does not, at any stage, involve any presupposed value of a parameter or a situation

dependent on the database. The ROI dimension and filter size are determined according to the database pixel

resolution, based on the MC dimension and MC cluster definition.

In conclusion, in this method, no user interaction is required and all of the steps are implemented auto-

matically. Selecting the threshold or obtaining image-dependent parameters is not necessary in the presented

method. Moreover, this method is much easier to implement compared to the others. Thus, it is appropriate

for real-time clinical applications. Future studies will focus on testing the method in different databases and

increasing the MC detection rate.
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