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Abstract: The fault detection process is very difficult in transmission lines with a fixed series capacitor because of

the nonlinear behavior of protection device and series-parallel resonance. This paper proposes a new method based on

S-transform (ST) and support vector machines (SVMs) for fault classification and identification of a faulty section in

a transmission line with a fixed series capacitor placed at the middle of the line. In the proposed method, the fault

detection process is carried out by using distinctive features of 3-line signals (line voltages and currents) and zero sequence

current. The relevant features of these signals are obtained by using the ST. The obtained features are then used as

input to multiple SVM classifiers and their outputs are combined for classifying the fault type and identifying the faulty

section. Training and testing samples for the proposed method have been generated with different types of short-circuit

faults and different combinations of system parameters in the MATLAB environment. The performance of the proposed

method is investigated according to the accuracy of fault classification and faulty section identification. To evaluate

the validity of this study, the proposed method is also compared to both ST–neural network and previous studies. The

proposed method not only provides a good classification performance for all types of faults, but also detects the faulty

section at a high accuracy.

Key words: Fault classification, faulty section identification, series compensated transmission line, S-transform, support

vector machines

1. Introduction

Today, series compensation is a necessity to improve the power transfer capacity of transmission lines. Unlike

shunt compensation, the purpose of series compensation is to modify electrical characteristics of transmission

lines. Consequently, power transfer capability of the line is increased, the voltage profile of the line is improved,

and systems losses are reduced. In this type of compensation, the capacitor banks can be installed anywhere

on the transmission line. Commonly, series compensation architecture consists of the capacitor banks and a

protective system to prevent the capacitor against overvoltage, called a metal oxide varistor (MOV). The MOV

includes a bypass gap, damping reactor, and bypass circuit breaker. The bypass gap is controlled to spark over

in the event of excess varistor energy. The bypass breaker closes automatically in the case of prolonged gap

conduction or other platform contingencies. The breaker also allows the operator to insert or bypass the series

capacitor. The damping reactor limits the capacitor discharge resulting from gap spark over or bypassing the

breaker closure [1].

Although series compensation systems offer many advantages to power system operations, the distance
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protection task in the series compensated transmission lines (SCTLs) is more difficult than in uncompensated

lines. This is because the nonlinear behavior of a series capacitor arrangement during fault conditions affects

the current-voltage signals, and nonstationary and nonperiodic signals may appear in fault cases [2]. Therefore,

classification and identification of faults for relaying decisions and autoclosing are difficult tasks in SCTLs [3].

The digital protective relays based on traditional signal processing methods such as full-cycle discrete

Fourier transform, half-cycle discrete Fourier transform, and least square error may not provide a reliable

protection for series compensated lines since they fail to process the signals accurately in the presence of

nonstationary and nonperiodic signals. Moreover, phasor estimation requires a sliding window of a cycle that

may cause a significant delay [4–7]. Therefore, such techniques may not give satisfactory results for fault

detection in SCTLs [8].

To eliminate disadvantages of conventional techniques, different methods have been proposed for fault

classification and faulty section identification in SCTLs. In [9] and [10–15], fuzzy logic and neural networks

(NNs) were proposed for fault classification in SCTLs, respectively. In NNs and fuzzy logic-based approaches,

there are many parameters to be adjusted. In addition, the learning of a NN has usually been performed by

using gradient-based learning algorithms and such methods have several drawbacks, such as the difficulty in

setting learning parameters, slow convergence, slow learning, and training failures [16]. Decision tree-based

protection schemes were proposed in [17]. The support vector machine (SVM) method was applied for the

identification of a faulty section in an advanced SCTL in [3] and [18]. In [19], multiclass SVM and an extreme

learning machine were used for fault classification in SCTLs.

The wavelet transform (WT)-based relaying schemas have been also proposed for protection of SCTLs in

the literature [20]. WTs have some drawbacks such as selection of the mother wavelet, sensitivity to noise, lack

of absolute referenced phase information, production of unsuitable time-scale plots for intuitive visual analysis,

and delay due to its batch processing [21–23]. In [2] and [8], combined techniques such as WT-fuzzy logic and

WT-SVM were also proposed for protection of SCTLs, respectively.

The S-transform (ST), which is a superior method for time-frequency analysis, is a hybrid signal processing

method combining the advantages of short-time Fourier transform and WT. The basic idea of the ST is to obtain

a time-frequency energy distribution of the signal to isolate and process independently the components of the

signal in the time-frequency plane. In the ST, a scalable and variable window length is used and a Fourier kernel

is employed to provide the phase information referenced to the time origin. Hence, it provides supplementary

information about spectra that is not available from the locally referenced phase obtained by the continuous

WT [23].

Recently, the ST has been applied to power quality events in electric power systems [24,25]. Moreover,

studies in the literature have shown that the ST is more robust to noise than the WT [24,25]. Therefore, a

more reliable protection of SCTLs may be achieved by means of the ST. There are several publications using

the ST in the literature to classify and identify faults in transmission lines [26–28]. In [26] and [27], ST and

a probabilistic neural network, and ST and a logistic model tree (LMT), were proposed for a transmission

line including FACTS devices (thyristor-controlled series compensator), respectively. In addition, the method

proposed in [27] was evaluated over limited test cases such as 200 datasets and 6 features obtained from the

ST were used for classification and section identification. In [28], a ST and NN for HVDC lines were also

proposed. The main drawbacks of NNs are well known. Moreover, LMTs have the computational complexity

of inducing the logistic regression models in a tree. Recently, SVMs have been used as an attractive tool for
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pattern classification because of their superior features such as producing single, optimum, and automatic sparse

solutions by simultaneously minimizing both generalization and training error and separating data by a large

margin in high-dimensional space [29]. Furthermore, no study has been reported yet about ST-SVM–based

protection schema for SCTLs with fixed capacitors.

This paper proposes a combined method based on the ST and SVM for automatic classification of faults

and identification of faulty sections occurring in SCTLs with a fixed capacitor. In the proposed method, 3-

line signals (voltage and current) and zero sequence current sensed from the sending end are used for fault

classification and identification of the faulty sections. The distinctive features of the postfault voltages and

currents are extracted by the ST approach. From each sensed signal, the 8 distinctive features covering

maximum, minimum, standard deviation and magnitude factor of maximum amplitude-time plot (TMA-plot),

total harmonic distortion and mean square root of frequency-maximum amplitude plot (FMA-plot), standard

deviation of frequency-time (TF) contour, and energy of the largest frequency amplitude of TF-contour are

extracted by using the ST. Features obtained from voltage and current signals are then entered into SVMs

of respective phases. SVMs used for line current and voltage signals have 2 inputs and 2 outputs, and their

outputs represent a faulty phase and faulty section. A SVM used for zero sequence current has 1 input and

1 output, and its output designates the ground fault. In order to evaluate the performance of the proposed

technique, extensive simulation studies are performed by means of a model built in MATLAB. The simulation

model consists of transmission line, 2 generators, and a series capacitor placed at the midpoint of line. A total of

30,240 training and test cases are generated with different combinations of fault types and system parameters.

Performance of the proposed method is evaluated over an extensive set of 27,240 test cases, which are not

introduced to the classifier in training stage. In addition, test cases are randomly selected from the dataset.

The performance comparisons between the proposed method and combined ST-NN method as well as previous

studies are given for a better validation.

2. Case studies

The validity of the proposed technique is evaluated by the simulation model constructed in MATLAB/Power

System Toolbox. The schematic diagram of the simulated system is shown in Figure 1 and system parameters

are given in Table 1. The model consists of 2 generators connected to a transmission line of 320 km with a

series capacitor placed at the middle of the line. The transmission line is a distributed parameter line model

with lumped losses. The overvoltage protection of the series capacitor is provided by a MOV and the air gap.

A load with lagging factor is connected to the transmission line. A sampling frequency of 16 kHz is used in the

simulation studies.

MOV

Bus-1
Z / 2

SC

Generator-2Generator-1

Bus-2
Z / 2

Load

Figure 1. The schematic diagram of the simulated system.

Extensive simulation studies are carried out for different combinations of source impedances, fault

resistances (FRs), load angles (LAs), fault inception angles (FIAs), faults in front of the series compensator

(fsc) as well as behind (bsc), fault location, and percentage compensation levels (CLs). In addition, different
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types of short-circuit faults including line-ground (LG), line-line (LL), line-line-ground (LLG), and 3-line/3-

line-ground (LLL-LLLG) faults are considered for each of these combinations. An example presentation of LG

faults including fsc is given in Table 2. This table can be expanded for other fault types and faulty sections.

In the simulation studies, impedance of generator-1 is also changed to 75% and 100%, whereas impedance of

generator-2 is kept constant at 100%.

Table 1. System parameters used in the simulation model.

Transmission line

Length (km) 320
Voltage (kV) 400
Positive sequence impedance (Ω) 4.0736 + j93.81
Zero sequence impedance (Ω) 123.648 + j414.6
Positive sequence capacitance (mF/km) 4.077
Zero sequence capacitance (mF/km) 2.48

Generators
Impedance (Ω) 0.5333 + j5.333
Frequency (Hz) 50

Load
Active power 400 MW
Reactive power 330 MVar

Table 2. Studied LG faults for different combinations of system parameters.

FIA (◦) CL (%) FR (Ω) LA (◦) FL (km)
0–45–90 20–40–60 0.1–5–25–50 10–20–30 0–160 in steps of 20
0–45–90 20–40–60 0.1–5 – 25–50 10–20–30 0–160 in steps of 20
0–45–90 20–40–60 0.1–5–25–50 10–20–30 0–160 in steps of 20

From the above mentioned combinations, a total of 30,240 cases have been generated from the simulation

model shown in Figure 1. For all faulty cases, the fault duration is set to 2 periods (0.04 s). Voltage and current

signals are measured at the sending end.

3. Proposed fault classification technique

The proposed fault classification scheme is based on a combined ST-SVM and its block diagram is given in

Figure 2. In the proposed technique, fault classification and identification of the faulty section are performed

in 3 steps; preprocessing, feature extraction, and classification and decision. These steps are given in detailed

as follows.

Fault type&fault

section identificationIabc0

SVM1

SVM2

SVM3

SVM4

S-transform
Normalization&

segmentationVabc

Fa

Fb

Fc

F0

Fa, Fb, Fc, F0

Classification&decision 

D
e
c
is

io
n

 

Preprocessing Feature extraction

Figure 2. The proposed scheme for fault classification and faulty section identification.
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3.1. Preprocessing

In this step, measured signals are subjected to normalization and segmentation processes. In normalization

process, the signals are relatively scaled to have a maximum value of +1 and a minimum value of –1. For

current and voltage signals, the samples are taken for 1 cycle ahead and 1 cycle back from the fault inception in

the segmentation process. Thus, the size of the signals can significantly be reduced in the segmentation process.

3.2. Feature extraction by using S-transform

It is extremely important to select suitable features of signal(s) for fault classification and identification of

faulty sections. Appropriate selection of features reduces the computational burden on the classifiers because

extracted features by a signal processing technique are applied as input to the classifier. The ST is a time-

frequency analysis method combining properties of the short-time Fourier transform and WT. It provides

frequency-dependent resolution while maintaining a direct relationship with the Fourier spectrum. The ST of

a signal h(t) is defined as follows [30]:

STFT (τ, f) =

∫
h(t)ω(τ − t) e−j2πftdt, (1)

where the window function is a scalable Gaussian window given in Eq. (2):

ω(t, σ) =
1

σ
√
2π

e−
t2

2σ2 (2)

and

σ =
1

|f |
. (3)

Eq. (4) is obtained by combining Eq. (2) and Eq. (3).

S(τ, f) =

+∞∫
−∞

h (t)
|f |√
2π

e
(τ − t)2f2

2
e−j2πft (4)

For a time sampling interval of T, a discrete time series of h(t) is given in the form of h[kT ], k = 0, 1, 2, ...., N−
1. Discrete Fourier transform of h(t) is also presented as follows [31]:

H
[ n

NT

]
=

1

N

N−1∑
k=0

h (kT ) e(−
j2π n k

N ), (5)

where n = 0, 1, ..., N – 1. Using Eq. (8), the ST of a discrete time series h(kT) is given by letting τ → jT and

f → n/NT as in Eq. (6):

S
[
jT,

n

NT

]
=

N−1∑
m=0

H

[
m+ n

NT

]
e−

2π2m2

n2 e
i2π mk

N , n ̸= 0. (6)

For n = 0, it is equal to the constant defined in Eq. (7).

S [jT, 0] =
1

N

N−1∑
m=1

h
( m

NT

)
(7)
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Here, j, m = 0, 1, ..., N − 1 and n = 1, ..., N − 1.The discrete inverse of the ST is presented as:

h [jT ] =
N−1∑
n=0

{
1

N

N−1∑
k=0

S
[
jT,

n

NT

]}
e

i2π n k
N

.

(8)

The output of the ST is a matrix with k × ndimensions called the S-matrix. Each element of the ST-matrix

has a complex value. The ST-amplitude (STA) matrix is obtained as [31]:

A(kT, f) = |S [kT, n/NT ] | . (9)

In this study, the 8 distinctive features are obtained from the ST for each signal. In Figure 2, Fa , Fb , and Fc

represent the features extracted from 3-phase signals while F0 represents features extracted from the ground

current. A total of 56 distinctive features are extracted from the feature extractor (24 features for 3-line currents,

24 features for 3-line voltages, and 8 features for zero sequence current). In the ST, feature extraction is carried

out by applying standard statistical techniques to the components of the STA matrix as well as directly on the

STA matrix contours [21]. These features are useful for detection and classification of relevant parameters of

the fault signals.

The feature extraction using ST consists of 3 steps. In step 1, the feature extraction process from

the TMA-plot is performed. In the end of the process, features such as the maximum (F1), minimum (F2),

standard deviation (F3), and magnitude factor (F4) are obtained from the TMA-plot. The magnitude factor

of the TMA-plot can be calculated as follows [21]:

F4 =
1

FS
(1 + (F1 + F2 − (FS)). (10)

In Eq. (10), FS is equal to F1+ F2 for a faultless signal. In addition, it is known that features except for F1

and F2 do not contribute to the magnitude factor of the TMA-plot. Step 2 includes feature extraction from the

FMA-plot. Here, total harmonic distortion and mean square root of signals are obtained from the FMA-plot of

the STA-matrix. These features are labeled as F5 and F6 , respectively.

In step 3, a feature extraction process based on TF-contour is carried out and 2 distinctive features

of signals are obtained from its STA-matrix. They are the standard deviation of contour having the largest

frequency amplitude (F7) and the energy of contour having the largest frequency amplitude of TF-contour

(F8). Segmented and normalized 3-phase currents and the FMA-plot, TMA-plot, and TF-contour of their

STA-matrix for a 3-phase current in the case of ag fault at 220 km and in front of the series capacitor (SC)

and system parameters including load angle 20◦ , compensation level 60%, fault inception angle 90◦ , and fault

resistance 50 Ω are shown in Figures 3a, 3b, 3c, and 3d, respectively. From the FMA-plot, it is seen that

frequency in peak value of current represents the fundamental frequency component of the signal. In the faulty

phase, amplitude of the fundamental frequency component increases whereas amplitude of the fundamental

frequency component in faultless phases remains approximately constant. From the TMA-plot, it is seen clearly

that amplitude of the faulty signal has increased significantly once a fault has started. However, there is not a

noticeable change in amplitude of the faultless phases. Furthermore, the starting instant of fault can be visually

seen from TF-contours. This feature of TF-contours can be also used for fault detection.
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Figure 3. Outputs of STA-matrix for 3-phase current in the case of ag fault: a) segmented and normalized 3-phase

current, b) FMA-plot for STA matrix of 3-phase current, c) TMA-plot for STA-matrix of 3-phase current, and d)

TF-contour for STA matrix of 3-phase current.

The detection of ground fault from 3-line currents or voltages is difficult. Therefore, zero sequence current

is used in order to identify easily the ground fault in this study. Figure 4a presents segmented and normalized

zero sequence current, whereas Figures 4b–4d present time-frequency components (FMA-plot, TMA–plot, and

TF-contour) derived from the STA-matrix of segmented and normalized zero sequence currents. It is clearly

seen from Figure 4a that there is no value of zero sequence current in faultless conditions (up to 0.0225 s) but the

current takes any value in the fault case. Figure 4b shows that the signal contains high-frequency components

due to the fault condition. Change in the amplitude of zero sequence current can be obviously seen from Figure

4c after the fault case. As seen from Figure 4d, there are no frequency components before the fault is started.

However, frequency components appear in this contour after the faulty case. These features facilitate detection

of the ground faults.
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Figure 4. Component derived from STA-matrix of zero sequence current: a) segmented and normalized zero sequence

currents, b) FMA-plot, c) TMA-plot, and d) TF-contour.

In Figure 5, variations of feature F3 for LG faults including ag, bg, and cg are depicted for 300 randomly

selected samples. Samples up to the 50th belong to the fsc set whereas the rest of the samples are in the bsc

set .The value of feature F3 for the faulty phase varies in the range of about 3×10−4 to 14×10−4 in the case of

an ag fault as shown in Figure 5a. However, this value changes approximately between 0.5×10−4 and 3×10−4

in the case of the ag fault occurring after the SC. Figures 5b and 5c show that similar events take place for bg

and cg faults both after and before the SC. Additionally, it is shown that feature F3 takes different values in

the faultless phase as well as different positions of the fault. Similarly, other features described above also have

important contributions for fault-type classification and identification of faulty sections.

4. Fault classification and faulty section identification by SVMs

Recently, SVMs have been used as effective tools for fault classification in power systems [3,8,18,29,32]. This

approach constructs the separating hyperplane for pattern recognition. A binary classification problem handles

a set of examples {xi, yi } with 1 ≤ i ≤ ℓ (ℓ is the size of the example). Each example is part of a

class labeled as yi . The SVM classifier looks for an optimal hyperplane separating the opposite classes. The x

points, which lie on this hyperplane, satisfy the equationw. x + b = 0. w is a normal vector of the separating

hyperplane and b is a scalar called the bias term. The SVM searches for maximum separating hyperplane to

satisfy Eq. (11). If Eq. (11) is satisfied, then examples are linearly separated [33].

si (w. xi + b) ≥ 1 (11)

The optimal separating hyperplane is called the separating hyperplane achieving the maximum distance between

the plane and the nearest data. Figure 6 shows an example for the optimal separating hyperplane with 2 datasets.
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Figure 5. Variation of feature F3 for LG faults: a) ag fault, b) bg fault, and c) cg fault.
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Margin

Optimal hyperplane

Class-1 Class-1I

Support 

vectors

Figure 6. An example for the optimal separating hyperplane with 2 datasets.

The geometrical margin is founded as ∥w∥−2
from this figure. The solution of following quadratic

optimization problem gives optimal hyper-plane [34]:

Minimize
w

1
2 ∥w∥

2

Subject to si (xi . w + b) ≥ 1

. (12)
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This problem can be solved by a Lagrangian multiplier as follows:

1

2
∥w∥2 −

ℓ∑
i=1

ci (si (w . xi + b) − 1). (13)

The Lagrangian has to be minimized with respect to the primal variables w and b while it has to be maximized

with respect to the dual variable ci . The Karush–Kuhn–Tucker (KKT) conditions lead to finding the solution

vector in terms of the training pattern, w =
ℓ∑

i=1

ci si xi for some ci ≥ 0. The solution in its dual form is used

to solve this problem [34]:

max −1
2

ℓ∑
i, j=1

ci cj si sj Φ(xi)Φ(xj) +
ℓ∑

i=1

ci = − 1
2

ℓ∑
i, j=1

ci cj si sj K(xi, xj) +
ℓ∑

i=1

ci

Subject to
ℓ∑

i=1

ci si = 0, ci ≥ 0

(14)

where K (xi, xj)is kernel function that is a nonlinear function and can be defined as follows:

K (xi, xj) = Φ (xi) Φ(xj). (15)

A SVM then uses the convolution of the scalar product to build, in input space, the following nonlinear decision

function:

f(x) = sign

(
ℓ∑

i=1

ci siK (x, xi) + b

)
. (16)

A separating hyperplane does not exist if training data are not linearly separable. The learning task in Eq.

(17) is essentially the same as that indicated in Eq. (12) if regularization parameter C and slack variable ξi

are assumed to be zero. The classifier attempts to separate the data by minimizing the objective function [34].

min
w

1
2 ∥w∥2 + C

ℓ∑
i=1

ξi

Subject to si (xi . w + b) ≥ 1− ξi, ξi ≥ 0 for all i
(17)

In this study, the Gaussian kernel function, which is one of the most commonly used kernels, is preferred. It is

defined as follows:

K (xi, xj) = exp

(
− |x− xi|2

2σ2

)
, (18)

where σ is the width parameter of the Gaussian function. The classification performance of the SVM depends

on parameters C and σ .

Basically, multiclass SVM classifiers can be formed by 2 types of approaches. The first approach aims to

modify the design of the SVMs to incorporate the multiclass learning in the quadratic solving algorithm and the

other approach combines several binary classifiers [35]. In the second approach, methods such as one-against-

rest and one-against-one have been proposed. In this paper, the one-against-one method is used for multiclass

classification. The feature vectors obtained from the ST are used as an input to the SVMs of the respective
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phases (SVM1, SVM2, and SVM3) and the SVM of the ground (SVM4). As previously said, detection of the

ground fault cannot be possible only from the fundamental components of voltages and currents. Therefore,

zero sequence current is used to detect the ground faults. The SVMs of particular phases (SVM1, SVM2, and

SVM3) have 2 outputs designating the faulted phase (output 1) and faulty section (output 2). SVM4 has one

output indicating ground fault. For accurate fault classification, training of SVMs should be fulfilled by a group

of training data. For this purpose, 300 faulty cases randomly chosen for each fault type have been considered as

the training set for SVM classifiers. After the training of the SVMs, classification performance of the proposed

technique was tested with the remaining dataset.

4.1. Parameter selection and training of SVM

As stated previously, training and testing data are generated for 10 types of faults with varying fault locations,

fault resistance, compensation level, and fault inception angle. The input patterns to SVMs classifiers consist

of distinctive features of phase voltages (Vabc), phase currents (Iabc), and ground current (I0). To obtain a

good classification performance from the SVM classifier, its parameters such as regularization parameter C

and kernel parameters such as σ for radial basis function (RBF) have to be carefully chosen. In the literature,

several studies have been done to evaluate classification performance of kernel functions in different areas. The

studies show that satisfactory classification performance is obtained by using the RBF kernel because it indicates

properties of both sigmoid and linear kernel functions depending on the selected parameter range [36,37]. In

this paper, the Gaussian RBF is used and the optimum values of its parameters are found by a search process.

This process includes a wide range of variation of 2 parameters: C and σ . These ranges are considered for C =

1–216 by step 20.5 andσ = 2−4 to 26 by step 20.5 . The parameters of SVMs giving the highest accuracy are

considered as optimal parameters. The optimum values of C and σ are found as 11,585 and 32, respectively.

Similarly, the values of these parameters for other SVMs are given in Table 3. In addition, once the SVMs are

learned with these parameters, all parameters of the trained SVMs are fixed and then used in retrieval mode

for testing the capabilities of the system.

Table 3. Optimum values for the parameters of SVMs obtained by search process.

Classifiers
Parameters
C σ

SVM1 11,585 32
SVM2 8192 64
SVM3 16,384 22.627
SVM4 2896.3 0.1768

5. Results and discussion

To evaluate the validity of the proposed technique, the simulation model has been run for different combination

of system parameters. A total of 30,240 cases have been obtained from this model. The training dataset is

composed of 3000 cases selected randomly with 300 cases from each event. Testing of the classifier is performed

by using the remaining 27,240 data.

After training of the SVM classifier, overall accuracy for fault classification of the proposed method for

different types of faults including LG, LL, LLG, and LLL-LLLG with various operating conditions is presented

in Table 4. It can be seen that the proposed method classifies 26,911 out of 27,240 test data correctly and
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overall accuracy is obtained as 98.754%. The highest classification rate is 99.449% for LG faults, whereas the

lowest classification accuracy is found as 97.687% for LL faults.

Table 4. Performance of the proposed technique for fault classification.

Fault type Test Training True False Overall accuracy (%)
LG 8172 900 8127 45 99.449
LLG 8172 900 8116 56 99.314
LLL-LLLG 2724 300 2685 39 98.568
LL 8172 900 7983 189 97.687
Total 27,240 3000 26,911 329 98.754

The performance of the proposed method is also investigated by making comparisons with the ST-NN

method, which is widely used in many practical applications. In ST-NN, distinctive features of 3-phase signals

and zero sequence current are extracted by the ST (a total of 54 distinctive features). Extracted features are

then given as input to NN classifiers. Fault classification performance of the proposed method is depicted in

Table 5 as compared with ST-NN. It has been found that overall accuracy of ST-NN is 96.389%, which is lower

than that obtained by the proposed method.

Table 5. Classification performance of ST-NN and the proposed method for fault classification.

Fault type This study (%) ST-NN (%)
LG 99.449 96.243
LLG 99.314 97.479
LLL-LLLG 98.568 95.631
LL 97.687 96.206
Total 98.754 96.389

A comparison among previous studies and the proposed ST-SVM is depicted in Table 6 for different types

of fault. The obtained results show that the proposed method has better classification performance compared

with previous studies. The highest accuracy among previous studies is obtained as 98.703% by [3], while the

overall accuracy of the proposed method is 98.754%.

Table 6. Performance comparison among the proposed method and previous studies for fault classification.

Fault type [3] [8] [17] [26] This study
LG 97.447 96.230 90.729 98.56 99.449
LLG 98.611 97.050 97.754 97.26 99.314
LLL-LLLG 100 94.325 91.458 97.62 98.568
LL 99.616 88.333 91.631 96.84 97.687
Overall accuracy (%) 98.703 93.917 92.893 97.57 98.754

Performance of the proposed method for identification of faulty sections is also presented in Table 7 as

compared with ST-NN and [26]. This table reveals that the proposed method shows a more effective section

identification performance than results of both ST-NN and [26].
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Table 7. Performance comparison among the proposed method, ST-NN, and a previous study for identification of faulty

section.

Fault type This study (%) ST-NN (%) [26]
LG 99.862 95.853 99.65
LLG 99.069 94.806 98.56
LLL-LLLG 98.751 96.585 98.62
LL 98.188 95.324 97.62
Overall accuracy (%) 98.967 95.642 98.613

6. Conclusion

In this paper, a combined relaying scheme based on ST-SVM for protection of the SCTLs is proposed. The

proposed method uses 3-line voltage and current signals and zero sequence current to classify different types

of faults and identify faulty sections. In the proposed method, which is performed in 3 stages, the ST feature

extractor is responsible for extracting the distinctive features of signals. The distinctive features of signals

are used as input to SVM classifiers. The outputs of SVMs then classify the type of fault and identify the

faulty section. The feasibility of the developed technique has been tested on an extensive dataset of 27,240

test cases including a wide range of operating conditions. It is obviously seen from simulation results that the

proposed method manages to classify and identify the faults at high accuracy in spite of the presence of the series

capacitor and MOV. In addition, the faults involving the ground are easily detected by usage of zero sequence

current. The classification and section identification accuracies of the proposed technique have been found to

be 98.754% and 98.967%, respectively. The robustness of the proposed method for changing of parameters such

as compensation level, fault inception angle, load angle, different location of fault, and source impedance is also

seen from the results. It can be concluded from the results that the proposed method based on ST-SVM can

provide a reliable relaying scheme in SCTLs.
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