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Abstract: Location privacy is an interesting problem that has been receiving considerable attention. This problem has

been widely discussed from the individual point of view; however, there exist only a few works that support location

privacy for a group of users. In this paper we consider the problem of supporting location privacy for a group of users

during the use of location-based services (LBSs). We assume a group of users who want to benefit from a LBS and find

the nearest meeting place that minimizes their aggregate distance. Each user in this scenario wants to protect his or

her location from the LBS, outside attackers, and other group members. We show that individual solutions for location

privacy cannot be directly applied to the group location privacy problem and a special solution must be developed. We

identify the privacy issues for this group scenario and propose a resource-aware solution in order to satisfy these group

privacy issues. Our solution is based on secure multiparty computation and the anonymous veto network protocol. The

proposed protocol decreases the number of group queries to a large extent, as it only sends a single query to the LBS.

Consequently, the LBS overhead to evaluate the query and the size of the LBS result are significantly decreased. The

proposed protocol also protects the LBS from the excessive disclosure of points of interest and the LBS provider only

needs to apply an existing private nearest neighbor (NN) query algorithm instead of an aggregate NN query algorithm.

The performance and security analysis show that the protocol is secure against a partial collusion attack and a denial-

of-service attack in a malicious model.
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1. Introduction

Location-based services (LBSs) offer a wide range of capabilities, because mobile users have the ability to ask

for location-dependent queries from the spatial database and get the desired information based on their location

at any time and from anywhere [1].

However, to get the correct answer, a user (or a group of users) must reveal his or her (their) exact

location(s) to the LBS. This may raise many concerns about the location privacy [2]. Knowing the location of

a user (or a group of users) could reveal sensitive information about her (their) health status, financial status,

future activity, and political affiliations. As a result, several techniques have been proposed to protect the user’s

location privacy during the use of LBSs [3,4]. Unfortunately, most of these techniques only consider the location

privacy of an individual user [4] and do not take into account the location privacy for a group of users. In this

paper, we consider the location privacy problem for a group of users during the use of LBSs and propose a

secure multiparty-based technique to solve it.
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Consider a scenario in which a group of users (working group) wants to have a critical face-to-face

meeting (shown in Figure 1). They can use a LBS to find the nearest meeting place that minimizes their

aggregate distance [5]. In order to find a meeting place, each user of the group submits a nearest neighbor (NN)

query along with her location to the LBS. The LBS then returns the point(s) of P (a set of points of interest

(POIs) that resides at the LBS database) with the smallest aggregate distance(s) to the set of queries [5]. This

kind of NN query is known as a group NN query in the literature [5]. The aggregate distance may be the total

distance of all of the group members or their maximum distance to the meeting point [5]. In this paper, we

assume the total distance of all members as the aggregate distance.

        

LBS provider 

Group of users 

Sending the query  

Receiving the result 

Figure 1. Model of the problem.

Providing exact locations to the LBS may jeopardize the location privacy of the group members. To avoid

this privacy risk, Hashem et al. proposed a 2-phase method [6], where each user sends an imprecise location

to the LBS and the LBS returns a set of candidate answer points with respect to the set of received imprecise

locations. To determine the actual answer point, Hashem et al. proposed a private filtering algorithm that finds

the exact result from the candidate answer set without violating the members’ location privacy.

Although the work of Hashem et al. preserves the location privacy of each user in the group, it is an

expensive method in terms of communication cost because it requires each user to send a distinct query (her

cloaked region) to the LBS and the LBS must send back an answer set (not the exact answer), which has to be

refined by the group members to determine the exact location.

In this paper, we identify the location privacy issues for a group of users and propose a resource-aware

solution to satisfy them.

There are several major privacy issues in a group scenario:

• Preserving the location privacy within the group,

• Preserving the location privacy from anyone outside of the group,

• Preserving the meeting point location privacy.

By solving the first privacy issue, the location of each member will be protected from the other group members.

The second privacy issue protects the location privacy of all of the members from anyone outside of the group,

including the LBS.

The third privacy issue refers to protecting any location data that belong to the whole group. For example,

in the above scenario, the location of the meeting place can be considered as the location data belonging to all

1858



ASHOURI-TALOUKI et al./Turk J Elec Eng & Comp Sci

of the members, and therefore it must be protected. Or, if the members’ meetings tend to be secret, the third

privacy issue must also be satisfied.

Here, we present 2 definitions about the location privacy issues for a group of users:

Definition 1 Let G1 be a group of users. The IntraGroup Location Privacy encompasses the location privacy

issues within G1 . Based on this property, the location of each member will be kept secret from the other members

of G1 .

Definition 2 Let G1 be a group of users. The InterGroup Location Privacy protects the privacy of all of the

location data that belong to a single member or the data of the whole group from anyone outside of the group;

this includes preserving the location privacy of all of the group members and the meeting point from anyone

outside of G1 (for example, LBSs and outside attackers).

According to the above definitions, the focus of the group location privacy is on protecting the location

privacy of all of the members and the meeting point, while the individual location privacy aims to protect one

user’s location. The group location privacy problem requires an additional privacy-preserving phase to find the

exact result from the answer set; thus, special solutions need to be developed.

In this paper, we aim to preserve the location privacy of all of the members within the group and from

anyone outside of the group. We leave preserving the meeting point location privacy for a future work.

Our main idea in this paper is to compute a location indicator as a group location and send that indicator

to the LBS. The group’s location indicator may be a minimum bounding rectangle (MBR) that encloses all of

the group members or the centroid point of all of the group members. Both group location indicators (a MBR

or a centroid point) guarantee that all of the users of the group will get the exact answer. When using a centroid

as the group’s location indicator, the answer set size becomes lower than that of a MBR. In particular, it is

enough for the LBS to compute the nearest POI to the centroid in the case of a NN query (or the k nearest

POIs in the case of a k -NN query) and to send it back to the group. Therefore, we use a centroid as the group’s

location indicator.

In general, the contribution of this paper can be summarized as follows:

• We identify the issues of the group location privacy and propose a decentralized protocol to protect these

issues, even in the case of collusion.

• We propose a solution that is resource-aware, as it takes care as regards the communication cost and

computation cost of each member.

• The proposed protocol preserves the privacy of the LBS content, as it discloses only a single POI in the

case of a NN query (or a set ofk POIs in the case of a k -NN query), while previous works may lead to

excessive disclosure of the LBS database [7–9].

The rest of the paper is organized as follows: the next section reviews related works in the field of location

privacy. In Section 3, the proposed protocol is presented. The security analysis and performance discussion are

presented in Sections 4 and 5, respectively. Finally, Section 6 concludes the paper.

2. Related works

There is a wide range of literature on preserving the user’s location privacy during the use of a LBS. First, we

briefly review the individual location privacy solutions, and then we focus on the approaches that support the

location privacy for a group of users.
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For the individual location privacy, there are 2 types of solutions [4]. The first is based on a trusted

third party (TTP) that is responsible for cloaking the users’ locations and mediating the communication link

[10–14]. Thus, a LBS provider receives a query from the TTP and then sends the result back to the TTP. One

drawback of this approach is that the TTP is a single point of failure and can affect the security of all of the

users. Furthermore, the user must trust the TTP enough to disclose her exact location.

To overcome these drawbacks, a second approach is proposed: TTP-free methods [4]. In these methods,

each user cloaks her location without the use of a TTP. The methods of this approach are collaboration-

based [4,15–18], obfuscation-based [19–21], and private information retrieval-based (PIR-based) [22,23]. In

collaboration-based methods [4,15–18], a user perturbs her exact location by collaboration with her peers.

Obfuscation-based methods [19,20] degrade the quality of the location information by reducing the location

precision. PIR-based methods [22,23] apply PIR cryptographic techniques to support the location privacy; in

these methods, the LBS answers the queries without knowing the users’ exact locations. TTP-free methods

have some drawbacks; for example, the user must trust her peers [15,16]. Moreover, some of these methods

need cooperation from the LBS, are not applicable in real-world scenarios, and/or are expensive in terms of the

computation cost [22,23].

It is worth mentioning that collaboration-based methods are similar to the group location privacy

paradigm because they protect the user location privacy through a group formation. Thus, in the following, we

review these methods in more detail.

Chow et al. were the first to apply the group formation technique to cloak a single user’s location [16].

In their method, the mobile user forms a group from her peers by contacting them via single-hop or multihop

communication. The mobile user can then blur her exact location into a spatial cloaked region that covers the

entire group of peers. The drawback of this approach is that the mobile user can learn the exact location of her
peers.

PRIVÉ [24] and MobiHide [25] are 2 distributed approaches presented by Ghinita et al. that preserve

the anonymity of a user issuing spatial queries to the LBS. Both methods are based on the Hilbert space-filling

curve and assume that the user trusts her peers.

Solanas and Mart́ınez-Ballesté [17] proposed a cryptographic-based method to preserve a single user’s

location privacy. In this method, which is similar to our protocol, a mobile user contacts peers in her cover

range to learn their locations. The centroid point is then computed by the user as her fake location. The users’

locations are masked by adding Gaussian noise with a zero mean to allow them to freely share their location

without trusting their peers. However, if this procedure is applied several times with static users, then the

user’s location will be disclosed due to the cancellation of the Gaussian noise. To solve this problem, Solanas

applies a privacy homomorphic encryption system [26], where each user encrypts her masked location with the

LBS’s public key and then shares the result with her peers.

Although applying privacy homomorphic encryption solves the static user problem, there is another

problem with this method. Assume that the LBS is able to eavesdrop on the users’ internal communications;

therefore, in the consecutive usages with static users, the LBS can deduce the user’s exact location due to the

noise cancellation. Furthermore, this method is expensive in terms of the computation and communication cost

because it requires one encryption per user; consequently, the exchanged message size will be large as well.

The protocol by Hu and Xu [27] preserves the individual user’s location privacy by forming a group

with no need for the user to trust her peers. In general, their method consists of 2 phases. In the first phase,

the mobile user identifies herk peers through the proximity information and in the second phase, the minimum
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bounding rectangle of this set of users is constructed through a specialized secure multiparty protocol. Although

this approach alleviates the need for peer trusting, it constructs a large cloaked region and results in a larger

answer set.

In contrast to the above methods, our protocol computes a single point as the group’s location indicator

and results in the smallest answer set of the methods: a single POI in the case of a NN query. In addition, the

proposed protocol results in low computation and communication costs.

Although there are some works in the field of processing group NN queries [5,28], they do not consider

user location privacy. To the best of our knowledge, there are only 2 papers on the subject of group location

privacy: one written by Huang and Vishwanathan [29] and the other by Hashem et al. [6], which has 2 phases.

Huang and Vishwanathan’s method [29], based on a garbled circuit (GC) and oblivious transfer (OT),

assumes that the group members know the set of candidate POIs and presents a cryptographic solution to find

the nearest POI from the members’ locations. In this method, there are 2 special users: a creator who creates

the encrypted circuit and an evaluator who evaluates the circuit. Each user starts an OT protocol with the

creator to get her encrypted input bits and then transmits her encrypted input to the evaluator, and this should

be repeated for each POI in the answer set. Thus, increasing the number of POIs and the number of users

results in an increasing number of OT protocols, leading to protocol inefficiency.

Regarding Hashem’s method, the first phase blurs the exact location of each user based on her peers’

imprecise local location [30]. Each user then submits her cloaked location along with a query ID to the LBS.

The query ID is issued by a group coordinator that is responsible for managing the communication of the group

and submitting the NN query to the LBS.

Upon receiving all of the requests, the LBS provider evaluates them and returns a set of candidate

answers (that includes the actual POI) along with their aggregate maximum and minimum distances to the

users’ cloaked regions. The second phase of Hashem’s method is to determine the exact POI without revealing

the users’ locations. In this phase, each user updates the maximum and minimum aggregate distance to

the candidate answers with respect to her actual location and the total travel distance to each data point is

computed.

Although Hashem’s method preserves the location privacy of all of the members, it has major drawbacks.

For example, it still requires the group to send n distinct NN queries, which imposes a high communication

cost. Moreover, computing the imprecise location requires each member to find her k – 1 peers and contact

them to collect their local imprecise locations. Thus, the cloaking process requires additional communication

and computation costs. Moreover, the LBS overhead to evaluate a group of NN queries is much higher than that

of a single NN query, because the LBS processes each POI against a set of regions instead of a single region or a

single point. Furthermore, the private filtering algorithm in Hashem’s method imposes additional computation

and communication costs.

Our proposed protocol protects the location privacy for all of the group members in an effective manner

in terms of the computation and communication cost. The protocol not only sends a single NN query instead

of n distinct NN queries, but also receives the actual POI from the LBS. Therefore, there is no need to apply

a private filtering algorithm.

Our paper differs from [6] in 3 ways:

• We propose a solution based on secure multiparty computation to compute a location indicator for the

group, while preserving the location privacy of all of the members.

• Our proposed solution avoids the need for evaluating a group of NN queries because the LBS only receives
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one NN query. Thus, the LBS can apply any NN query-processing algorithm and, consequently, the LBS

overhead will be very low.

• The size of the candidate answer set in the proposed approach is O(1) in the case of a NN query or O(k)

in the case of a k -NN query. Moreover, there is no need to use a private filtering algorithm because the

answer set only contains the exact result.

3. Proposed protocol

As mentioned earlier, the proposed protocol computes the centroid among the users of the group as the group’s

location indicator. The computation of a centroid must be carried out in a secure fashion, such that the location

privacy of all of the members remains intact. Specifically, members of the group jointly and securely compute

a function of their private inputs (their locations), such that the function outcome is the centroid coordinates.

To protect the members’ location privacy, group users must start a secure multiparty computation. The secure

2-party computation was first presented by Yao [31] and then extended to a secure multiparty computation

[32]. Due to the inefficiency of Yao’s protocol (GC), some research has focused on finding efficient protocols for

specific problems of secure computation.

In this paper, we adopt the anonymous veto network (AV-net) protocol [33] to propose a secure multiparty

centroid computation. This protocol was developed by Hao and Zielinski [34] in 2006 to solve the anonymous

sender problem. In the first round of the AV-net, each member publishes an ephemeral public key gai , and

then each member is able to compute gbi based on Eq. (1):

gbi =
i−1∏
j=1

gaj/
n∏

j=i+1

gaj (1)

In the second round of the AV-net, each member publishes gcibi (where ci is a random number) if she

wants to veto, or she publishes gaibi if she does not want to veto the protocol. Upon aggregating all of the

values, if no one vetoes, the result is 1 (
∏

gaibi = 1) [33]. Otherwise, if even 1 user vetoes, the result would be

a random number, unequal to 1 (
∏

gcibi ̸= 1), while preserving the anonymity of the vetoing user(s) [33].

We adopt the AV-net to mask the location coordinates of each party to compute the centroid. Similar

to Hao’s work, we assume that there is an authenticated public channel for each member of the group, which is

essential for general secure multiparty computations [32]. Moreover, we assume that G is a finite cyclic group

of the prime order q , in which the decision Diffie–Hellman problem is intractable and g is a generator of G

[33]. All of the members {U1, U2 ,...,U n } agree on (G; g). We consider a malicious model as the protocol threat

model. In a malicious model, the adversary is active and could behave arbitrarily, while in a semihonest model,

each participant follows the protocol specification but tries to deduce some private information about the other

participants [32].

The proposed protocol has only one phase: it is responsible for the secure computation of the centroid

coordinates. This operation needs 2 broadcast rounds. The first round establishes AV-net masks and the

second round securely computes the centroid coordinates using the masks. The protocol rounds are presented

in Figure 2.
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The Algorithm of the Proposed Protocol  

Round1 (AV-net values computation): 

i.  selects , where 

ii.

iii.  computes  ∏ / ∏  and 

∏ / ∏

Round 2 (secure centroid computation): 

i.

ii.  computes    , 

∏

iii. ∑ ∑

∍

Figure 2. The algorithm of the proposed protocol.

In the first round, each member of the group publishes a secret random value. Specifically, each participant

Ui selects a random secret value, ai∈RZq, and broadcasts gai along with a zero-knowledge proof for ai . After

finishing this round, each party Ui computes gbi based on Eq. (1) (the same is true for ga
′
i and gb

′
i).

Next, each party masks her location coordinate by publishing gxigaibi and gyiga
′
ib

′
i along with a zero-

knowledge proof of ai ,xi , and yi , where xi and yi are her location coordinates. Multiplying the published

values results in the canceling of the AV-net masks and computing of the final summation of x and y .

More exactly, since ai and bi are AV-net values, then
∑

aibi = 0 [35]. Thus, multiplying all of the

published values for gxigaibi results in the summation of the x coordinates of all of the users (X = g
∑

xi), which

are discrete logarithms to the base g . The same is done to compute the summation of the y coordinates (Y =

g
∑

yi).

Finally, Ua , a member of the group randomly chosen as the group agent to communicate with the LBS,

sends a single NN query along with the summation of the x and y coordinates and the number of group

members (n).

Upon receiving the query, the LBS finds the discrete logarithm of X and Y by applying the kangaroo

method [36] (since xi and yi are location coordinates, the upper bounds of
∑

xi and
∑

yi will be clear) and

then divides the result by n to get the centroid coordinates. It is worth mentioning that the coordinate data

is usually an integer between a 6- or 7-decimal digit that requires about 20 bits. Thus,
∑

xi (or
∑

yi) will be

a small number and determining
∑

xi from g
∑

xi (or
∑

yi from g
∑

yi) will be done efficiently. Afterwards,

the LBS executes a conventional NN query-processing algorithm to obtain the point(s) of P with the smallest

distance from the centroid and returns the result to Ua . Finally, Ua broadcasts the result to the group and the

protocol terminates.

As explained earlier, as we consider a malicious model as the protocol threat model, the protocol

participants may deviate from the protocol specification, for example by sending incorrect values during the

protocol rounds. To force members to behave according to the protocol specification, we must use a zero-

knowledge proof in each round of the protocol. Using a zero-knowledge proof makes each member follow the

protocol specification; otherwise, her misbehavior will be discovered by the honest members, since the proof
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verification fails. Because of noninteractivity properties, we use Schnorr’s signature [37], which is similar to

Hao’s work. To prove the knowledge of the exponent, the prover sends {gv, r = v − aih , where v ∈R Zq and

h = H (g, gv, gai , i). To verify this proof, one can check whether gv is equal to grgaih .

To prove the knowledge of exponents xi in the second round of the protocol, each party goes through

the following 3 steps (the same is true for the proof of knowledge of exponent yi ):

• Select at random v ∈ Zq .

• Compute h=H
(
g,gv,gv

′

,gbi ,(g
bi)

v
,gai , gxigaibi ,i

)
.

• Send

(
gv,(gbi)

v
g
v
′

, r = v−aih, r
′
=v

′−xih

)
.

The proof can be verified by the following 2 checks:

1. gv =? gr ( gai)
h
.

2. (gbi)
v
g
v
′

=? (gbi)
r
gr

′ (
gxigaibi

)h
.

In the following section, the security properties of the proposed protocol are investigated and it is shown

that the proposed protocol achieves its goal even in the case of malicious members (active adversaries).

4. Security analysis

In this section, we first analyze the protocol’s behavior in the case of malicious members, and then we present

the privacy properties of the proposed protocol.

According to the definition by Goldreich et al. [32], a malicious member may abort the protocol execution

at any time. She can also send fake values, i.e. she can modify her AV-net masks to prevent the protocol from

achieving its goal. It is worth mentioning that it is not possible to prevent malicious parties from changing

their location coordinates [32]; this factor is the same for every protocol that runs in a malicious model [32].

Moreover, malicious parties may collude to violate the honest members’ privacy. We consider these misbehaviors

and analyze how the protocol can overcome them.

An abortion of the protocol execution can occur in the first or second round. If a malicious member

refuses to participate in the protocol execution before the protocol starts, other members can enter the protocol

and get the desired results. Refusing to participate after finishing the first round can easily be rectified. At this

point, the honest parties can identify and exclude the malicious member through the zero-knowledge verification

of the second round and they can restart the protocol at the second round.

Publication of an incorrect value during the computation of an AV-net mask can cause a denial-of-service

(DoS) attack to occur, which prevents the protocol from fulfilling its task. To cause a DoS attack, a malicious

party must use a fake bi value instead of correct one as
∑

aibi ̸= 0. Because of the zero-knowledge proof,

however, no one can do this [35] because it requires the malicious party to demonstrate a consistent knowledge

proof for the fake value. Upon attempting to verify the zero-knowledge proof, everyone would realize that an

attack had occurred because the verification would fail. The group could then expel the attacker and restart

the protocol without violating their location privacy.

1864



ASHOURI-TALOUKI et al./Turk J Elec Eng & Comp Sci

Generally, because of the zero-knowledge proof, even malicious parties follow the protocol for fear of

being detected, and consequently the protocol achieves its goal.

In a collusion attack, some malicious members may collude to discover the location of an honest member.

There are 2 types of collusion attacks: full collusion and partial collusion. Generally, in a full collusion attack,

all of the participants collude against one user in the network. However, it is impractical to have all of the

participants colluding against just one [35]. Thus, we only consider a partial collusion, which involves only some

participants.

Assume that all of the group members except Uj collude against Ui to discover Ui ’s location. The

colluding members (n – 2 members) aim to compute xi from gxigaibi . Computing xi requires the colluders to

find the AV-net masks. To reveal the AV-net masks, it is enough for the attackers to find bi , but the AV-net

structure guarantees that “bi is a secret random value to attackers in partial collusion against participant Ui ”

[35]. Therefore, the colluding parties cannot get any information about bi , and they consequently fail to discover

the location coordinates of Ui .

According to Yang et al., a protocol is called t-private “if no collusion containing at most t parties can

get any additional information from its execution” [38]. Based on the above discussion, our proposed protocol

will be a (n – 2 )-private protocol.

Considering the privacy properties, the proposed protocol preserves the location privacy of all of the

members within the group. If a malicious member tries to discover the location coordinates of another member

Ui , she has to cancel the AV-net masks of Ui ; however, as mentioned earlier, the AV-net masks cannot be

cancelled in a partial collusion. In the worst case, if the AV-net masks have been revealed by a full collusion

attack, the attackers will learn the user’s coordinates, but, as noted above, full collusion is an impractical

situation [13].

The protocol also protects all of the members’ location from anyone outside of the group. An LBS

provider only learns the centroid coordinates of the members, nothing else. Moreover, the LBS cannot obtain

any useful information by eavesdropping on the group’s communications, as each member masks her location

coordinates with the AV-net values. Discovering a user’s coordinates by eavesdropping on the group’s messages

requires the LBS to cancel the AV-net masks or solve the discrete logarithm (DL) problem, but, as discussed

in the previous paragraph, bi is a secret random value to the attackers in a partial collusion attack. Moreover,

under the difficulty of the DL problem [7], the LBS cannot get any useful information by eavesdropping on the

group’s communication; thus, the LBS cannot disturb members’ location privacy. The situation is the same for

the other attackers. As a result, the location coordinates of each user are kept hidden from the LBS and other

outside attackers.

5. Experimental results

In this section, we evaluate the performance of the proposed protocol through extensive experiments. We use the

Sequoia dataset (www.rtreeportal.com), which contains 62,556 real location coordinates (POIs) in California,

normalize it in a square of 10,000 × 10,000 units, and index it using an R*-tree index. We use the MATLAB

environment to implement the protocol; we also implement the LBS algorithm proposed by Hashem et al. [6].

For fairness, we first consider a semihonest model for the proposed protocol, as in Hashem’s method, and present

the results, and then we measure the required time of the proposed protocol in the malicious model and compare

it with Hashem’s method in a semihonest model. The Table summarizes the values used for each parameter in

our experiments.
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Table. Parameters of the system.

System parameter Values Default value
k (required data points) 2, 4, 8, 16, 32 2

Group size 16, 64, 256, 1024 256
User query rectangle area 0.001% to 0.01% 0.005

Group area size 1% to 10% 1%

We use various group sizes: 16, 64, 256, and 1024 members. We vary the size of the area that encloses

the set of group members, from 1% up to 10% of the total space, and then we randomly generate 1024 point

locations, which are uniformly distributed in the considered areas. The size of module q for the cryptographic

operation is set to 1024 bits. The experiments are run on an Intel P3 2.01 GHz desktop with 1 GB of RAM. We

compare the experimental results of our protocol against Hashem’s method. As mentioned in the related work

section, Huang’s method leads to a high computation and communication cost, and thus we do not compare it

with our protocol.

In terms of efficiency, we measure the query round-trip time and present the results in Figure 3. This

time consists of the time taken by each phase of the protocol plus the LBS evaluation time. Figure 3a shows

that Hashem’s method provides a higher query response time than that of our protocol, especially as the group’s

size grows. Specifically, the larger the size of the group, the higher the LBS computation would be in Hashem’s

method (Figure 3b). In our protocol, the LBS always receives the centroid point and retrieves the nearest POI

for it; thus, the LBS overhead does not change by increasing the size of the group. Apart from the LBS overhead,

in the proposed protocol, there is no need to refine the answer because the LBS delivers the exact nearest POI.

Hence, the overall required time to complete our protocol rounds is much lower than that of Hashem’s.
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Figure 3. Query round-trip time and LBS evaluation time for different group sizes.

Figure 4a shows that Hashem’s method causes a higher round-trip time than that of our protocol,

especially when the area size of the group increases. This is because the LBS overhead will increase by increasing

the size of the entire region that encloses all of the members, as shown in Figure 4b.

The proposed protocol uses the zero-knowledge proof to demonstrate the knowledge of the discrete

logarithms, but this imposes an additional computation cost. We use an efficient knowledge proof [37] system

to decrease this cost. It is important to note that any secure multiparty protocol needs a zero-knowledge proof

system to be secure against malicious adversaries [33]; thus, this cost is unavoidable. It is worth mentioning that
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Hashem assumes a semihonest threat model, while our protocol is secure in the malicious model. Thus, under

fair conditions, where both protocols consider a malicious model, the zero-knowledge operation time would be

added to Hashem’s protocol, thus resulting in the scale of the diagrams in Figure 3a. In Figure 5, the required

time of the proposed protocol in the malicious model is presented for a group area size of 2%, whereas the

running time of Hashem’s method is presented in a semihonest model. As shown in Figure 5, the total time

of the proposed protocol is still lower than that of Hashem’s, because the LBS evaluation time of Hashem’s

method dominates the time of the zero-knowledge operations in our protocol.
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Figure 4. Query round-trip time and LBS evaluation time for different group area sizes.
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Figure 5. Query round-trip time considering the required time of the zero-knowledge operations (ZK).

In Figure 6, the size of the answer set is presented. Since the proposed protocol only sends the centroid

coordinates to the LBS and receives only one POI in the case of a NN query (or k POIs in the case of a

k -NN query), the size of the LBS response is much smaller than in Hashem’s method. Therefore, the proposed

protocol not only decreases the bandwidth consumption, it also prevents the LBS from excessive disclosure. It

is worth mentioning that the LBS message in Hashem’s method consists of the candidate answer set plus the

maximum and minimum aggregate distance values of each point in the answer set to the centroid, and so the

size of the LBS message is larger than that of our protocol.
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Figure 6. Comparing the answer set size.

As previously mentioned, the proposed protocol is a resource-aware method. This property is verified by

the experimental evaluation, since it decreases the bandwidth by sending only 1 request and by receiving only

the needed POIs.

To compare the intragroup communication cost, we count the number of intragroup messages exchanged

during the protocol execution. In our protocol, each user publishes 2 messages during the execution, so the total

number of messages will be 2n. In contrast, in phase 1 of Hashem’s method, each user collaborates with her

neighbors to find her imprecise location. If the number of neighbors of each user is equal to m , then the user

will receive m messages containing the neighbors’ local cloaked regions; hence, the total number of intragroup

messages in phase 1 will be equal to nm . In addition, phase 2 of Hashem et al.’s method requires 1 message to

be sent per user. Therefore, the number of intragroup messages will be nm+ n .

Preserving the meeting place location privacy in the proposed protocol is achieved via a single modifica-

tion. Specifically, after finding the centroid in phase 1, Ua forms a small rectangle that contains the centroid

and sends this area to the LBS instead of sending the centroid. The LBS then returns a set of answer points to

the group, rather than a single answer point. Each member can find the exact meeting point from the answer

set by determining the point with the minimum distance to the centroid, and so there is no need to refine the

answer. It is worth mentioning that the area of the cloaked rectangle must be small enough to preserve the

reasonable cardinality of the answer set.

6. Conclusion

This paper considers the problem of the location privacy for a group of users who may ask a LBS provider for a

meeting place that minimizes their aggregate distance. We identify the location privacy issues in a group scenario

and propose a distributed protocol to address them. The proposed protocol protects the location privacy of each

group member from other members in the group and from anyone outside the group in a malicious model. Our

protocol relies on the AV-net structure to hide the users’ locations and computes the centroid as the group’s

location indicator. The proposed protocol decreases the bandwidth consumption to a high extent because it

sends a single NN query (or a single k -NN query) to the LBS and receives a single POI (or a set of k POIs)

from it. Our protocol also protects the LBS from excessive disclosure, while the previous works lead to the

disclosure of a large number of POIs. The experimental results show that our protocol is more efficient than

previous works in terms of the computation and communication costs. Furthermore, the security analysis of

the proposed protocol shows that the proposed solution is secure against collusion and disruption attacks in a

malicious model.
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