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Abstract: The artificial bee colony (ABC) algorithm, which was inspired by the foraging and dance behaviors of real

honey bee colonies, was first introduced for solving numerical optimization problems. When the solution space of

the optimization problem is binary-structured, the basic ABC algorithm should be modified for solving this class of

problems. In this study, we propose XOR-based modification for the solution-updating equation of the ABC algorithm

in order to solve binary optimization problems. The proposed method, named binary ABC (binABC), is examined on

an uncapacitated facility location problem, which is a pure binary optimization problem, and the results obtained by the

binABC are compared with results obtained by binary particle swarm optimization (BPSO), the discrete ABC (DisABC)

algorithm, and improved BPSO (IBPSO). The experimental results show that binABC is an alternative tool for solving

binary optimization problems and is a competitive algorithm when compared with BPSO, DisABC, and IBPSO in terms

of solution quality, robustness, and simplicity.
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1. Introduction

In recent years, many swarm intelligence methods have been proposed for solving hard optimization problems

due to their simple structures and production of effective solutions for problems in a reasonable time. The

artificial bee colony (ABC) algorithm, which is one of the most popular swarm intelligence algorithms, was

first introduced by Karaboga in 2005 for numerical optimization problems and was inspired by the intelligent

behaviors of real honey bee colonies [1]. For solving numerical optimization problems, the ABC was designed

using the interaction in the swarm and there are 2 types of bees in the ABC, the employed and unemployed

bees. Employed bees try to find food sources that represent a feasible solution for the optimization problem

using the interaction in the employed bee population. Employed bees also move the position information about

the food sources to the ABC hive. Unemployed foragers consist of onlooker bees and scout bees. The onlooker

bees try to improve the solution of the employed bees by considering the information shared by the employed

bees. If a food source could not be improved in a certain time, the employed bee of this food source becomes a

scout bee. After a new food source is randomly generated for the scout bee, this scout bee becomes an employed

bee.

After the invention of the basic ABC algorithm in 2005, many ABC variants that use the model given

above have been proposed for solving different optimization problems. Karaboga and Basturk [2] presented the

performance analysis of the ABC and compared it with particle swarm optimization (PSO), the genetic algo-

rithm (GA), and the particle swarm-inspired evolutionary algorithm, and they also extended it to constrained
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optimization problems [3,4]. Karaboga and Basturk [5] used the ABC for solving multidimensional numeric

problems and compared its results with PSO, differential evolution, and the evolutionary algorithm. Inspired

by PSO, Zhu and Kwong [6] added a component named gbest to the solution-updating equation of the ABC

algorithm in order to increase the exploitation ability of the ABC. Alatas [7] proposed an ABC model that

uses chaotic maps for parameter adaptation so as to improve the convergence characteristics and to prevent

the ABC from getting stuck in local minimums. Kashan et al. [8] introduced a binary version of the ABC,

named discrete artificial bee colony (DisABC), for pure binary optimization problems; Karaboga and Gorkemli

[9] proposed a combinatorial ABC for solving traveling salesman problems; and Kıran et al. analyzed the

performance of the ABC with a neighborhood operator on the traveling salesman problem [10] and added a

new information-sharing strategy to the basic ABC algorithm [11]. In order to increase the convergence rate of

the ABC on the constrained optimization problems and composite and some nonseparable numerical functions,

Akay and Karaboga [12] added a parameter called the modification rate to the basic ABC algorithm. The ABC

algorithm was also used for test suite optimization [13], training an artificial neural network [14], data cluster-

ing [15], dynamic deployment of stationary and mobile sensor networks [16,17], wireless network routing [18],

symbolic regression [19], the leaf-constrained minimum spanning tree problem [20], designing of adaptive finite

and infinite impulse response filters [21], and reducing the computational complexity of the partial transmit

sequence in orthogonal frequency division multiplexing systems [22]. In addition, Karaboga et al. presented

a comprehensive survey on the modifications, hybridizations, and applications of the ABC algorithm, and the

studies on the ABC conducted from 2005 to 2011 can be found in [23].

According to the literature review, the basic ABC algorithm is a competitive algorithm for optimization

problems with continuous solution space. If the solution space of the problem is binary-structured, the basic

ABC algorithm must be modified for solving this class of optimization problems. Using the conceptual structure

of the basic ABC algorithm and an XOR logic operator, we propose a binary version of the ABC for solving

binary optimization problems. The proposed method is examined on a pure binary optimization problem, the

uncapacitated facility location problem (UFLP). The UFLP is one of the most widely studied problems in

combinatorial optimization. It assumes the minimizing of the total cost of providing the demand of customers

under the conditions that are a fixed cost of setting up a facility and a shipping cost of satisfying the customer

demand for that facility [24]. The obtained results by the presented method are compared with binary PSO

(BPSO) [25], improved BPSO (IBPSO) [26], and the DisABC algorithm [8].

The paper is organized as follows: Section 1 gives the introduction and a brief literature review. The

basic ABC algorithm and proposed method are given in Sections 2 and 3, respectively. The BPSO, IBPSO,

and DisABC methods are briefly explained in Section 4. Section 5 presents a mathematical model of the UFLP

and Section 6 gives the experiments and experimental results. The obtained results are discussed in Section 7,

and, finally, the study is concluded in Section 8.

2. The basic ABC algorithm

In the ABC hive, there are 2 types of bees, employed foragers and unemployed foragers [1]. Employed foragers

move nectar sources and position information about the food sources to the hive, continuously. There are 2

unemployed foragers in the hive, the onlooker and scout bees. Onlooker bees wait for information shared by

the employed foragers in order to search around the food sources of the employed foragers. The occurrence of

the scout bee depends on the quality of the food source. If a food source could not be improved in a certain
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time (limit parameter of the algorithm determined by the designer), the employed forager of this food source

becomes a scout bee. After a new solution produced for the scout bee, this scout bee becomes an employed

forager. Moreover, the basic ABC algorithm consists of 4 phases, named initialization, employed, onlooker, and

scout bee phases.

2.1. Initialization phase

In this phase, a feasible solution is produced for each employed bee using Eq. (1) and the abandonment counters

of the employed bees that will be used for testing the limit are reset.

Xj
i = Xmin

j + R ×
(
Xmax

j − Xmin
j

)
i = 1, 2, . . . , N and j = 1, 2, . . . , D (1)

Here, Xj
i is the j th dimension of the ith employed bee, and Xmin

j andXmax
j are the lower and upper bounds

of the j th dimension, respectively. R is a random number in the range of [0,1], N is the number of employed

bees, and D is the dimensionality of the problem.

After producing new solutions for the employed bees, the fitness values of the solutions are calculated

using Eq. (2):

fiti =

{ 1
1+fi

if (fi ≥ 0)

1 + abs (fi) if (fi < 0)
, (2)

where fiti is the fitness value of the ith employed bee (or solution) and fi is the objective function value,

specific for the optimization problem, of the ith employed bee.

2.2. Employed bee phase

Each employed bee tries to improve its self-solution using Eq. (3). If the fitness value of the new candidate

solution obtained by Eq. (3) is better than the old one, then the employed bee memorizes the new solution and

its abandonment counter is reset; otherwise, the abandonment counter of the employed bee is increased by 1

(let Vi = Xi):

V j
i = Xj

i + φ×
(
Xj

i −Xj
k

)
, ikϵ {1, 2, . . . , N} , jϵ {1, 2, . . . , D} and i ̸= k , (3)

where V j
i is the j th dimension of the ith candidate solution, Xj

i is the j th dimension of the ith employed bee,

Xj
k is the j th dimension of the neighbor employed bee, and φ is a random number in the range of [–1, + 1]. It

should be mentioned that only 1 dimension of the solution of an employed bee is updated at each iteration, and

this dimension and neighbor bee chosen from the employed bee population are randomly selected in Eq. (3).

2.3. Onlooker bee phase

The onlooker bees wait for information about food sources that will be shared by the employed bee in the hive.

After the employed bees return to the hive, the employed bees share the position information of the self-solutions

with onlooker bees in the dance area of the hive. The onlooker bees select an employed bee in order to improve

its solution using Eq. (4) [19]:

pi =
0.9× fiti
fitbest

+ 0.1, (4)
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where pi is the selected probability of the ith employed bee, fiti is the fitness value of the ith employed bee,

fitbest is the best solution in the employed bee population, and N is the number of employed bees.

After an employed bee is selected, the solution of the employed bee is updated using Eq. (3). If the

new solution is better than the old solution, the solutions are replaced and the abandonment counter of the

employed bee is reset. Otherwise, the abandonment counter of the employed bee is increased by 1.

2.4. Scout bee phase

In this phase, the abandonment counter with the maximum content is fixed and this content is compared with

the limit. If the content is higher than the limit, the employed bee of this counter becomes a scout bee. If a scout

bee occurs at the ABC iteration, a new solution is generated for the scout bee using Eq. (1), the abandonment

counter is reset, and the scout bee becomes an employed bee.

Despite the fact that the best solution of the population is not directly used for updating the solution by

the employed or onlooker bees for the population, the best solution obtained so far is stored at each iteration.

The ABC is an iterative algorithm and the maximum evaluation number or maximum iteration number can be

used for termination of the algorithm. In addition, the number of employed bees and onlooker bees is equal to

each other and only 1 scout bee can occur at each iteration. After all of the explanations given above, the basic

algorithm and framework of the ABC are presented in Figures 1 and 2, respectively.

1. Initialization Phase 

 For each employed bee 

Generate the solution for the employed bee by using Eq.1 

Calculate the Fitness value of the solutions by using Eq.2 

Reset the abandonment counters of the employed bee 

2. Employed Bee Phase 

 For each employed bee 

Update the solution by using Eq. 3 

Calculate the fitness value of new solution by using Eq.2. 

If new solution is better than the old solution, employed bee memorizes 

new solution and abandonment counter of the employed bee is reset, 

otherwise the abandonment counter of the employed bee is increased by 1. 

3. Onlooker Bee Phase 

 For each onlooker bee 

Calculate the selection probability by using Eq.4 

Select an employed bee and update its solution by using Eq.3 

Calculate the fitness value of new solution of onlooker bee. 

If new solution is better than the old solution, employed bee memorizes 

new solution and the abandonment counter of the employed bee is reset, 

otherwise the abandonment counter of the employed bee is increased by 1. 

4. Scout Bee Phase 

Fix the abandonment counter with the maximum value. 

If the content is higher than the limit, generate a new solution for the employed 

bee by using Eq.1 and reset the abandonment counter of this employed bee. 

Calculate the fitness value of new solution. 

5. Store the global best solution obtained so far. 

6. If a termination condition is not satisfied return to Employed Bee Phase. 

7. Report the best solution obtained. 

Figure 1. The ABC algorithm.

3. The binABC algorithm

When the solution space of the problem is binary-structured, Eqs. (1) and (2) of the basic ABC algorithm should

be modified for solving binary optimization problems. In the initialization phase of the binary ABC (binABC),

we proposed a Bernoulli process using random numbers for initialization of the employed bee population. For
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KIRAN and GÜNDÜZ/Turk J Elec Eng & Comp Sci

each dimension of the problem, a random number is generated in the range of [0,1]. If the random number is

less than 0.5, the corresponding dimension gets 0; otherwise, it gets 1. This is formulated as follows:

P (Open) = P (Xi,j = 1) = p, (5)

P (Close) = P (Xi,j = 0) = 1− p, (6)

Xi,j =

{
0 if (ri,j < p)
1 if (ri,j ≥ p)

, (7)

where p is the probability value, which is taken as 0.5 for the binABC algorithm, because whether a facility is

opened or not causes an equal probability in the initialization phase of the binABC algorithm; ri,j is the trial,

which is a randomly generated number in [0,1]; and Xi,j is the j th dimension of the ith employed bee.

Initialization phase 

Employed bee 

phase 

Onlooker bee 

phase
 

Scout bee 

exists? 

Report the best 

solution 

A stopping 

criterion is 

met? 

No 

Yes 

Scout bee phase
 

Yes 

No 

Figure 2. General framework of the ABC.

After the employed bee population is initialized, the positions of the solutions are updated in the employed

and onlooker bee phases. The equation of updating the position (Eq. (2)) is modified as follows:

V j
i = Xj

i ⊕
[
φ
(
Xj

i ⊕ Xj
k

)]
ik ∈ {1, 2, . . . , N} , jϵ {1, 2, . . . , D} and i ̸= k, (8)

where V j
i is the j th dimension of the ith candidate solution, Xj

i is the j th dimension of the ith employed

bee, Xj
k is the j th dimension of the k th employed bee, ⊕ is a logic operator, and φ is the logic NOT gate

with 50% probability. If φ is less than 0.5, the result obtained by
(
Xj

i ⊕Xj
k

)
is inverted; otherwise, the result

is not inverted.
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Different logic operators such as OR, AND, or XOR can be used in Eq. (8), but we use XOR as a logic

operator because the changing probability of the bit in the solution is 50% in this gate. The reason for using

XOR is explained using Tables 1–3.

Table 1. Position update with XOR.

1 2 XOR with 1 XOR with 2

Xj
i Xj

k

(
Xj

i ⊕Xj
k

)
φ < 0.5 φ ≥ 0.5 Xj

i ⊕
[
φ
(
Xj

i ⊕Xj
k

)]
Xj

i ⊕
[
φ
(
Xj

i ⊕Xj
k

)]
0 0 0 1 0 1 0
0 1 1 0 1 0 1
1 0 1 0 1 1 0
1 1 0 1 0 0 1

Table 2. Position update with OR.

1 2 OR with 1 OR with 2

Xj
i Xj

k

(
Xj

i ⊕Xj
k

)
φ < 0.5 φ ≥ 0.5 Xj

i ⊕
[
φ
(
Xj

i ⊕Xj
k

)]
Xj

i ⊕
[
φ
(
Xj

i ⊕Xj
k

)]
0 0 0 1 0 1 0
0 1 1 0 1 0 1
1 0 1 0 1 1 1
1 1 1 0 1 1 1

Table 3. Position update with AND.

1 2 AND with 1 AND with 2

Xj
i Xj

k

(
Xj

i ⊕Xj
k

)
φ < 0.5 φ ≥ 0.5 Xj

i ⊕
[
φ
(
Xj

i ⊕Xj
k

)]
Xj

i ⊕
[
φ
(
Xj

i ⊕Xj
k

)]
0 0 0 1 0 0 0
0 1 0 1 0 0 0
1 0 0 1 0 1 0
1 1 1 0 1 0 1

According to Tables 1–3, if AND or OR is used as the logic operator, the output (V j
i ) is 0 or 1 with a

probability of 75%, respectively. In the OR and AND operators, the bits in the candidate solution tend to be 1

and 0, respectively. When we use the XOR as the logic operator in Eq. (8), the changing probability of the bit

is 50%. We therefore use the XOR operator as the logic operator in the implementation and experiments. The

main difference between the binABC algorithm and the basic ABC algorithm originates from Eq. (8), which is

a modified version of Eq. (2), in order to move on the binary-structured solution space.

4. BPSO and DisABC algorithms

4.1. BPSO algorithm

The BPSO algorithm was first proposed by Kennedy and Eberhart in order to solve binary problems [25].

In their method, potential solutions, called particles, fly throughout the solution space to find the optimum

solution. Each particle has a velocity and this velocity is updated at each iteration using Eq. (9).

vij (t+ 1) = vij (t) + r1 × c1
(
pbestij(t)−Xij(t)

)
+ r2 × c2(gbestj(t)−Xij(t)) (9)

2312
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Here, vij is the velocity of the ith particle on the j th dimension; pbestij is the best solution obtained by the

ith particle in previous iterations; Xij is the j th dimension of the ith particle; gbestj is the j th dimension

of the best solution obtained by the swarm so far; c1 and c2 are the positive acceleration constants used to

scale the contribution of the cognitive and social components, respectively; r1 and r2 are the random numbers

in the range of [0,1], which are stochastic elements of the algorithm; i is the particle index; j is the dimension

index; and t is the time step.

After calculating the velocity of each particle, the particle’s positions in the BPSO algorithm are updated

using Eq. (10):

Xij (t+ 1) =

{
1 if rij < sig(vij (t+ 1))
0 &otherwise

, (10)

where rij is a random number in the range of [0,1] and sig(vij (t+ 1)) is calculated as follows:

sig (vij (t+ 1)) =
1

1 + e−vij(t+1)
. (11)

By considering the minimization problems, the personal best solution of the particle and the global best solution

of the swarm at the next time step, (t + 1), are calculated using Eqs. (9) and (10), respectively:

pbesti (t+ 1)=

{
pbesti (t) , if f(Xi (t+ 1) ) ≥ f(pbesti (t) )
Xi (t+ 1) , if f(Xi (t+ 1) ) < f(pbesti (t))

, (12)

where f is the objective function specific for the minimization problem and Xi (t+ 1) is the position of the

ith particle at time step (t + 1).

gbest (t+ 1) = min {f(pbesti(t+ 1))} (13)

In order to control the exploration and exploitation abilities of the swarm, a new parameter, called the inertia

weight (w), was introduced by Shi and Eberhart [27]. The inertia weight controls the momentum of the particle

by weighting the contribution of the previous velocity. By adding the inertia weight, Eq. (6) is changed as

follows:

vij (t+ 1) = w × vij (t) + r1 × c1
(
pbestij(t)−Xij(t)

)
+ r2 × c2(gbestj(t)−Xij(t)) . (14)

4.2. DisABC algorithm

In order to solve pure binary optimization problems, the DisABC algorithm was proposed by Kashan et al. [8].

The DisABC algorithm is based on the conceptual structure of the ABC algorithm. The most important point

in the DisABC algorithm is to generate a new solution using the interaction in the bee population. In order to

generate a new solution, measuring of the dissimilarity between the employed bee and the neighbor bee is first

calculated as follows:

Dissimilarity (Xi, Xk) = 1− Similarity (Xi, Xk) = 1− m11

m01 +m10 +m11
, (15)

where Xi is the ith employed bee and Xk is the neighbor bee selected from the employed bee population.

m01 , m10 , and m11 are calculated as follows:
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• m01 represents the number of bits when Xij = 0 and Xkj = 1, where j = 1,2,. . . ,D and D is the

dimensionality of the problem (m01 =
∑D

j =1 F (Xij = 0, Xkj = 1)).

• m10 represents the number of bits when Xij = 1 and Xkj = 0, where j = 1,2,. . . ,D and D is the

dimensionality of the problem (m10 =
∑D

j =1 F (Xij = 1, Xkj = 0)).

• m11 represents the number of bits when Xij = 1 and Xkj = 1, where j = 1,2,. . . ,D and D is the

dimensionality of the problem (m11 =
∑D

j=1 F (Xij = 1, Xkj = 1)).

Eq. (2) of the ABC algorithm, to be used to produce a new solution in the continuous solution space, is reshaped

as follows:
Dissimilarity (Vi, Xi) ≈ ϑ×Dissimilarity (Xi, Xk) , (16)

where Vi is the candidate solution for Xi , ϑ is the positive scaling factor, and ≈ is the almost-equal operator.

In order to construct Vi , the 3 variables given below must be determined:

• M01 represents the number of bits when Vij = 0 and Xij = 1, where j = 1,2,. . . ,D and D is the

dimensionality of the problem (M01 =
∑D

j =1 F (Vij = 0, Xij = 1)).

• M10 represents the number of bits when Vij = 1 and Xij = 0, where j = 1,2,. . . ,D and D is the

dimensionality of the problem (M10 =
∑D

j =1 F (Vij = 1, Xij = 0)).

• M11 represents the number of bits when Vij = 1 and Xij = 1, where j = 1,2,. . . ,D and D is the

dimensionality of the problem (M11 =
∑D

j =1 F (Vij = 1, Xij = 1)).

min

∣∣∣∣(1− M11

M01 +M10 +M11

)
− ϑ×

(
1− m11

m01 +m10 +m11

)∣∣∣∣ (17)

M11 +M01 = n1 (18)

M10 ≤ n0 (19)

M01M10 ,M11 ≥ 0 and integer (20)

Here, n1 and n0 are the number of 1 and 0 values in the Xi binary vector, respectively. For determining the

values of M01, M10, andM10 , the integer mathematical model given by Eqs. (17)–(20) must be solved.

After solving the mathematical model and getting the optimal values of M01M10, andM10 , the Vi

candidate solution can be obtained using the new binary solution generator (NBSG), which is directly taken

from [8] and given in Figure 3.

Step 1. Compute the value of A through A= × ( , )  and use it in 

the mathematical programming model (17)-(20) with output ,   . Apply 

the total enumeration (TE) scheme to solve the mathematical programming problem 

optimmaly. Initialize by a ×  zero solution vector. 

Step 2-1 (Inheritance phase). Based on any logic, select  number of zero bits from 

 which their corresponding value in  is 1. Change the value of the selected bits 
from 0 to 1. 

Step 2-2 (Disinheritance phase). Based on any logic, select   number of zero bits 

from   which their corresponding value in  is 0. Change the value of the selected 

bits from 0 to 1. Then, report the new binary solution vector   as output. 

Figure 3. The NBSG algorithm [8].
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The workings of the NBSG algorithm, which is the most important part of the DisABC algorithm, is

explained with the example below.

Let Xi= {1110010101, Xk= {1010101101 and ϑ = 0.6

m01= 2

m10= 2

m11 = 4

Dissimilarity (Xi, Xk) = 1− m11

m01 +m10 +m11
= 1− 4

2 + 2 + 4
= 0.5

A = ϑ×Dissimilarity (Xi, Xk) = 0.6× 0.5 = 0.3

According to the integer mathematical model given by Eqs. (17)–(20):

min f =

∣∣∣∣(1− M11

M01 +M10 +M11

)
− 0.3

∣∣∣∣ ,
M11 +M01 = 6,

M10 ≤ 4,

M01M10 ,M11 ≥ 0 and integer.

After the model is solved using the total enumeration scheme, the optimal output is obtained as M01 = 1,M10 =

1, and M11 = 5 and f = 0.0143. After all, Vi is generated as a 1× 10 zero-bit array.

Using the NBSG algorithm;

Inheritance: The positions of the bits that are equal to 1 in Xi are found (OnesXi = {1, 2, 3, 6, 8, 10})
and M11 = 5 bit positions are selected from the OnesXi (assume that the random selection includes {1,3,6,8,10}),
and the bits of Vi in these positions are changed to 1. The new state of Vi is no longer {1010010101.

Disinheritance: The positions of the bits that are equal to 0 in Xi are found (ZerosXi = {4, 5, 7, 9})
and M10 = 1 bit position is selected from the ZerosXi (assume that the random selection includes {4}), and
the bit of Vi in these positions is changed to 1. After this change, the final state of the candidate solution

Vi is {1011010101.
More explanations for the DisABC can be seen in [8]. Despite the fact that the DisABC was used by being

hybridized with a local search module for solving the binary optimization problem (UFLP) in [8], we implement

the DisABC without a local search module in order to make a clear comparison and show the performance and

accuracy of the methods.

4.3. IBPSO

Yuan et al. proposed the IBPSO algorithm for solving unit commitment problems [26]. The particles in the

IBPSO start to search the solution space with binary values and the velocities of these particles are also binary

values. The main difference between BPSO and IBPSO is that the velocities are not updated on the continuous

solution space and the velocities of the particles in IBPSO are the unchanging probabilities of a value in the
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KIRAN and GÜNDÜZ/Turk J Elec Eng & Comp Sci

particles. In IBPSO, the velocities of the particles are updated using Eq. (21), which is a modified version of

the basic velocity equation of BPSO.

Vi,j (t+ 1) =
[
ω1 ⊗

(
pbesti,j (t)⊕Xi,j (t)

)]
+

[
ω2 ⊗

(
gbestj (t)⊕Xi,j (t)

)]
i = 1, .., N and j = 1, . . . D (21)

Here, Vi,j (t+ 1) is the j th dimension of the velocity of the ith the particle at time step t + 1; pbesti,j (t) is the

j th dimension of the personal best solution of the ith particle at time step t; gbestj (t) is the j th dimension

of the best solution of the swarm at time step t; Xi,j (t) is the j th dimension of the ith particle at time step

t; ω1 and ω2 are binary integer random numbers in the range of [0,1]; N is the number of particles; D is the

dimensionality of the problem; and the ⊗ , ⊕ , and + operators denote the AND, XOR, and OR logic operators,

respectively. After a velocity is obtained from Eq. (21), the particle position is updated as follows:

Xi,j (t+ 1) = Xi,j (t)⊕ Vi,j (t+ 1) . (22)

Briefly, while the basic PSO algorithm works on the continuous solution space and the velocities of the BPSO

algorithm are on the continuous solution space, the IBPSO algorithm works completely on the binary-structured

solution space.

5. Mathematical model of UFLP

A brief description of the UFLP is given in this section because the performance and accuracy of the proposed

binABC algorithm are tested on UFLPs. In the basic formulation, the UFLP consists of a set of potential

facility sites I , where a facility can be opened, and a set of customer locations J that must be serviced. The

goal is to find a subset F of the I facilities that are the corresponding demand of customers J . The objective

function of this problem is to minimize the sum of the shipment costs between F and J and the opening costs

of the facilities. The general model of the UFLP can be mathematically expressed as [28]:

f (UFLP ) = min⊕

∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi

 , (23)

subject to: ∑
i∈I

xij = 1, j ∈ J, (24)

xij ≤ yi, i ∈ I and j ∈ J, (25)

xij ∈ {0, 1} , i ∈ I and j ∈ J, (26)

yi ∈ {0, 1} , i ∈ I, (27)

where I = {1,2,. . . ,n} is the set of possible facility locations, J = {1,2,. . . ,m} is the set of customer demand

points, fi is the fixed cost of opening a facility in i ∈ I , and cij is the shipment cost between the ith facility

location and the j th customer point. The decision variable xij is the demand of customer j corresponding to

the ith facility, and yi is the binary variable: yi = 1 if a facility is located in i ∈ I ; otherwise, yi = 0.
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The constraint in Eq. (24) aims to satisfy all of the demands of the customers. The constraint in Eq.

(25) ensures that a customer can be served from a facility only if a facility is opened. Constraints of Eqs. (26)

and (27) define the decision variables in the binary structure. Due to the single assignment property of the

UFLP, the demand of a customer is always entirely fulfilled by its nearest facility [29]. When the locations of

the facilities that will be opened are determined, knowledge of which customer will be served by a facility can

be obtained easily. Therefore, we address a vector A of n variables, where each variable in A is 1 bit. Each bit

(A i , i = 1,2,. . . ,n) indicates whether a facility is opened at location i or not. This vector plays a critical role in

the binABC because each employed bee represents this vector.

The UFLP is one of the most important NP-hard problems in location theory [8,30,31] and many studies

have been presented on it in the literature. In order to solve UFLPs, many exact methods, such as branch-and-

bound [32], linear programming and Lagrangian relaxation [33], and dual approach [34], have been proposed.

Despite the fact that these methods ensure optimality, the computation time of these methods may be too

much. For this reason, some approximate methods have been proposed for solving UFLPs. These methods

cannot guarantee the finding of the optimal solution, but they can obtain optimum or near-optimum solutions

in a reasonable amount of time. For instance, the GA [35], tabu search [36,37], and discrete and continuous

PSO algorithms [24,38] have been proposed in order to solve UFLPs. In addition, a comprehensive study on

the UFLP can be found in [39].

We use the UFLP to test the performance and accuracy of the binABC algorithm because: 1) the UFLP

is a pure binary optimization problem and there is no continuous or integer variable in the problem, 2) the

method does not need to eliminate the infeasibility in the solution produced for the problem, 3) the optimal

solutions for the test suit are available, and 4) one of the methods that is used for comparison (DisABC) is also

tested on the UFLPs. The binABC and UFLP are described above, and the flowchart of the binABC adapted

for solving the UFLP is given in Figure 4.

6. Experiments

In order to test the performance and accuracy of our binABC algorithm, we used the uncapacitated facility

location test suit (15 test problems) taken by the OR-Library [40]. In the test suite, 4 problems (Cap71–74)

are small-sized, 8 problems (Cap101–104 and Cap131–134) are medium-sized, and the rest of problems (CapA,

CapB, and CapC) are large-sized, and the sizes and the costs of the optimal solutions for the problems are given

in Table 4.

6.1. Analysis of the control parameters of the binABC

Before the comparison of the binABC with BPSO, the DisABC, and IBPSO, we analyze the effect of the control

parameters of the binABC on the Cap71–74, Cap101–104, and Cap131–134 UFLPs. There are only 2 control

parameters, the population size and the limit in the binABC algorithm. The limit value proposed for the

continuous ABC [41] is expressed as:

limit = D ×N, (28)

where D is the dimensionality of the problem (number of potential facility locations for the UFLP) and N is

the number of employed bees. Because the problem structure and the method are different, we calculate 4 limit

values for each population size.

lb4 = D ×N/4 (29)
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Initialization Phase 

 Determine population size. 

Assign half of the population as employed bee, and other half the population as 

onlooker bee  

 Determine limit value for this population 

 Determine the stopping criterion 

 Load UFLP. 

 For each employed bee  

Generate a random solution which consists of binary value for the 

employed bee using Eq. 7 

  Calculate cost of solution of employed bee (Eq. 23) 

  Calculate fitness value of the solution based on cost value (Eq. 2) 

  Reset abandonment counter of the employed bee 

REPEAT 

Employed Bee Phase 

 For each employed bee 

  Update a facility status in solution of employed bee (Eq. 8) 

  Calculate cost of new solution (Eq. 23) 

  Calculate fitness value of the new solution based on cost value (Eq. 2) 

If cost of new solution is lower than old solution, replace them, otherwise 

increase the abandonment counter by 1 

Onlooker Bee Phase 

  Select an employed bee by using fitness value. (Eq. 4) 

  Update a facility status in solution of employed bee. (Eq. 8) 

  Calculate cost of new solution (Eq. 23) 

  Calculate fitness value of the new solution based on cost value (Eq. 2) 

If cost of new solution is lower than old solution, replace them, otherwise 

increase the abandonment counter by 1 

Scout Bee Phase 

If the abandonment counter with maximum content is higher than limit 

value, assign the employed bee with maximum content as scout bee 

Generate a random solution which consists of binary value for scout bee 

using Eq.7 

  Calculate cost value of the generated solution. (Eq. 23) 

  Calculate fitness value of generated solution based on cost value (Eq. 2) 

  Reset abandonment counter of this bee. 

 
  Assign this scout bee as employed bee. 

Store the global best solution of the population. 

UNTIL(The stopping criterion is met)  

Report the best solution obtained by the bees. 

Figure 4. The detailed binABC algorithm adapted for solving the UFLP.

lb2 = D ×N/2 (30)

lb = D ×N (31)

lc2 = D ×N × 2 (32)

lc4 = D ×N × 4 (33)

The other control parameter of the method is the population size. In the analyses of the control parameters, the

population size is taken as 10, 20, 30, 40, and 50. For all of the population sizes and limit values, the maximum

iteration number used for the termination condition of the algorithm is taken as 2000 and the binABC algorithm

is run 30 times with random seeds. The GAP, which is the difference between the cost of the optimal solution

and the solution found by the method, and the standard deviations obtained by the runs are reported in Tables

5–9. For the mean of cost values obtained by 30 runs, the GAP is calculated as follows:
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Table 4. Description of the test suite.

Problem name Problem size Cost of the optimal solution
Cap71 16× 50 932,615.75
Cap72 16× 50 977,799.40
Cap73 16× 50 1,010,641.45
Cap74 16× 50 1,034,976.98
Cap101 25× 50 796,648.44
Cap102 25× 50 854,704.20
Cap103 25× 50 893,782.11
Cap104 25× 50 928,941.75
Cap131 50× 50 793,439.56
Cap132 50× 50 851,495.33
Cap133 50× 50 893,076.71
Cap134 50× 50 928,941.75
CapA 100× 1000 17,156,454.48
CapB 100× 1000 12,979,071.58
CapC 100× 1000 11,505,594.33

GAP (%) =
f(mean)− f(opt)

f(opt)
× 100, (34)

where f(opt) is the cost of the optimal solution and f(mean) is the mean of the costs obtained by 30 runs.

As seen from Tables 5–9, when the population size for the algorithm is taken as 40, the best results for

all of the problems are obtained. When the limit value for the population is increased, higher quality solutions

are not obtained because the search ability of the population decreases. Moreover, when the population size is

taken as 50 and the limit value is on the level of lc4, the diversity in the population is not kept and the selection

of a good neighbor employed bee is made difficult. Therefore, higher quality solutions are not obtained under

high limit value and population size conditions. According to the average GAP values and standard deviations,

it is seen that the average GAP values in Tables 5 and 6 are the same when the population size is taken as 40,

but the results in Table 5 are more robust than the results in Table 6. We then use these (Pop Size = 40 and

lb4 ) conditions for the algorithm for the comparison of the binABC algorithm with the other methods.

Table 5. Results obtained under the lb4 limit value and different population sizes.

Problem
Pop Size = 10 Pop Size = 20 Pop Size = 30 Pop Size = 40 Pop Size = 50
Std. dev. GAP Std. dev. GAP Std. dev. GAP Std. dev. GAP Std. dev. GAP

Cap71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap101 0.00 0.00 428.66 0.04 0.00 0.00 0.00 0.00 0.00 0.11

Cap102 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap103 435.75 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap104 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap131 405.56 0.29 861.40 0.10 219.63 0.24 0.00 0.00 261.98 0.25

Cap132 439.16 0.06 421.27 0.04 119.82 0.02 0.00 0.00 166.50 0.03

Cap133 511.01 0.09 372.28 0.14 298.61 0.04 0.00 0.12 311.18 0.04

Cap134 97.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Avg. (GAP) 0.05 0.03 0.03 0.01 0.04
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Table 6. Results obtained under the lb2 limit value and different population sizes.

Problem
Pop Size = 10 Pop Size = 20 Pop Size = 30 Pop Size = 40 Pop Size = 50
Std. dev. GAP Std. dev. GAP Std. dev. GAP Std. dev. GAP Std. dev. GAP

Cap71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap101 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap102 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap103 415.27 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap104 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap131 383.02 0.30 855.17 0.11 323.74 0.26 397.92 0.02 337.28 0.26

Cap132 436.75 0.05 632.39 0.06 291.02 0.04 133.53 0.01 327.21 0.04

Cap133 422.17 0.08 505.42 0.13 345.44 0.06 273.86 0.13 348.64 0.06

Cap134 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Avg. (GAP) 0.05 0.02 0.03 0.01 0.03

Table 7. Results obtained under the lb limit value and different population sizes.

Problem
Pop Size = 10 Pop Size = 20 Pop Size = 30 Pop Size = 40 Pop Size = 50
Std. dev. GAP Std. dev. GAP Std. dev. GAP Std. dev. GAP Std. dev. GAP

Cap71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap101 0.00 0.00 350.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

Cap102 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap103 453.28 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap104 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap131 396.65 0.30 1030.47 0.13 392.69 0.28 727.24 0.06 261.98 0.25

Cap132 475.12 0.06 479.43 0.05 620.86 0.05 272.23 0.02 200.24 0.03

Cap133 444.47 0.07 584.87 0.15 477.98 0.07 252.61 0.13 503.58 0.07

Cap134 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Avg. (GAP) 0.05 0.03 0.03 0.02 0.03

Table 8. Results obtained under the lc2 limit value and different population sizes.

Problem
Pop Size = 10 Pop Size = 20 Pop Size = 30 Pop Size = 40 Pop Size = 50
Std. dev. GAP Std. dev. GAP Std. dev. GAP Std. dev. GAP Std. dev. GAP

Cap71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap101 0.00 0.00 428.66 0.04 0.00 0.00 0.00 0.00 0.00 0.11

Cap102 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap103 496.70 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap104 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap131 527.26 0.32 1517.80 0.27 357.95 0.26 1075.24 0.10 360.10 0.26

Cap132 684.52 0.09 658.90 0.06 419.29 0.06 423.63 0.03 414.31 0.05

Cap133 433.39 0.09 1300.91 0.19 480.09 0.09 368.93 0.14 387.44 0.09

Cap134 163.49 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Avg. (GAP) 0.06 0.05 0.03 0.02 0.04
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Table 9. Results obtained under the lc4 limit value and different population sizes.

Problem
Pop size = 10 Pop size = 20 Pop size = 30 Pop size = 40 Pop size = 50
Std. dev. GAP Std. dev. GAP Std. dev. GAP Std. dev. GAP Std. dev. GAP

Cap71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap101 0.00 0.00 386.94 0.03 218.26 0.01 0.00 0.00 0.00 0.11

Cap102 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap103 466.38 0.07 0.00 0.00 105.35 0.01 91.96 0.01 78.15 0.00

Cap104 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cap131 817.66 0.38 1321.66 0.22 516.17 0.30 860.40 0.07 371.85 0.27

Cap132 1793.61 0.19 946.09 0.10 757.16 0.07 464.00 0.05 549.11 4.98

Cap133 1609.71 0.19 1505.94 0.26 810.38 0.13 342.29 0.15 549.11 0.09

Cap134 494.87 0.02 0.00 0.00 135.94 0.00 0.00 0.00 945.59 0.02

Avg. (GAP) 0.08 0.05 0.04 0.02 0.46

The convergence graphs for the algorithm are designed as Cap132 problems under 2 sets of conditions.

In the first, the population size is taken as 10, 20, 30, 40, and 50 and the limit value is lb4 (Figure 5); in the

second, the population size is taken as 40 and the limit value is lb4, lb2, lb, lc2, and lb4 (Figure 6).

As seen from Figures 5 and 6, the convergence of the binABC algorithm to optimum or near-optimum

solutions is better under the lower limit value condition and the limit value of the binABC is more effective
than the population size for finding the optimal or near-optimal solutions.
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Figure 5. Convergence graph of binABC with lb4 limit

under the different population sizes.

Figure 6. Convergence graph of binABC with population

size = 40 under the different limit values.

6.2. Comparing the binABC with BPSO, IBPSO, and the DisABC

In order to make a clear and consistent comparison, the common control parameters of the methods (population

size and maximum iteration number) are selected as 40 and 2000, respectively. The algorithms are implemented

with MATLAB 2011a and run on an IBM-compatible PC with an i5 2.0-GHz microprocessor and 4 GB of

RAM. For each problem, the methods are repeated 30 times with random seeds and the results obtained by the

methods are reported as the worst, mean, best, and GAP of the mean. The peculiar control parameters of the

methods are set as explained below.
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Parameter setting of the BPSO: The upper bound and lower bound of the velocities of the particles

is taken as 6 and –6, respectively. The sigmoid function is given in Eq. (11) and values are demonstrated in

Figure 7 for velocities between –6 and 6. As seen from Figure 7, the changing probability of a value in the

particle vector obtained by Eq. (11) is between 0 and 1. The –6 and 6 values used for the lower and upper

bound of the velocities are sufficient practically. In addition, these bounds were used in the first study on BPSO

[25]. The inertia weight [27] for the BPSO is calculated as follows:

w(t) =
maxit− t

maxit
, (35)

where w is the inertia weight, maxit is the maximum iteration number (2000), and t is the iteration index.
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Figure 7. Change probability of a value in the particle vector under the velocity bounds in [–6,6].

Parameter setting of the DisABC: The peculiar control parameters of the DisABC were analyzed

in [8] and the selection of the parameters is done according to their work. The scaling factor of the method (ϑ)

is calculated using Eq. (36):

ϑ (t) = ϑmax −
(
ϑmax − ϑmin

maxit

)
t, (36)

where ϑ (t) is the scaling factor at time step t , maxit is the maximum iteration number, and ϑmax and ϑmin

are the upper and lower bounds of the scaling factor (0.9 and 0.5), respectively. The limit parameter for the

population of the DisABC is calculated as follows [8]:

limit = 2.5×Nb×D, (37)

where Nb is the number of employed bees and D is the number of potential facility locations. It should

be mentioned that the exploration and exploitation abilities of the basic ABC algorithm have been balanced

using the limit value, but the effects of this parameter on the DisABC algorithm have not yet been analyzed.

Therefore, we obtain the limit value using Eq. (37) for the DisABC algorithm.

In [8], random and greedy selection logics were proposed in the inheritance and disinheritance steps of

the NBSG algorithm and the effects of these selection logics on the DisABC were analyzed. Due to the fact that

results of the random selection logic are better than those of the greedy selection logic, the random selection logic

is used in the implementation. Because the performance and accuracy of the methods are investigated, instead

of hybridization of the DisABC with the local search module, only the DisABC is used and the parameters of

the local search module are not given in this study.

Parameter setting of the binABC: The binABC algorithm has only one peculiar control parameter

(limit), and it is analyzed in Section 6.1. According to our analysis, the limit value for the binABC is obtained
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using Eq. (38):

limit =
N ×D

4
, (38)

where N is the population size and D is the potential facility locations.

The accuracy and robustness of the methods are compared according to the GAP values and standard

deviations, respectively. In the comparison tables (Tables 10–12), the method with the lowest GAP value and

standard deviation is given in bold font.

As seen from Table 10, the BPSO and binABC have an equal performance for the Cap71 and Cap72

problems. BPSO is better than the binABC for the Cap133, CapA, CapB, and CapC problems, and the binABC

is better than BPSO for the rest of the problems. Based on the standard deviations of the methods, the binABC

is more robust than BPSO for all of the problems. As seen from Table 11, the DisABC algorithm is better than

the binABC for the Cap133 and CapA problems. The binABC algorithm is better than the DisABC for the

Cap131, Cap132, CapB, and CapC problems, and for the rest of the problems, the performance of the methods

are equal to each other. Based on the standard deviations, the robustness of the binABC algorithm is better

than that of the DisABC for all of the test problems, except for CapA. Finally, when the binABC algorithm is

compared with IBPSO, the binABC algorithm is better than IBPSO for both solution quality and robustness,

according to Table 12. The CR column in Tables 10–12 shows the changing rate of the mean results obtained

by the binABC with respect to the other methods. If the mean result obtained by binABC is equal to the mean

result obtained by the other method, CR is 0. If CR is a negative number, the binABC is worse than the other

method. If CR is a positive number, the binABC is better than the other method. CR is calculated as follows:

CR (%) =
fother (mean)− fbinabc(mean)

fother (mean)
, (39)

where fother (mean) is the mean cost value obtained by one of the other methods (BPSO, DisABC, or IBPSO)

and fbinabc(mean) is the mean cost value obtained by the binABC algorithm.

A run-time comparison of the methods is also performed and shown in Figure 8, where it can be seen

that the running times of the methods depend on the dimension of the problem. The IBPSO algorithm has a

lower running time than the BPSO, DisABC, and binABC methods for the small and medium problems. The

BPSO and binABC have an equal performance for small- and medium-sized problems. The binABC has a lower

running time than the other methods for large-sized problems but the BPSO algorithm has a lower running

time than the binABC, DisABC, and IBPSO for the very large-sized problems.
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Figure 8. Running time comparison of the methods.
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7. Results and discussion

In this paper, we propose a swarm intelligence-based optimizer called the binABC for solving binary optimization

problems. The performance and accuracy of the proposed method are investigated and compared with the

BPSO, DisABC, and IBPSO algorithms on UFLPs. The problems can be divided into 4 classes: small-sized

(Cap71–74), medium-sized (Cap101–104), large-sized (Cap131–134), and very large-sized (CapA, CapB, and

CapC). The proposed method has lower GAP values and standard deviations for the small-, medium-, and

large-sized problems because the intensification (local search) of the binABC is very good. In BPSO, all of the

solutions are reconstructed for the agents at each iteration. This behavior in the BPSO algorithm increases the

diversification (global search) in the population but decreases the intensification of the population. Therefore,

while BPSO is better than the DisABC and binABC algorithms for very large-sized problems, the DisABC

and binABC are better than BPSO for small-, medium-, and large-sized problems. When the dimensionality of

the problem increases, the accuracy of the DisABC algorithm is decreased, because the candidate food source

position inherits too much from the previous food source positions, and the diversification in the population

of the DisABC is decreased. The experimental results also show that the binABC algorithm is a good local

searcher because only one parameter is updated for each solution at each iteration and global searcher, because

if a solution could not be improved a certain time, the employed bee becomes a scout bee and the global search

is thus provided in the binABC algorithm.

8. Conclusion and future work

This paper proposes a new binary version of the ABC (binABC) algorithm that works on binary-structured

solution space. The key element of moving on the binary solution space is an XOR logic operator. In the

binABC algorithm, the feasible food source positions are described on the binary solution space, the position of

food sources consist of 0 and 1 logic values, and logic values 1 and 0 are to be opened and closed in the facility,

respectively, for UFLPs. This solution representation can be extended to other binary optimization problems in

the same way. According to experimental results, the proposed method is very effective for binary optimization

and is an alternative tool for solving discrete binary optimization problems because it has a simple conceptual

structure and only one peculiar control parameter (limit). Future works include adapting and implementing

the binABC algorithm to solve different binary optimization problems such as feature selection for classification

with support vector machines or artificial neural networks and swarm-based classification methods.
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