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Abstract:Exhaust gases have many effects on human beings and the environment. Therefore, they must be kept under

control. The International Convention for the Prevention of Pollution from Ships (MARPOL), which is concerned with

the prevention of marine pollution, limits the emissions according to the regulations. In Emission Control Area (ECA)

regions, which are determined by MARPOL as ECAs, the emission rates should be controlled. Direct injection (DI)

diesel engines are commonly used as a propulsion system on ships. The prediction and control of diesel engine emission

rates is not an easy task in real time. Therefore, in this study, an artificial neural network (ANN) structure using the

back propagation (BP) learning algorithm and radial basis function (RBF) has been developed to predict the emissions

and exhaust temperature for DI diesel engines with emulsified fuel. In order to show the ANN performance, the network

outputs and experimental results of the BP and RBF have been compared in this paper. The experimental results were

obtained from a real diesel engine. The results showed that the emissions and exhaust temperature were estimated with

a very high accuracy by means of the designed neural network structures and the RBF is more reliable than the BP.
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1. Introduction

It is obvious that exhaust gases have many effects on human beings and the environment. For these life-

sustaining reasons, the emissions from diesel engines used in land and sea vehicles are gradually limited. The

International Convention for the Prevention of Pollution from Ships (MARPOL) regulations determine Emission

Control Areas (ECAs). Emissions have to be kept under control in these ECA regions. Owing to the limitation

of the emissions, particularly NOx emissions, internal combustion engines use the ‘optimum emulsified fuel

composition’ to improve the emissions’ quality. It is therefore important to note that the estimation and the

prediction of emissions from diesel engines have great significance in this context. Moreover, it is not an easy

task to predict emissions from diesel engines in real time. If a powerful, accurate, and fast prediction algorithm

is developed, the emissions of a diesel engine can be kept under control in real time.

To predict these emissions from diesel engines, Rakopoulos et al. used a comprehensive, 2-zone, transient,

diesel combustion model and found that both the NO and the soot emissions were higher in the exhaust
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values during transient than in steady-state conditions [1]. Pawar and Kulkarni studied a numerical method to

predict the NOx emissions by considering the parameter equivalence ratio and the study showed that when the

equivalence ratio increases, the NOx increases [2]. Maass et al. built a parallel network structure consisting of

3 nonlinear autoregressive exogenous inputs to predict the smoke emissions of diesel engines [3].

In the cases of numerical and mathematical methods’ inadequacy, the artificial neural network (ANN) is

commonly used to generate fast, accurate, and reliable predictive results [4].

To predict the performance, emissions (CO, CO2 , NO, NOx , hydrocarbons (HCs), and smoke), and

exhaust temperature (Texh) of internal combustion engines, fueled with diesel, biodiesel blends, gasoline,

and dual fuel, the ANN approach, particularly with the back propagation (BP) algorithm, was used by some

researchers. Kiani et al. predicted the performance and exhaust emissions in a spark ignition engine fueled

with ethanol–gasoline blends with the application of an ANN [4]. Parlak et al. predicted the specific fuel

consumption (SFC) and the Texh for a diesel engine with the ANN application [5]. Canakci et al. studied a

diesel engine fueled with biodiesel produced from waste frying palm oil to predict the performance and exhaust

emissions [6]. Ganapathy et al. investigated the artificial neural modeling of a Jatropha oil fueled diesel engine

for emission predictions [7]. Sayin et al. compared the experimental results of the performance and exhaust

emissions of a gasoline engine using an ANN [8]. Ghobadian et al. analyzed the diesel engine performance

and exhaust emission analysis using waste cooking biodiesel fuel with an ANN and could predict the engine

performance and exhaust emissions [9]. Yusaf et al. studied the compressed natural gas (CNG)-diesel engine

performance and exhaust emission with the aid of the ANN [10]. Yucesu et al. analyzed the mathematical

model and experimental results of a spark ignition engine’s performance that used an ethanol–gasoline blend of

fuel [11]. Obodeh and Ajuwa predicted the NO, power, and SFC of diesel in a diesel engine using an ANN BP

algorithm [12]. Hashemi and Clark studied a diesel engine and predicted the NOx , CO, CO2 , and HC emissions

by means of BP [13]. Çelik and Arcaklioğlu predicted the Texh , brake specific fuel consumption (BSFC), and

fuel/air equivalence ratio in a diesel engine using an ANN BP algorithm [14]. Zweiri and Lakmal studied a

diesel engine to predict the indicated torque by means of a BP neural network (NN) [15]. Shivakumar et al.

predicted the brake thermal efficiency (BTE), brake specific energy consumption (BSEC), Texh , NOx , smoke,

and HC of a diesel engine fueled with a biodiesel blend using an ANN BP algorithm [16].

To predict the same parameters in internal combustion engines fueled with diesel, biodiesel, and dual

fuel, the radial basis function (RBF) was used by some researchers, as well. Liu and Fei studied a dual fuel

engine that was fueled with CNG and predicted the CO and NOx emissions by means of the RBF [17]. Zhang

and Tian predicted the CO, NOx , and smoke emissions in a dual fuel engine, fueled with coal water slurry

(CWS)-diesel, using a RBF NN [18]. Wang et al. analyzed a marine 2-stroke diesel engine’s emissions based on

the modeling of a RBF NN [19]. Wang et al. predicted the NOx emissions using cylinder pressure based on the

RBF and BP NN in the diesel engine [20]. Manjunatha et al. studied a diesel engine, fueled with a biodiesel

blend, and predicted the NOx , CO2 , CO, HC, and smoke emissions by means of the RBF and BP NN [21].

The previous studies are summarized in Table 1. Studies about diesel and gasoline engines that work

with different kinds of fuels (diesel, gasoline, biodiesel blends, and dual fuels) estimate different parameters

(engine performance, emissions, and Texh) and learning algorithms, such as NNs, BP, and RBF.

However, it can be seen from Table 1 that there have been no studies to predict the emissions and Texh

for direct injection (DI) diesel engines with emulsified fuel using an ANN application and a comparison with the

BP and RBF learning algorithms. Therefore, an ANN structure with BP and RBF was developed to predict

2142
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emissions and Texh for DI diesel engines with emulsified fuel and RBF-BP NN structures were compared for

prediction in this study. In order to detect network performances, the network outputs were compared with a

real diesel engine’s data.

Table 1. Comparison of the previous studies.

Authors Fuel type Inputs Outputs 
Learning 
algorithm 

Parlak et al. [5] Diesel 
Engine speed, mean e"ective 

pressure, injection timing 
SFC, Texh BP 

Obodeh and Ajuwa [12] Diesel Load, speed NO, Power, SFC BP 

Hashemi and Clark [13] Diesel Speed, torque NOx, CO2, HC, CO BP 

Çelik and Arcaklioğlu 

[14] 
Diesel 

Cooling water temperature, 

speed, power 

Texh, BSFC, fuel/air 

equivalence ratio 
BP 

Zweiri and Lakmal [15] Diesel 
Cranksha% speed, cranksha% 

position 
Indicated torque BP 

Wang et al. [19] Diesel 

Speed, load, fuel &ow rate, air-

mass &ow rate, scavenge air 

pressure, max. injection pressure

 

NOx, CO, CO2, HC, filter 

smoke number 
RBF 

Wang et al. [20] Diesel 

Speed, max. pressure di". and 

angle, angle di"erence of fixed 

pressure  

NOx RBF + BP 

Canakci et al. [6] Biodiesel 
Fuel properties, speed, 

environmental conditions 

Flow rates, max. injection 

pressure, emissions, engine 

load, max. cylinder gas 

pressure, thermal e"iciency  

BP 

Ganapathy et al. [7] Biodiesel 

Injection timing, injector 

opening pressure, plunger 

diameter, load 

HC, smoke, NOx BP 

Ghobadian et al. [9] Biodiesel Engine speed, biodiesel blend Torque, BSFC, HC, CO BP 

Shivakumar et al. [23] Biodiesel 
Load, compression ratio, blend 

percentage 

BTE, BSEC, Texh, NOx, CO, 

smoke, HC  
BP 

Manjunatha et al. [21] Biodiesel 
Density, kinematic viscosity, 

blend, brake power, Texh 
NOx, CO2, CO, HC, smoke RBF + BP 

Shivakumar et al. [16] Biodiesel 
Compression ratio, injection 

timing, blend percentage, load 

BTE, BSEC, Texh, NOx, 

smoke, HC 
BP 

Yusaf et al. [10] 

Compressed 

natural gas 

(CNG)/diesel 

Engine speed, dual fuel engine 

(CNG-diesel) 

Brake power torque, BSFC, 

BTE, NOx, CO, CO2, O2, 

Texh 

BP 

Liu and Fei [17] (CNG)/diesel 

Rotation speed, quantity of 

natural gas, pilot, injection 

timing 

CO, NOx RBF 

Zhang and Tian [18] 

Water coal 

slurry 

(CWS)/diesel 

Rotation speed, quantity of coal, 

pilot, injection timing 
CO, NOx, smoke RBF 

Sayin et al. [8] Gasoline  
Lower heating value, torque, 

speed, air inlet temperature 
BSFC, BTE, CO, HC, Texh  BP 

Golcu et al. [29] Gasoline Speed, valve timing Torque, fuel consumption BP 

Kiani et al. [4] 
Ethanol gasoline 

blend 

Blend, engine load, engine 

speed 

Torque, power, CO, CO2, 

HC, NOx 
BP 

Yucesu et al. [11] 
Ethanol gasoline 

blend 

Density, ignition timing, 

relative air-fuel ratio, 

compression ratio 

Engine torque, SFC BP 

This study Emulsified fuel Engine speed, emulsified fuel 

percentage, operating load 

CO, CO2, NO, NOx, HC, 
Texh 

BP + RBF 
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2. Materials and methods

2.1. Experimental setup

In this study, a single cylinder, naturally aspirated, 4-stroke, and water-cooled real DI diesel engine with a bowl

in the piston combustion chamber was used. The schematic diagram and experimental test setup are shown in

Figures 1a and 1b, respectively, and the specifications of the engine are given in Table 2. To measure the brake

torque, the engine is coupled to a hydraulic dynamometer with 50 kW absorbing capability. Full load tests were

conducted at the engine speeds of 1200, 1400, 1600, 1800, 2000, 2200, and 2400 rpm.

Fuel 

Tank 

Diesel 

Fuel 

Tank 

E % 

Exhaust 

Gas 

Analyzer 

 

Test Engine 

 

 

Dynamometer 

Control 

Panel 
Water in

Water out

Encoder

 X X 

T 

Figure 1. Experimental setup.

Table 2. Specification of the test engine.

Engine type Super star
Bore [mm] 108
Stroke [mm] 100
Cylinder number 1
Stroke volume [l] 0.92
Power - 1500 rpm [kW] 14.7
Injection pressure [bar] 175
Injection advance [CA bTDC] 35
Maximum speed [rpm] 2500
Cooling type Water
Injection type DI

The dynamometer load, engine speed, fuel, and airflow rates were recorded after allowing adequate time

for the engine to stabilize at each operating condition. The engine was run for a period of 2 min to obtain

10 readings for each concerned parameter at stabilized condition. After the load tests were conducted for the

standard engine with injection timing of a 35◦ crank angle (CA), the same procedure was conducted for engine

tests with emulsified fuels.

The water-in-diesel emulsified fuel, which consists of diesel fuel, surfactant, and ordinary tap water, was

prepared in an electrical blender at a speed of about 1600 rpm. To stabilize the emulsified fuels, 2% of mass

surfactant mixture, which consists of Span 80 and Tween 80, was used. The weight of the diesel, water, and

surfactant was measured at 0.01 g of sensitivity. Six blends were tested: pure diesel and diesel fuel + surfactant
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+ 5%, 10%, 15%, and 20% water by mass. The engine was started with pure diesel for each running and then

switched to the test blend.

The emissions were measured with a MRU Spectra 1600 L gas analyzer, and for the smoke emissions,

a Bilsa Mode 5000 opacimeter was used. Special emphasis has been given to the measurement error for the

pollutant emissions. To ensure the accuracy of the measured values, the gas analyzer was calibrated before

measurements were taken using reference gases. The smoke meter was also allowed to adjust to its zero point

before each measurement.

2.2. Neural network structure

ANNs can be used as an algorithm offering an alternative method to predict an internal combustion engine’s

performance, emissions, and Texh values for comparison with experimental results. Neurons, inspired by the

human brain, are used to determine the output values using input values. Neurons are able to learn from

examples that are fault-tolerant and can deal with nonlinear problems, and once trained, they can perform

prediction and generalization at high speeds [22]. An ANN has the ability to relearn to improve its performance

if there are new available data. It is able to accommodate multiple input variables to predict multiple output

values [23]. In ANN models, the activation functions, which form its output depending on its inputs, play an

important role [24]. ANN applications are powerful modeling tools that can identify the complex relationships

with the input-output data [5] and an ANN model’s success is subject to appropriately selected parameters,

which are the number of neurons and layers, the learning algorithms, the number of epochs for which the model

is iterated, the nonlinear function used in the neurons, and the initial weights of the inputs and layers [25].

BP is a kind of learning method in ANN that has emerged as the standard algorithm for the training of

multilayer perceptrons, against which other learning algorithms are often benchmarked [22]. The error between

the output of the network and the desired output is minimized by altering the weights and biases in the BP

learning algorithm [9]. On the other hand, the BP algorithm is an extension of the least mean square (LMS)

algorithm, which can be used to train multilayer networks. Both BP and LMS are approximate steepest descent

algorithms that minimize the squared error. The BP algorithm uses the chain rule so as to compute the

derivatives of the squared error with regards to the weights and biases in the hidden layer [26]. From another

point of view, one of the major problems with the basic BP algorithm has been its long training times. The

techniques for speeding up convergence have been classified into 2 main categories, which are heuristic methods

and standard numerical optimization methods. The Levenberg–Marquardt BP (LMBP) algorithm is the fastest

algorithm within the heuristic methods and standard numerical optimization methods that we have tested for

training multilayer networks of moderate size, even though it requires a matrix inversion at each iteration [26].

The data are spread out from the input layer to the hidden layer(s) in the LMBP algorithm. After that, it

reaches the ?nal output layer, and in the output layer, the error signals spread out to the hidden layers and the

input layers [27].

RBF is another kind of learning algorithm method of ANNs, which has viewed the design of a NN as

a curve-fitting problem in a high dimensional space [22]. Moreover, a RBF-based NN structure offers faster

prediction than a conventional simulation program or mathematical technique [21]. A RBF-based NN structure

includes 3 layers, the input, hidden, and output layers. The hidden layer consists of many RBF neurons and

the hidden layer nodes are calculated from the Euclidean distance between the center and the network input

vectors [17]. In spite of having a great many RBFs, the Gaussian function as a RBF is used as a RBF NN in

applications. In the case where a Gaussian function is used as a hidden layer in the neuron activation function,

2145



KÖKKÜLÜNK et al./Turk J Elec Eng & Comp Sci

the neuron’s hidden layer value for each input data point is calculated as below [28]:

∅j = e
[
|x−cj |

σ2
j

]
, (1)

where ∅j is the Euclidean distance between x input data and the j th pattern of the hidden layer, cj is the j th

pattern of the RBF’s center, and σj is the width of the j pattern of the RBF. The output parameter of the

network is calculated as bellow:

y =

m∑
j=1

wj∅j . (2)

In this study, in order to predict the emission rates and Texh for the emulsified fuel, the BP and RBF structures

that are usually used for the parameter estimation are designed. Their performance is compared using the

performance parameters. These networks have 3 inputs (engine speed, emulsified fuel percentage, and operating

load) and 6 outputs (CO, CO2 , NO, NOx , HC emissions, and Texh). Thus, as can be seen in Figures 2 and 3,

the input layer consists of 3 neurons, while the output layer has 6 neurons, both in BP and RBF. The data set

is divided into 2 groups, the first to be used for training (80% of the data) and the second (20% of the data)

for testing.

  

Engine Speed 

Emulsified Fuel 

Percentages 

Operating Load 

CO, % 

CO2, % 

NO, ppm 

NOx, ppm 

HC, ppm 

Texh °C 

Input Layer Hidden Layer Output Layer 

Figure 2. Multilayer NN structure of BP.

In order to show the 2 different NN structures’ performances, the mean squared error (MSE), root mean

squared error (RMSE), standard deviation (SD), and mean absolute percentage error (MAPE) are used. They

are formulated as follows:

MSE(xy) =
1

n

n∑
i=1

(xi − yi)
2
, (3)

RMSE =
√
MSE, (4)

where n is the number of samples and xiand yi are the values of theith samples in xand y , respectively.

SD =

√∑
(x−m)

2

n− 1
(5)
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∅ Σ

Engine Speed 
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∅ 

∅ 

∅ 

Σ 

Σ 

Σ 

Σ 

Σ 

Figure 3. RBF structure.

Here, x is the individual value, m is the mean of all of the values, and n is the sample size (number of all of

the values).

MAPE =
1

n

n∑
i=1

∣∣∣∣fi−yifi

∣∣∣∣ (6)

Here, fi is the predicted value, yi is the actual value, and n is the number of patterns.

3. Results and discussion

In this study, the designed NN structures were used in order to predict the HC, CO, CO2 , NO, and NOx

amounts and the Texh for a DI diesel engine with emulsified fuel. The numerical results that were obtained

through the experiments were used for the learning phase of the NN [29]. The engine speed, emulsified fuel

percentage, and operating load were used as the inputs of the structure, while the HC, CO, CO2 , NO, NOx ,

and Texh were used as the outputs.

First, a BP structure that has a single hidden layer was developed. Different neuron numbers were used

in the hidden layer in order to decide the most reliable in the BP learning algorithm. In this regard, tansig for

the input and purelin for the hidden layer, as a transfer function, were used in the network. Using a tangent

transfer function, the experimental values were normalized between –1 to 1 with the formula:

Actual value−Minimum

Maximum−Minimum
x (High− Low) + Low, (7)

where minimum is the minimum value of the data, maximum is the maximum value of the data, and high is

1 and low is –1 for the normalization values. The BP structure’s performance is shown in Figure 4 using the

MSE.
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Figure 4. Performance of the proposed NN configuration of BP.

On the other hand, in order to detect the best suitable activation function, training algorithm, and neuron

numbers in the hidden layer of the BP structure, a series of analyses were performed. The results are given in

Table 3. According to this, the combination of tan/lin (tangent sigmoid/purelin) as an activation function, the

LM algorithm as a training algorithm, and 26 neurons for the hidden layer produced the best results.

Next, in order to predict NOx , NO, CO, CO2 , HC, and Texh , a RBF NN structure with 2 hidden layers

was used in this study. This RBF NN structure has 3 inputs, 2 hidden layers, and 6 outputs. The input and

output layers are the same as those used in the BP NN structure.

Table 3. Summary of the different training algorithms evaluated to yield the criteria of the network performance of BP.

Activation Training Hidden layer Performance R R
function algorithm (neuron number) (MSE) (Training) (Test)
Sig/lin Trainlm 20 2.52 × 10−4 0.99951 0.92621
Tan/lin Trainlm 20 2.04 × 10−4 0.99959 0.92647
Tan/lin Traingdx 20 1.87 × 10−1 0.66267 0.61658
Tan/lin Traingdx 12 8.78 × 10−2 0.82207 0.72854
Tan/lin Trainscg 20 4.63 × 10−3 0.991 0.9206
Tan/lin Traingd 22 4.54 × 10−3 0.9917 0.92493
Tan/lin Trainlm 19 7.71 × 10−5 0.99984 0.92716
Tan/lin Trainlm 21 1.55 × 10−5 0.99994 0.92691
Tan/lin Trainlm 22 3.18 × 10−6 0.99996 0.92681
Tan/lin Trainlm 23 4.75 × 10−5 0.99991 0.92734
Tan/lin Trainlm 24 1.23 × 10−5 0.99997 0.92706
Tan/lin Trainlm 25 5.39 × 10−5 0.99989 0.9269
Tan/lin Trainlm 26 1.23 × 10−6 0.99999 0.92699

The experimental and predicted/simulated results of HC, NO, and NOx in ppm; CO and CO2 in %; and

Texh in ◦C are given for both the BP and RBF in Figure 5, where it can be seen that the experimental and

predicted/simulated values are very close. It is obvious that the prediction of the emissions and Texh of a DI

diesel engine with emulsified fuel can be accurately modeled using an ANN. In particular, the RBF structure

outputs follow the experimental results better than BP.
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Figure 5. Comparison of predicted output and measured values with BP and RBF.
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Figure 5. Continued.

On the other hand, in order to compare the network performance of BP and RBF, the MAPE, RMSE,

and SD were used. The results are shown in Table 4, where it can be seen that the MAPE, RMSE, and SD values

of the RBF network are smaller than those of the BP network for all values; in particular, the NO and NOx

emissions, which are very important for the new regulations on land and sea, are smaller. The RMSE, MAPE,

and SD values of the RBF are more reliable and accurate than those of the BP NN. The Texh estimation of

the RBF NN achieved a very high accuracy.

Table 4. MAPE, RMSE, and SD for the output values of the network (BP and RBF).

HC CO CO2 NO NOx Texh

(5–28.8 ppm) (1%–0.4%) (8%–11%) (651–925 ppm) (686–970 ppm) (423–680 ◦C)
BP RBF BP RBF BP RBF BP RBF BP RBF BP RBF

MAPE 0.0215 0.0116 0.0198 0.0143 0.0083 0.0041 0.0065 0.0035 0.0066 0.0035 0.0030 0

RMSE 0.3712 0.2535 0.0269 0.0182 0.1306 0.0761 6.9793 3.9739 7.5102 4.0550 2.1458 0

SD 0.3739 0.2554 0.0252 0.0183 0.1100 0.0766 6.2714 3.9019 7.1136 4.0843 2.1609 0

4. Conclusion

The control of exhaust gases spreading from factories, machines, and vehicles has great importance for human

health and the environment. According to new regulations on land and sea, the limitations of emissions,

particularly NOx and CO2 emissions, have been considerable. Diesel engines that are used in ships generate

exhaust gases. Therefore, their emissions must be kept under control according to regulations at sea. Due to

the limitation of these emissions, particularly the NOx emissions, internal combustion engines use an optimum
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emulsified fuel composition to improve the emissions’ quality. Emission prediction and the control of it in

real time is a complex and hard problem for a marine diesel engine. Emissions are predicted by numerical

and mathematical methods; however, these methods are occasionally insufficient for prediction. An ANN is

commonly used due to its accuracy, rapidity, and reliability.

Therefore, an ANN structure was developed to predict the HC, CO, CO2 , NO, and NOx emissions and

the Texh for a DI diesel engine fueled with emulsified fuel. To this regard, 2 different ANN learning algorithms,

the RBF and BP, were developed. Their performance was compared. The results show that the actual and

predicted values of each output are very close to each other, either RBF or BP. However, RBF has a better

performance than BP.

The exhaust emissions of marine diesel engines can be predicted with an ANN quickly and accurately [30].

Consequently, it is a useful method to predict the emissions while ships are sailing in ECA regions, therefore

saving both engineering efforts and funds. In the next study, we would like to predict the real-time estimation

of emissions and other parameters of a marine diesel engine.
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