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Abstract: In the current design of information retrieval (IR) experiments, a sample of 50 topics is generally agreed to

be sufficient in size to perform dependable system evaluations. This article presents the detailed and formal explanation

of how the second fundamental theorem of probability, the central limit theorem, can be used for the estimation of

the sufficient size of a topic sample. The research performed in this article, using past Text Retrieval Conference data,

reveals that, on average, 50 topics will be sufficient to provide a confidence level at or above 95% if the null hypothesis

of an equal population mean average precision (MAP) (H0) is rejected for 2 IR systems having an observed difference

in the MAP of 0.035 or more, whereas, in contrast, previous empirical research suggests a difference in the MAP of 0.05

or more. This study also shows that, for individual system pairs, the sample size required to provide 95% confidence

on a declared significance may range from a size as small as 10 to a size as large as 722. Thus, for the design of IR

experiments, it agrees with the common view that relying on average figures as a rule of thumb may well be misleading.
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1. Introduction

In the field of information retrieval (IR), system evaluation (or experimental evaluation, or batch evaluation)

refers to the relative comparison of the effectiveness of IR systems under the same controlled experimental

conditions. The ultimate goal of system evaluation is to decide whether one IR system is better in retrieval

effectiveness than the other on the population of information needs or topics. A design paradigm for system

evaluation was first introduced in the Cranfield II experiment [1], where IR systems were evaluated using a test

collection with 3 fundamental components: a set of documents, a set of posed information needs, and a set of

relevance judgments. Relevance judgments are the collections of documents that should be retrieved for each set

of information needs, and a posed information need is a query that may be formulated by any inquirer (user).

This experimental design paradigm has been in use for over 2 decades, and it is still actively used in almost all

large-scale experimental evaluation efforts.

In this paradigm, relevance is the sole effectiveness criterion, and the effectiveness of a system based on

relevance is measured in 2 dimensions: the ability to retrieve documents that are known as relevant, and the

ability to suppress documents that are known to be nonrelevant. The majority of the currently used measures of

relevance are based on precision and recall. Precision is the proportion of retrieved documents that are relevant,

while recall is the proportion of relevant documents that are retrieved.

In the traditional evaluation of retrieval experiments, performances of the systems are measured over a
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set of topics (in the Text Retrieval Conference (TREC), the terms ‘topic’ and ‘run’ are used to indicate the

‘information need’ and ‘IR system/retrieval strategy’, respectively). Since a performance summary measure is

necessary to compare different IR retrieval systems over all of the predefined information needs, a final summary

performance score for each system is calculated as the average of its performance scores observed on all of the

topics. In particular, the mean average precision (MAP) is the most widely used summary measure. A MAP

score of a particular system is the mean of the uninterpolated average precisions (APs) observed on all topics,

and, in turn, an AP score of a document set retrieved by a system is the average of all of the precision scores

that are calculated at each relevant document reached from the start in that document set.

As in the case of the population of topics, populations are usually infinite in size and unknown in

distribution. This is the reason why we need to use statistical hypothesis tests for making inductive inferences

from samples to a population characteristic of interest. In particular, the validity of an inductive inference

depends on the accuracy of estimates in estimating the true value of the population characteristic of interest.

On the other hand, the accuracy of an estimate that is derived from a particular sample depends on whether

the sample in use is a true representative of the population that we intended to infer to. Thus, to reliably

decide whether one IR system is better than the other in the population of topics, we need to estimate the

true population effectiveness of the individual IR systems with enough accuracy. On this account, the theory

of probability sampling [2] rules the selection of individual observations for the purpose of statistical inference.

According to the theory of probability sampling, an estimate that is derived from a random sample is empirically

the best estimate of the true value of the population characteristic of interest, with a measurable amount of

(sampling) error or uncertainty [3].

Sparck Jones [4] stated that “a difference in scores that is greater than 0.05 is noticeable, and a difference

that is greater than 0.10 is material”. In the works of Buckley and Voorhees [5] and Voorhees and Buckley

[6], the effect of the topic set size on retrieval experiment error rate was investigated, and it was reported, in

the latter work, that “an absolute difference in MAP of 0.05–0.06 would be needed between two IR systems

measured on 50 topics before concluding, with 95% confidence, that the same systems ranking can be obtained

on a different set of 50 topics”. In the same line of research, Webber et al. [7] conducted an empirical research

based on statistical power analysis and reported that “the standard 50 topics TREC collection can only be

relied on to detect true AP deltas [MAP differences] in the range 0.06–0.08”. This explains why “a large enough

difference between two effectiveness scores” is a generally accepted rule of thumb for performing a dependable

system evaluation in the IR community.

Voorhees [8] was the first researcher to perform empirical research on the sufficiency of the TREC standard

sample of 50 topics, saying, “at least for the TREC-6 environment, as few as 25 topics can be used to compare

the relative effectiveness of different retrieval runs with great confidence”. In her more recent work, however,

Voorhees [9] recommended the following: “Fifty-topic sets are clearly too small to have confidence in a conclusion

when using a measure as unstable as P (10) [precision at 10 documents]. Even for stable measures, researchers

should remain skeptical of conclusions demonstrated on only a single test collection”.

Note that the previous empirical research tried to single out, once and for all, a lower boundary for

the difference of 2 MAP scores, above which every difference can be considered as significant based on a test

collection with 50 topics. These past studies suggest, in general, a lower boundary that is not less than 0.05

as a measured MAP. However, note that observing a MAP difference of less than 0.05 is not a rare event in

an ordinary IR system evaluation. Thus, it is not unlikely that we need more than 50 topics in practice. The

question therefore arises as to “do we necessarily need more than 50 topics for every system pair of between

2219
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which the observed MAP difference is less than 0.05?” This is the research question of interest in this article,

to which none of the key empirical works have given a precise answer.

Given a particular pair of IR systems, a topic sample size that is sufficient to give significance to the

observed MAP difference between the systems may be insufficient to give significance to the same MAP difference

if it is observed between another system pair, due to the differences of inherent variability in AP scores across

topics. The sufficiency of a topic sample size is subjective to the system pair under consideration. This is a

point that most of the previous research primarily overlooked.

The organization of this article is as follows. In the next section, the amount of uncertainty in estimating

the population MAP of an IR system is estimated using past TREC 6, 7, and 8 data on the basis of the central

limit theorem (CLT). Afterwards, the amount of uncertainty in estimating the difference of the population

MAPs of 2 IR systems is estimated in the following section, and the conclusion is given subsequently.

2. Estimation of the population MAP of an IR system

In parametric statistics, it is assumed that a target population can be generated by a well-known distribution,

such as normal, exponential, or Poisson, having 1 or more parameters, at least 1 of which is unknown and

must be inferred. The population characteristic of interest is usually the unknown parameter or a function of

it. A series of independent random variables X1, X2, . . . , Xn , each of which has the same distribution on the

population, is called an independent and identically distributed (i.i.d.) random sample of size n . An estimator

for the population characteristic of interest is formulated as a function of X1, X2, . . . , Xn , such that the estimate

can be derived from a single, ‘observed’ sample x1, x2, . . . , xn .

Unfortunately, no inductive inference is certain, so every statement drawn from experimental data is

subject to uncertainty. An estimate that is derived from a single sample is subject to uncertainty because of

having only 1 sample; that is, different samples from the same population would, in general, yield different

estimates. The amount of uncertainty associated with an estimate is inversely proportional to the amount of

(population) information contained in the sample that the estimate is derived from. The question therefore

arises as to whether it is possible to ascribe a measure of information to the various possible experimental

designs available in order to consider the cost of obtaining a particular amount of information: is it worth that

cost and at what stage is the cost of obtaining further information too great? Suppose that the purpose of

an experiment is to estimate a single parameter of a population distribution. The only requirement that the

measure of information should satisfy is that the information on a parameter provided by, say, 2 independent

samples drawn from the population should be equal to the sum of the information contained in the 2 samples

considered separately. This means that the information contained in a sample should be directly proportional

to the sample size n .

The generally adapted measure of information, which was introduced by Fisher [10], is given by:

nI = n

∫ ∞

−∞

(
∂ log f

∂θ

)2

f dx,

where θ , which we wish to estimate, is the parameter of the population distribution f(x, θ). For the case

where the population parameter of interest is the mean µ of a normal distribution with variance σ2 , the total

information contained in a sample is given by the ratio of the sample size n to the population variance σ2 ,

such that:

nI =
n

σ2
.
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For the mean of a sample of size n1 it is n1/σ
2 , and for another sample of size n2 , it is n2/σ

2 , while for the

mean of the combined sample it is (n1 + n2)/σ
2 . This suggests that the information per observation is 1/σ2

and, most importantly, the information about the mean of a normal distribution is contained entirely in the

variance σ2 .

An estimate that is derived from a single sample is subject to uncertainty because of having only 1 sample,

but such an estimate necessarily follows a particular distribution on the samples that could be drawn from the

same population. In statistics, this distribution is called the sampling distribution (or the null distribution), and

it is the measure of uncertainty [3]. In estimating the population mean µ , the amount of uncertainty associated

with the mean of a sample of size n ( x̄) is equal to the variance of the sampling distribution of x̄ around µ ,

σ2/n , i.e. 1/nI .

μ
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Figure 1. Sampling distribution of the sample mean on the samples of size 4 and 16 from a normal distribution with

mean µ and variance σ2 .

Figure 1 illustrates the sampling distributions of the mean of a sample of size n = 4 and the mean of a

sample of size n = 16 from a normal distribution with mean µ and variance σ2 (i.e. X ∼ N(µ, σ2)).

In the population, the interval [µ − σ, µ + σ] is expected to contain about 68% of all observations and

the interval [µ − 2σ, µ + 2σ] contains about 95% of all observations. On the other hand, for the sampling

distributions, it is expected that, 95% of the time, the interval [µ− σ, µ+ σ] contains the mean of a sample of

4 observations and the interval [µ− σ/2, µ+ σ/2] contains the mean of a sample of 16 observations. The true

population mean µ will therefore be with x̄ ± σ of the mean of a sample of size n = 4, and with x̄ ± σ/2 of

the mean of a sample of size n = 16, 95% of the time. Here, 95% of the time refers to 95% of the samples that

could be drawn from the population, and, in turn, 95% of the samples that could be drawn from the population

refers to a confidence level of 95% or a significance level of 5% (i.e. α = 0.05). Note that quadrupling the size

of a sample reduces the amount of uncertainty only by a factor of 2. In relation to the IR system evaluations,
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the population in Figure 1 can be thought of as the population of topics, where observations represent the AP

scores of an IR system and the mean of a sample of size n represents the associated MAP score measured on a

sample of n topics.

For a normal distribution with mean µ and variance σ2 , it can be shown that the transformation

Z =
x̄− µ

SDX̄

=
x̄− µ

σ/
√
n

follows a standard normal distribution with zero mean and unit variance. In other words, for normally

distributed populations, x̄ follows a normal distribution with mean µ and variance σ2/n , i.e. x̄ ∼ N(µ, σ2/n).

Given a series of n i.i.d. random variables, X1, X2, . . . , Xn , each of which follows the same distribution

with finite mean µ and variance σ2 > 0 (i.e. a ‘well-behaved’ distribution), the second fundamental theorem

of probability, the CLT, assures that as the sample size n increases, the distribution of the sample mean of the

random variables weakly converges in probability to a normal distribution with mean µ and variance σ2/n ,

irrespective of the shape of the population distribution. Note that since the population parameters are usually

not known, σ2 needs to be estimated from sample statistics. In this regard the well-known estimator of σ2

is the sample variance s2 , and so s/
√
n can be used for estimating the standard deviation of the sampling

distribution of x̄ , SDX̄ . It immediately follows that the distribution of the transformation

z =
x̄− µ

SEX̄

=
x̄− µ

s/
√
n

can be approximated by a standard normal distribution with zero mean and unit variance for any well-behaved

population distribution, provided that the sample size n is large enough (generally agreed to be n ≥ 30).

By elaborating the z transformation given, we can determine the sample size required to provide a desired

level of accuracy in estimating µ , such that:

nδ,α ≥
(
s · zα/2
x̄− µ

)2

. (1)

Here, zα/2 is the z -score, where in between ±zα/2 , the area under the standard normal curve is summed up to

1−α , e.g., ±zα/2 = ±1.96 at α = 0.05. The discrepancy between x̄ and µ , |x̄−µ| , is commonly referred to as

the sensitivity (or the maximum error, or the error of estimate, the maximum error of estimate, the maximum

allowable error, etc.) and is denoted by δ . Sensitivity is the desired accuracy in estimating the true mean of a

population distribution, such that Pr(|x̄− µ| ≥ δ) ≤ α or Pr(|x̄− µ| ≤ δ) ≥ (1− α).

Table 1 lists the topic sample size estimates that are required to maintain the levels of sensitivity

δ = ±0.01,±0.02, . . . ,±0.07 in estimating the true population MAPs of the first 10 TREC 6 Category-A,

automatic, short (Title + Description) runs, with at most, a 5% sampling error. As seen, it is expected, on

average, that the true population MAP of a TREC 6 run will be with ±0.05 of the MAP observed on, at least,

95% of the samples of 50 topics that could be drawn from the population.

The summary statistics for TREC 6, 7, and 8 are given in Table 2. As seen, when the topic sample size

n ≥ 50, it is expected, on average, that Pr(|x̄−µ| ≤ 0.05) ≥ 0.95, or complementarily Pr(|x̄−µ| ≥ 0.05) ≤ 0.05.
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Table 1. Topic sample sizes suggested by Inequality 1 for maintaining the δ = ±0.01,±0.02, . . . ,±0.07 sensitivity in

estimating the true population MAPs of the first 10 TREC 6 runs, with at most 5% sampling error or at least 95%

confidence. The last 2 blocks of the rows list the averages over the first 10 runs and the total of 29 runs, respectively. The

percentage differences associated with the corresponding sensitivity levels relative to ‘Average MAP’ are listed through

‘% Diff’ rows, e.g., 0.05 / 0.1380 = 36%. The ‘% Diff from top’ row lists the percentage difference relative to the top

MAP of 0.2164, e.g., 23% for ±0.05 sensitivity.

Sensitivity (δ)
Rank Runs MAP s2 0.01 0.02 0.03 0.04 0.05 0.06 0.07
1 city6ad 0.2164 0.0575 2211 553 246 138 88 61 45
2 LNaShort 0.1972 0.0328 1261 315 140 79 50 35 26
3 uwmt6a2 0.1912 0.0484 1859 465 207 116 74 52 38
4 att97ac 0.1847 0.0445 1711 428 190 107 68 48 35
5 Cor6A2qtcs 0.1809 0.0439 1686 421 187 105 67 47 34
6 att97ae 0.1801 0.0437 1679 420 187 105 67 47 34
7 Cor6A1cls 0.1799 0.0429 1650 412 183 103 66 46 34
8 VrtyAH6a 0.1784 0.0452 1738 435 193 109 70 48 35
9 ibms97a 0.1775 0.0350 1346 337 150 84 54 37 27
10 ibmg97a 0.1727 0.0356 1369 342 152 86 55 38 28
Average 0.1859 0.0430 1651 413 183 103 66 46 34
% Diff 5 11 16 22 27 32 38
Total of 29 runs 0.1380 0.0305 1175 294 131 73 47 33 24
% Diff 7 14 22 29 36 43 51
% Diff from top 5 9 14 18 23 28 32

Table 2. Summary statistics of the topic sample size estimates to maintain δ = ±0.01,±0.02, . . . ,±0.07 sensitivity

in estimating the true population MAPs of TREC 6, 7, and 8 runs, with at most 5% sampling error or at least 95%

confidence.

Sensitivity (δ)
Aver. s2 0.01 0.02 0.03 0.04 0.05 0.06 0.07
TREC 6 0.0305 1175 294 131 73 47 33 24
TREC 7 0.0248 953 238 106 60 38 26 19
TREC 8 0.0379 1457 364 162 91 58 40 30
Average 0.0311 1195 299 133 75 48 33 24

3. Estimation of the difference of 2 population MAPs

Let the 2 series of i.i.d. random variables X1, X2, . . . , Xn and Y1 , Y2 , . . . , Yn denote, respectively, the samples

of the AP scores of 2 IR systems, A and B , which are measured on a topic sample of size n . Suppose that

the random variables X and Y distribute independently and normally on the population of topics; that is,

X ∼ N(µX , σ2
X) and Y ∼ N(µY , σ

2
Y ) are mutually independent in distribution, where µX and σ2

X denote,

respectively, the mean and the variance of the population AP distribution of A , and µY and σ2
Y are of B . In

a similar manner as σ2/n gives the uncertainty associated with the mean of a normal sample of size n , the

uncertainty associated with X̄ − Ȳ in estimating µX − µY is given by:

σ2
X

n
+

σ2
Y

n
.
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It can be shown that when µX = µY ,

z =
(x̄− ȳ)− (µX − µY )√

(σ2
X + σ2

Y )/n
=

x̄− ȳ

SDx̄−ȳ

follows a standard normal distribution with zero mean and unit variance, where SDx̄−ȳ is the population

standard deviation of the difference of 2 sample means, i.e. the standard deviation of the sampling (or rather

null) distribution of x̄−ȳ around µX−µY = 0. For large sample sizes, the distribution of z can be approximated,

under the null hypothesis H0 : µX = µY , by a standard normal distribution with zero mean and unit variance,

irrespective of the shapes of the population AP distributions of A and B , because of the CLT.

The standard deviation of x̄ − ȳ , SDx̄−ȳ , can be derived from sample statistics in 2 different ways,

depending on whether or not the corresponding population distributions are mutually independent.

If 2 population distributions are mutually independent (i.e. the case derived so far), the sample estimate

of SDX̄−Ȳ is given by:

SEp =

√
s2x
n

+
s2y
n

=

√(
s2x + s2y

2

)
× 2

n
= sp ×

√
2

n
,

where sp denotes the pooled standard deviation, and for our case, s2x and s2y denote, respectively, the sample

variances of the AP scores of A and B .

On the other hand, when 2 samples (of AP scores) come from 2 dependent population distributions, each

of the samples contains a particular amount of information about the other sample due to the fact that each

value in 1 population is related or linked to a specific value in the other population; that is, the AP scores of A

correlate with the AP scores of B across topics, and vice versa. To utilize the common information contained

in the samples, the sample estimate of SDX̄−Ȳ is calculated accordingly, such that:

SEd =

√∑
(di − d̄)2

n− 1
×
√

1

n
= sd ×

√
1

n
,

where sd denotes the sample standard deviation of the paired differences di = xi − yi for i = 1, 2, . . . , n (i.e.

the paired (sample) standard deviation), and d̄ = (1/n)
∑

di .

The former SDX̄−Ȳ estimate, SEp , is used for testing the significance of the difference of 2 sample means

under the assumption of independence, i.e. the Student t-test for 2 independent sample means. The latter one,

SEd , is used for the same purpose but under the assumption of dependence. This protocol of hypothesis testing

is commonly referred to as the Student t-test for 2 dependent sample means or matched pairs, which is in fact

the most widely used hypothesis test in the current practice of IR system evaluations.

By elaborating the z transformation given, we can now determine the sample size required to provide

100× (1−α)% confidence on a declared significance (i.e. the case of succeeding in rejecting the null hypothesis

H0 : µX = µY ) at a predefined level of significance α , such that if the sample size is,

nδ,α ≥
(s · zα/2

δ

)2

, (2)

then Pr(|x̄ − ȳ| ≥ δ) ≤ α when µX = µY , so Pr(|µX − µY | > 0) ≥ (1 − α) when |x̄ − ȳ| ≥ δ . Under the

assumption of independence, s denotes sp ; otherwise, sd .
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Note that here, Inequality 2 yields the total size of the 2 AP samples, X1, X2, . . . , Xn and Y1 , Y2 , . . . ,

Yn , not the topic sample size, which is required to provide the amount of population information necessary to

maintain a particular level of sensitivity (δ) in estimating the difference of the population MAPs of A and B .

This is the same for Inequality 1, but it is implicit; there is only 1 AP sample, X1, X2, . . . , Xn , to measure on

a sample of n topics. In brief, when X and Y are independent in distribution, the total sample size yielded

from Inequality 2 with sp will be twice that of the topic sample size that is required in effect (as indicated by

the
√

2/n component of the SDx̄−ȳ estimate under independence), while, in contrast, the total sample size

that is yielded from Inequality 2 with sd will be equal to the required topic sample size (as indicated by the√
1/n component of the SDx̄−ȳ estimate under dependence). The consequence is that when the AP scores of

2 IR systems are mutually independent in distribution on the population of topics, the half of the sample size

suggested by Inequality 2 with sp will be equal to the sample size suggested by Inequality 2 with sd , and, in

effect, both will be equal to the required topic sample size.

Without loss of generality, consider the 2 TREC 6 runs in Table 1, ‘city6ad’ and ‘LNaShort’. The

associated pooled standard deviation sp is 0.2125 (i.e.
√
(0.0575 + 0.0328)/2 =

√
0.0452) and the paired

standard deviation sd is 0.1479. Setting δ to, say, 0.05 in Inequality 2 yields a sample size estimate equal to

[(0.2125× 1.96)/0.05]
2 ≈ 69 under the assumption of independence and [(0.1479× 1.96)/0.05]

2 ≈ 34 under the

assumption of dependence. Here, the fact that 69/2 ≈ 34 suggests that the observed AP scores of ‘city6ad’

and ‘LNaShort’ would have arisen from 2 independent distributions on the population of topics. Note that the

figure yielded from Inequality 2 with sp can also be obtained by averaging the individual sample size estimates

yielded from Inequality 1 for ‘city6ad’ and ‘LNaShort’ (in Table 1), such that (88 + 50)/2 = 69.

It appears that, if ‘city6ad’ and ‘LNaShort’ have equal MAPs on the population of topics, a MAP

difference that is equal to or less than 0.05 would be observed, by chance, on at least 95% of the samples of

34 topics that could be drawn from the topic population. Thus, at least a difference in MAP of 0.05 is needed

between ‘city6ad’ and ‘LNaShort’ measured on 34 topics before concluding, with 95% confidence, that they

do not have equal MAPs on the population of topics (or, equivalently, that the same ranking of ‘city6ad’ and

‘LNaShort’ can be observed on a different sample of 34 topics).

The actual difference in the MAPs of ‘city6ad’ and ‘LNaShort’, which is observed for the original sample

of 50 TREC 6 topics, is 0.0192. A sensitivity level of δ = ±0.05 is therefore too low to decide whether there

exists a population effect between them. In other words, a difference in MAP of 0.0192 is not unlikely on a

sample of 34 topics when µX = µY , so it can be attributed to chance fluctuation. In common practice, δ

is usually set to the observed difference |x̄ − ȳ| (or less), since a sensitivity level greater than the difference

observed could have no particular meaning under the null hypothesis. When δ is set to 0.0192, Inequality 2

yields a topic sample size estimate of [(0.1479 × 1.96)/0.0192]2 = 228. Thus, we can conclude that a sample

of 50 topics is insufficient in size to provide the level of sensitivity that could supply the empirical evidence to

reject the null hypothesis that ‘city6ad’ and ‘LNaShort’ have equal population MAPs.

The current sensitivity level provided by the sample of 50 TREC 6 topics can be estimated by elaborating

Inequality 2, as given by:

δ ≥
s · zα/2√

n
=

0.1479× 1.96√
50

= ±0.0409.

This quantity expresses the same fact based on MAP difference instead of topic sample size: a difference in

MAP of 0.0192 can be attributed to chance fluctuation.
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Note that the level of sensitivity at a predefined level of significance α actually determines a 100×(1−α)%

confidence interval that is expected to contain µX − µY with probability 1− α :

Pr

[
(x̄− ȳ)−

s · zα/2√
n

≤ µX − µY ≤ (x̄− ȳ) +
s · zα/2√

n

]
≥ 1− α.

Thus, when 2 IR systems have equal MAPs on the population of topics, it is expected that the observed

MAP difference between the systems will fluctuate by chance across the samples of n topics but in between

±zα/2 × s/
√
n with probability 1− α , such that:

Pr

(
−
s · zα/2√

n
≤ x̄− ȳ ≤ +

s · zα/2√
n

)
≥ 1− α,

e.g., Pr (−0.0409 ≤ x̄− ȳ ≤ +0.0409) ≥ 0.95.

Given a sample of 50 topics, an observed difference in MAP of 0.0409 or more can therefore be assumed

large enough to reject, with 95% confidence, that ‘city6ad’ and ‘LNaShort’ have equal population MAPs, or,

in other words, to rely on the idea that the probability of rejecting H0 when it is true will be at or below the

nominal error rate of 5%. Note that this is exactly the rationale behind the Student t-test.

As a result, this means that the observed MAP difference between ‘city6ad’ and ‘LNaShort’ is not

large enough to consider it statistically significant. The statistical analysis performed here is inconclusive in the

objective sense due to the lack of enough population information (or empirical evidence). In principle, whenever

a statistical analysis is inconclusive, further research should be encouraged before making any conclusions.

Nevertheless, one may also accept the null hypothesis of equal population MAPs if further research is not

possible, or rather if the current level of sensitivity provided by the sample of topics at hand is so high that

the undetectable differences in population MAPs can anyway be considered negligible or unimportant from a

practical standpoint.

In theory, by repeating this analysis for every pair of IR systems available and then averaging over all

system pairs, we can get a topic sample size estimate that is sufficiently generalizable to be applied to any

system pair, on average. However, before making such a generalization, 2 previous key empirical works should

be discussed.

First, Lin and Hauptmann [11] showed that there is a resemblance between Fisher’s information and the

so-called retrieval experiment error rate (REER), which was coined by Voorhees and Buckley [6], such that

the model Voorhees and Buckley empirically fitted REER, b1 exp[−b2 · n], can be approximated by a theoretic

model as given by:

REER ≈ 1

2
exp

[
− 2

π
(µX − µY )

2 n

(σ2
X + σ2

Y )

]
.

This theoretical model suggests that the original REER algorithm assumes independence for the AP distributions

of IR systems on the population of topics, as indicated by the following component:

n

σ2
X + σ2

Y

.

Figure 2 illustrates the relationship between Inequality 2 and the REER, based on a topic sample of size n = 4.

As seen in the top panel of Figure 2, if significance is considered to be 2-sided (α/2 = 0.025), it is expected

that the sign of the difference between 2 sample means be maintained 97.5% of the time at α = 0.05 when
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the difference of the means of 2 independent population AP distributions is equal to 4σ/
√
n = 4σ/2. This

corresponds to a 2.5% REER, as shown in the bottom panel. This means that a topic sample size, which is

suggested by Inequality 2 with sp and z0.025 = 1.96, would be sufficient to maintain a REER of 2.5% for a

pair of 2 independent IR systems having a difference in the population MAP of 4σ/
√
n . To estimate the topic

sample size required to maintain a REER of 5% at α = 0.05 by means of Inequality 2, we therefore need to

consider the significance as 1-sided (i.e. z0.05 = 1.64), as illustrated in the bottom panel of Figure 2, i.e. the

‘swap area’.

μ x

X ~ N (μ x, σ2)

Sampling  

d is tribution

97.5%

μ y

Y ~ N (μ y, σ2)

α / 2 = 0.025 97.5%

~N(μy, σ
2/4)Y~N(μx, σ

2
/4)

4  ×  σ/2

AP dis tribution of
 

Sys tem A
 

on topic p opula tion

AP dis tribution of 

Sys tem B 

on topic p opula tion

5%

0Σ/2Σ/2

95%

X-Y~N(μ x-μ y, Σ
2
=2σ 2

)

μx -μy

- ~N(μ x-μ y, Σ2/4)YX

z-score at α = 0.05

z-score at α / 2 = 0.025

95% 5%

Swap area

Null hypothesis: μ x - μ y = 0

X

Figure 2. Illustration of 2 AP distributions having a difference in the mean of 4× σ/
√
n and an equal variance on the

population of topics (top panel). X ∼ N(µX , σ2) and Y ∼ N(µY , σ2) are independent in distribution. The sampling

distributions X̄ ∼ N(µX , σ2/n) and Ȳ ∼ N(µY , σ2/n) each represent a sensitivity level of δ = ±2×σ/
√
n in estimating

the corresponding population means at α = 0.05 (assuming z0.025 ≈ 2), such that |x̄ − µX | ≤ δ and |ȳ − µY | ≤ δ .

The bottom panel illustrates the corresponding distribution of the difference of x̄ and ȳ both for 2-sided significance

(z -score at α/2) and 1-sided significance (z -score at α) .

The research question addressed in the work of Voorhees and Buckley [6] may be restated as “what

percentage of the time is the consistency of a size of difference between x̄ and ȳ maintained in sign across the

topic samples of a given size n?” Denote x̄ − ȳ by D . Next, the original REER algorithm can be viewed as

a (nonparametric) resampling technique by means of which one can estimate the sampling distribution of D

for any given sample size n > 0. It can be shown that, when µX = µY , a sample size that is greater than 0

(n > 0) maintains the consistency of every size of difference between x̄ and ȳ in sign 50% of the time, or rather
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50% of the samples of topics that could be drawn from the topic population. More precisely, when µX = µY ,

Pr(x̄− ȳ ≤ 0) = Pr(x̄− ȳ ≥ 0) = 0.50.

A sampling distribution that is centered on µX−µY = 0 corresponds to a 50% REER. For 2 IR systems, if

the estimated sampling distribution is centered on 0, we can conclude that the observed AP scores of the systems

would have arisen from 2 population AP distributions with equal means. On the other hand, if µX − µY = 0

falls within 1 of the 2 critical regions of the estimated sampling distribution, we can reject, at this time, the

null hypothesis with, say, 95% confidence at α = 0.05, as is shown in the bottom panel of Figure 2. Here,

the ratio of the number of samples on which D ≥ 0 (or D ≤ 0) to the total number of samples simulated

gives the REER associated with a given pair of systems, i.e. the P-value, or the probability, under the null

hypothesis, of observing a size of difference in MAP between 2 IR systems as extreme as or more extreme than

that observed for the sample of topics given. This means that, over the pairs of runs available in each TREC,

by averaging the topic sample size estimates that are yielded from Inequality 2 with sp and z0.05 = 1.64 (i.e.

1-sided significance), we can obtain theoretic REER estimates to which the empirical estimates yielded from

the original REER algorithm in [9] are expected to converge as the number of run pairs goes to infinity.

Second, Bodoff and Li [12] recently proposed a generalizability theory for the optimization of the design of

IR experiments. Although it is not mentioned in the original work of Bodoff and Li, the generalizability theory

enables us to estimate, at once, the average topic sample size that is required to yield sufficiently dependable

estimates of the population MAPs of a given set of IR systems by means of a decision study or a

D-study, which includes the method called the analysis of variance (ANOVA) in statistics.

As a matter of fact, if we were to draw a great many samples from the same population, on average, the

sample standard deviations (s) would not give an unbiased estimate of σ , so the standard error s/
√
n would

not give an unbiased estimate of the standard deviation of the true sampling distribution, σ/
√
n . First, this is

because of the square rooting and increased rounding error, and, second, s ̸= σ , on average. However, a great

many sample variances (s2 s) drawn from the same population will indeed give us an unbiased estimate of σ2 ,

i.e. the s2 ’s average will equal the population variance σ2 .

For the works, ANOVA included, s2 (and not s) is used as the measure of the population spread. In

ANOVA, the mean squared error (MSE), or the amount by which the estimate differs from the true value being

estimated, is given by:

MSE =
1

dfe

∑
e2p,

where ep is residual and dfe is the error degrees of freedom. Under the null hypothesis, the expected value of

the MSE or the variance of ep gives the model variance, i.e. E(MSE) = σ2 . For TREC 6, 7, and 8, Table 3

lists the corresponding model variances.

Table 3. MSE or the model variance σ2 for TREC 6, 7, and 8. Aver. s2 is the same in Table 2, repeated here for

convenience.

MSE Aver. s2

TREC 6 0.0305 0.0305
TREC 7 0.0248 0.0248
TREC 8 0.0379 0.0379
Average 0.0311 0.0311

As shown in Table 3, the calculated MSE for each TREC corresponds to the s2 averages given in Table 2
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(‘Aver. s2 ’ in Table 3). This is the expected case, because the MSE is given by the pooled sample variance under

a balanced design with (AP) samples of equal size. This means that the average topic sample size estimates

given in Table 2 are actually the figures that would be obtained by conducting a D-study.

According to generalizability theory, given a set of IR systems, one can estimate the sufficient size of a

topic sample as given by:

n ≥ MSE

σ2
err

[
≡

s2average(
δ/zα/2

)2 ≡
(s · zα/2

δ

)2
]
,

where σ2
err denotes the error variance and the subscript ‘average’ in s2 in square brackets means averaging over

all pairs of systems available. Here, n is the sample size that is required to be 100× (1−α)% confident that the

same (relative) systems ranking will be observed across the topic samples of size n . However, note that this is

valid only for those system pairs that have at least a difference in population MAP of δ : for those system pairs

that have a difference of less than δ , the associated ranks may still vary by chance across the systems rankings.

For instance, suppose that the decision maker wants to be 95% confident that the population MAP of a

TREC 6 run is within ±0.01 of the MAP to be observed before deciding whether a system is better for MAP

than another on the population of topics, based on the systems ranking to be obtained. According to this

5% margin of error (i.e. α = 0.05), the error variance σ2
err is (0.01/1.96)2 , where zα/2 = 1.96 (i.e. 2-sided

significance). Thus, the average number of topics, which is required to estimate the true population MAPs of

individual TREC 6 runs with δ = ±0.01 sensitivity at α = 0.05, can be estimated as given by:

n ≥ 0.0305

(0.01/1.96)2
≈ 1172.

Similarly, for a sensitivity level of δ = ±0.05, it is approximately 47 (i.e. 0.0305/(0.05/1.96)2), and for

δ = ±0.06, it is approximately 33. As expected, these average topic sample size estimates agree with the figures

given in Table 2. Note that, to get a 1-sided MSE-based estimate, we could use z0.05 instead of z0.025 for the

calculation of the error variance σ2
err , but this would not be appropriate for the purpose of making a decision

based on the systems rankings.

Table 4 shows, for TREC 6, 7, and 8, the summary statistics of the topic sample size estimates that are

yielded from the methods discussed so far, namely Inequality 2, REER, and MSE.

Recall that Voorhees and Buckley [6] concluded, based on the results of the original REER algorithm,

that an absolute difference in MAP of 0.05–0.06 would be needed between 2 IR systems measured on 50 topics

before concluding, with 95% confidence, that the same systems ranking can be obtained on a different set of 50

topics. As seen in Table 4, the theoretical REER approximation based on Inequality 2 with sp and z0.05 = 1.64

(‘Inq2(sp ,1.64)’) yields, on average, similar estimates (≥ 0.0443), as well as the MSE-based estimation at

δ = ±0.05 (‘Inq2(MSE,1.96)’).

However, note that ANOVA (a MSE-based estimation) assumes that the distributions of the AP scores

of individual IR systems are mutually independent of the population of topics, as also assumed by the theoretic

REER approximation. Thus, the required size of a topic sample is, in fact, equal to half of the total sample

size suggested, as shown in the last 2 rows ‘REER/2’ and ‘MSE/2’, which are approximately equal to the topic

sample size estimates yielded from Inequality 2 with sd and z0.05 = 1.64 (‘Inq2(sd ,1.64)’). Note that the

correspondence among those 3 types of estimations actually suggests that the similar estimates can also be

obtained by means of Inequality 1 (‘Aver. s2 ’) with minimal effort.
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Table 4. Summary statistics of the topic sample size estimates yielded from Inequality 2 for TREC 6, 7, and 8. For

each TREC, ‘Run pairs’ lists the number of run pairs between each of which the observed MAP difference falls within

the intervals shown in columns (≥ 0 and < 1, ≥ 1 and < 2, and so on), and ‘Aver. diff.’ gives the average MAP

difference over those run pairs; similarly, ‘Inq2(sd ,1.64)’ gives the average of the topic sample size estimates yielded from

Inequality 2 with sd and z0.05 = 1.64, and ‘Inq2(sp ,1.64)’ the same with sp , i.e. REER. ‘Inq2(MSE,1.96)’ lists the

MSE-based estimates with z0.05 = 1.96 at δ = ±0.01,±0.02, . . . ,±0.07. The estimates listed in ‘Aver. s2 ’ are the same

in Table 2, repeated here for convenience. Grand averages over 3 TRECs are given in the row block ‘Averages’. The last

2 rows list half of the estimates based on the REER and MSE.

|x̄− ȳ| ≥ 0.0 ≥ 0.01 ≥ 0.02 ≥ 0.03 ≥ 0.04 ≥ 0.05 ≥ 0.06
δ ±0.01 ±0.02 ±0.03 ±0.04 ±0.05 ±0.06 ±0.07

TREC 6

Run pairs 54 54 44 44 30 32 148
Aver. diff. 0.0050 0.0153 0.0248 0.0348 0.0440 0.0547 0.1215
Inq2(sd,1.64) 53700 281 89 56 30 24 8

(REER)

Inq2(sp,1.64) 175634 472 156 82 50 28 8
Inq2(MSE,1.96) 1172 292 130 73 47 33 24
‘Aver. s2’ 1175 294 131 73 47 33 24

TREC 7

Run pairs 9 4 7 11 11 6 105
Aver. diff. 0.0043 0.0157 0.0252 0.0347 0.0441 0.0558 0.1394
Inq2(sd,1.64) 3478 244 99 32 24 19 5

(REER)

Inq2(sp,1.64) 8562 282 122 53 39 24 6
Inq2(MSE,1.96) 953 238 106 60 38 26 19
‘Aver. s2’ 953 238 106 60 38 26 19

TREC 8

Run pairs 130 128 123 110 96 85 812
Aver. diff. 0.0052 0.0149 0.0252 0.0345 0.0448 0.0552 0.1614
Inq2(sd,1.64) 67434 234 69 35 23 16 5

(REER)

Inq2(sp,1.64) 184946 626 195 104 58 40 7
Inq2(MSE,1.96) 1456 364 162 91 58 40 30
‘Aver. s2’ 1457 364 162 91 58 40 30

Averages

Run pairs 64 62 58 55 46 41 355
Aver. diff. 0.0048 0.0153 0.0251 0.0347 0.0443 0.0552 0.1408
Inq2(sd,1.64) 41537 253 86 41 26 20 6

(REER)

Inq2(sp,1.64) 123047 460 158 80 49 31 7
Inq2(MSE,1.96) 1194 298 133 75 48 33 24
‘Aver. s2’ 1195 299 133 75 48 33 24
REER/2 61524 230 79 40 25 15 4
MSE/2 597 149 66 37 24 17 12

As a result, for any pair of TREC runs with equal population MAPs, a MAP difference as extreme as

or more extreme than 0.0347 is expected on, at most, 5% of the samples of 50 topics that could be drawn

from the population. Thus, given a sample of 50 topics, an absolute difference in MAP of 0.0347 would,

on average, be enough to provide 95% confidence on a declared significance between 2 TREC runs. More

precisely, given a sample of 50 topics, Pr(|µX − µY | > 0) ≥ 0.95, if |x̄− ȳ| ≥ 0.0347, because when µX = µY ,

Pr(|x̄− ȳ| ≥ 0.0347) ≤ 0.05.

Table 5 lists, for each of the pairs of the 12 selected TREC 6 runs, the topic sample size required to

provide 95% confidence on a declared significance, where the average topic sample size is 536 over the total 66

run pairs listed. As seen, for the individual pairs of TREC 6 runs, the topic sample size that is sufficient to

have a confidence level of 95% varies from a size as small as 10 (‘Cor6A1cls’ vs. ‘Brkly21’ with a difference in
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MAP of 0.0423) to a size as large as 722 (‘gmu97au1’ vs. ‘pirc7Ad’ with a difference in MAP of 0.0128) when

the marginal MAP differences that are less than 0.01 are not considered.

Table 5. Topic sample sizes suggested by Inequality 2 at α = 0.05 to provide 95% confidence on a declared significance.

The lower triangle lists the observed MAP differences and the upper triangle lists the corresponding topic sample size

estimates. The content of the cell associated with each run pair to which the 1-tailed, paired t-test gives significance at

α = 0.05 (i.e. a declared significance) is bold-faced.

Runs MAP Rank 1 3 5 7 9 11
city6ad 0.2164 1 46 70 64 40 42
uwmt6a2 0.1912 3 0.0252 600 488 167 130
Cor6A2qtcs 0.1809 5 0.0355 0.0103 3255 2654 324
Cor6A1cls 0.1799 7 0.0365 0.0113 0.0010 4762 330
ibms97a 0.1775 9 0.0389 0.0137 0.0034 0.0024 355
gmu97au1 0.1660 11 0.0504 0.0252 0.0149 0.0139 0.0115
Mercure2 0.1640 13 0.0524 0.0272 0.0169 0.0159 0.0135 0.0020
pirc7Ad 0.1533 15 0.0632 0.0380 0.0277 0.0267 0.0243 0.0128
umcpa197 0.1460 17 0.0704 0.0452 0.0349 0.0339 0.0315 0.0200
Brkly21 0.1376 19 0.0789 0.0536 0.0433 0.0423 0.0400 0.0285
DCU97snt 0.1296 21 0.0868 0.0616 0.0513 0.0503 0.0479 0.0364
csiro97a2 0.1172 23 0.0993 0.0740 0.0638 0.0627 0.0604 0.0489
Runs MAP Rank 13 15 17 19 21 23
city6ad 0.2164 1 27 16 14 13 16 12
uwmt6a2 0.1912 3 56 51 20 19 25 14
Cor6A2qtcs 0.1809 5 55 100 22 12 40 12
Cor6A1cls 0.1799 7 82 103 26 10 42 15
ibms97a 0.1775 9 115 121 28 14 40 15
gmu97au1 0.1660 11 14284 722 164 59 98 40
Mercure2 0.1640 13 627 48 37 75 13
pirc7Ad 0.1533 15 0.0107 1305 290 101 66
umcpa197 0.1460 17 0.0180 0.0072 332 309 36
Brkly21 0.1376 19 0.0264 0.0157 0.0084 1574 144
DCU97snt 0.1296 21 0.0344 0.0236 0.0164 0.0080 564
csiro97a2 0.1172 23 0.0468 0.0361 0.0289 0.0204 0.0124

4. Conclusion

In this article, the second fundamental theorem of probability, the CLT, is exploited for the empirical estimation

of the sufficient size of a topic sample. To this extent, this article can be considered as the detailed and formal

explanation of the research methodology that should be followed in the design of IR experiments when the

methods of statistical inference are used to give significance to the results of an IR system evaluation that

follows the Cranfield paradigm.

The results of the statistical analyses performed show that, if the null hypothesis H0 of equal population

MAPs is rejected for 2 IR systems based on a sample of 50 topics, an absolute difference in MAP of 0.03 or

more would actually be enough to ensure that the chance of rejecting H0 when it is true is at or below the

nominal level of 5%. Previous empirical research consistently singled out a MAP difference that is not less than

0.05, simply because it was assumed that the AP distributions of IR systems are independent of each other on

the population of topics, whereas it depends on the IR systems under consideration. On average, a sample of

25 topics or less can indeed be enough to provide 95% confidence on a declared significance for 2 IR systems
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having an observed MAP difference of 0.05 or more, while a sample of 50 topics or more will be necessary to

maintain the same level of confidence for those IR systems that have an observed MAP difference of 0.03 or

less.

Holding those average figures on one hand, on the other hand, the statistical analyses performed also

revealed that the sufficient size of a topic sample greatly varies from system pair to system pair in practice.

In TREC 6, for example, the topic sample size required to provide 95% confidence on a declared significance

ranges from a size as small as 10 to a size as large as 722, where the corresponding MAP differences range

from 0.1 down to 0.01, respectively. Thus, when system pairs are considered separately, it can be said that

a standard TREC test collection with 50 topics could succeed to provide the necessary but probably not the

sufficient empirical basis to detect important population effects among IR systems. It will therefore be better

if every pair of IR systems is considered as a separate case with respect to the design of IR experiments, rather

than relying on average figures as a rule of thumb.
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