
Turk J Elec Eng & Comp Sci

(2014) 22: 143 – 154

c⃝ TÜBİTAK

doi:10.3906/elk-1202-83

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

M-FDBSCAN: A multicore density-based uncertain data clustering algorithm

Atakan ERDEM, Taflan İmre GÜNDEM∗

Department of Computer Engineering, Boğaziçi University, İstanbul, Turkey

Received: 21.02.2012 • Accepted: 07.09.2012 • Published Online: 20.12.2013 • Printed: 20.01.2014

Abstract: In many data mining applications, we use a clustering algorithm on a large amount of uncertain data. In this

paper, we adapt an uncertain data clustering algorithm called fast density-based spatial clustering of applications with

noise (FDBSCAN) to multicore systems in order to have fast processing. The new algorithm, which we call multicore

FDBSCAN (M-FDBSCAN), splits the data domain into c rectangular regions, where c is the number of cores in the

system. The FDBSCAN algorithm is then applied to each rectangular region simultaneously. After the clustering

operation is completed, semiclusters that occur during splitting are detected and merged to construct the final clusters.

M-FDBSCAN is tested for correctness and performance. The experiments show that there is a significant performance

increase due to M-FDBSCAN, which is not just due to multicore usage.

Key words: Data mining, uncertain data management, clustering, concurrent execution

1. Introduction

In many applications like data cleaning, data integration, and sensor networks, managing huge amounts of

uncertain data is one of the most crucial issues. Recently, many new algorithms dealing efficiently with

uncertainty have been developed. For example, in [1], the customer preference uncertainty problem was

examined. The preferences of customers that are unfamiliar with a new technology are assumed to be uncertain.

The proposed solution was based on a fuzzy ranking approach. In [2], a novel accuracy function was proposed

as a solution to the problem of ranking intuitionistic fuzzy numbers accurately. Most of the solutions to the

uncertain data problems that we see in the literature are essentially derived from the solutions to the certain

data counterparts of these problems, as in [3] and [4]. The most critical parameter in the performance of

uncertain data management algorithms is the size of the uncertain data. Thus, the issue of processing huge

amounts of uncertain data efficiently is of utmost importance.

In this paper, we adopt fast density-based spatial clustering of applications with noise (FDBSCAN) [3], a

density-based uncertain data clustering algorithm, to multicore systems. We name our new algorithm multicore

FDBSCAN (M-FDBSCAN). The main idea behind the M-FDBSCAN algorithm is to split the 2-dimensional

dataset into csubdatasets, where c is the number of cores of the multicore system, and then apply a merge

operation for the split subdataset pairs sequentially to get the final clusters, which are the same as those that

are discovered by the single-core algorithm.

Our proposed algorithm is one of the first on adapting data mining algorithms for multicore system

architecture. In [5], a k-means clustering algorithm for multicore system architecture was presented, but the

algorithm was based on certain data.

∗Correspondence: gundem@boun.edu.tr

143

ERDEM and GÜNDEM/Turk J Elec Eng & Comp Sci

In Section 2, the related research is summarized. In Section 3, the M-FDBSCAN algorithm is explained.

Finally, in Section 4, the performance evaluation of the proposed algorithm is presented.

2. Related work

In [5], one of the most well-known clustering algorithms, the k-means algorithm, was reimplemented for multicore

system architecture. To each core, some part of the dataset was assigned for clustering. After the k-means

clustering algorithm was applied to the relevant part of the dataset by each dedicated core, simultaneously, a

merge operation was run to get the final clusters. In [5], the dataset was composed of certain data.

Uncertain data versions of the k-means, DBSCAN, and OPTICS clustering algorithms were proposed in

[3], [4], and [6], respectively. Based on the fuzzy c-means algorithm, novel fuzzy clustering solutions for different

data domains and problems were proposed in [7], [8], and [9]. Note that the algorithms in [3,4] and [6–9] were

for single-core system architecture use.

In this paper, we adapt the FDBSCAN algorithm for multicore system architecture. FDBSCAN is a

density-based fuzzy clustering algorithm. Since the concerned data of the algorithm are uncertain, a fuzzy

distance function is used to evaluate the similarity of the fuzzy objects. The key idea behind the FDBSCAN

algorithm is summarized in the following:

Let us assume that fuzzy data objects are represented in a 2-dimensional space. To label a fuzzy data

object region in 2-dimensional space as a cluster, the following 2 conditions must be satisfied: 1) All of the pairs

of fuzzy data objects in the region must be density-reachable. 2) The total number of fuzzy data objects in the

region must be equal to or greater than a certain value, µ . A pair of data objects is density-reachable if there

is at least one path between them, such that the fuzzy distance between each of the adjacent nodes is in the

ε neighborhood, where ε is a certain given value. Two data objects are in the ε neighborhood if the distance

between these data objects is less than or equal to ε . Each fuzzy data object is represented by s sample data

objects. Probabilistically, the fuzzy distance between 2 fuzzy data objects, fo1 and fo2 , is equal to d if more

than half of all of the possible distances among the sample data objects associated with fo1 and fo2 are equal

to d.

3. Proposed algorithm

One of the most time-consuming, but at the same time important, parts of the M-FDBSCAN algorithm is the

sample matrix construction part. Most of the algorithm is based on manipulating the sample matrices. Thus,

the sample matrix computation should be efficient. During the execution of the FDBSCAN algorithm, one

sample matrix is constructed for each fuzzy data object in the dataset. A sample matrix of a fuzzy data object,

fdox, represented by SM(fdox), is an s × s matrix, such that s is the number of sample data objects. fdox [i]

is the ith sample data object of the fuzzy data object fdox , where i = 1,..,s. Let SM(fdox)[i,j] be the matrix

element of SM(fdox). The value of SM(fdox)[i,j] then represents the number of fuzzy data objects that are

different from fdox and of which the jth sample data objects are in the ε neighborhood of the ith sample data

object of fdox .

A sample matrix example with 4 sample data objects is shown in Figure 1.

For a dataset of f fuzzy data objects and s sample data objects per each fuzzy data object, there are

s2× (f +(f − 1)+ (f − 2) . . . + 1) = s2× (f × (f +1)/2) = s2× (f2+ f)/2 distance calculations for the sample

matrix elements. Please note that the result is not simply s2× f2 . This is because the distances between the

fuzzy data object pairs (fdox , fdoy) and (fdoy , fdox) are obviously the same. Thus, calculating the distances

between 2 fuzzy data objects just once is sufficient.

144

ERDEM and GÜNDEM/Turk J Elec Eng & Comp Sci

sd1

sd 2

sd 3

sd4

fdo2fdo1

fdoN

fdo (sd)
1 2

0

4

2

1

…..

…..

…..

…..

7

5

3

6

SM(fdo)1

sd1

sd2

sd3

sd4

sd1

sd2

sd3

sd4

fdo (sd)
1 1

fdo (sd)
1 4

fdo (sd)
1 3

fdo (sd ... sd)
2 1 4

fdo (sd ...sd)
N 1 4

Figure 1. Sample matrix with 4 sample data objects for each fuzzy data object.

In our proposed algorithm, we aim to parallelize these computationally time-consuming distance calcula-

tion operations by splitting the dataset into c subdatasets of equal or nearly equal size. Here, c is the number

of cores in the associated multicore system. Thus, assuming that the sizes of all of the subdatasets are equal,

s2 × (f2/c2 + f/c)/2 distance calculations are done by each core. The total distance calculation of all of the

cores is c× s2 × (f2/c2 + f/c)/2.

For c > 1,

s2 × (f2 + f)/2 > c× s2 × (f2/c2 + f/c)/2 → f2 > f2/c. (1)

In Eq. (1), it is interestingly shown that dataset splitting reduces the number of distance calculations. Thus,

even for sequential execution, the execution time performance of our proposed algorithm is better than that of

FDBSCAN.

After processing all of the subdatasets, sequential merge operations are needed for each subdataset pair to

establish the final clusters. Thus, deciding the number of subdatasets is important. An increase in the number

of subdatasets implies an increase in the number of sequential merge operations. A detailed description of the

proposed algorithm is given in Section 3.1.

3.1. M-FDBSCAN

The main idea behind the algorithm is to split the 2-dimensional fuzzy data object dataset into c subdatasets

horizontally or vertically, where c is the number of cores in the multicore system. By applying the FDBSCAN

algorithm to each subdataset concurrently, the final cluster regions are determined partially. After merging the

split subdataset pairs by our merge function, the final cluster regions are obtained. Parallelization is done using

OpenMP in C. The M-FDBSCAN algorithm is basically composed of 3 parts:

• Splitting the dataset into subdatasets.

• Applying FDBSCAN to each split subdataset concurrently.

• Merging subdataset pairs to get the final cluster regions.

145

ERDEM and GÜNDEM/Turk J Elec Eng & Comp Sci

3.1.1. Splitting the dataset into subdatasets

We gained significant performance improvement by splitting the original dataset into subdatasets. This is

because smaller subdatasets mean smaller sample matrices and smaller sample matrices mean fewer distance

calculations. However, since the bigger the number of subdatasets is, the bigger the number of operations is,

there is a threshold point at which we have the optimum number of partitioning (splitting). Splitting must be

done up to this number. The execution times of the splitting and merging processes for a different number of

partitions are given in the experimental results in Section 4.

According to the M-FDBSCAN algorithm, splitting is done with respect to some horizontal or vertical

lines. Subdatasets are formed according to the regions between these lines. In the experiments, we tested 2

different splitting approaches:

a) Special splitting algorithm: For splitting, we developed a special algorithm that is derived from a binary

search algorithm. The goal of this algorithm is to determine n−1 lines that split the dataset into n (nearly)

equal-sized subdatasets. The execution time of the algorithm changes according to the distribution of the

data in 2-dimensional space. That is, the data distribution determines the number of iterations needed

for finding the appropriate splitting lines.

b) n equal-distance lines for n− 1 subdatasets: The other approach is simply determining n equal-distance

horizontal or vertical lines for n− 1 subdatasets.

In the experiments, we observed the execution times of both splitting approaches. Even if the execution

time of the second splitting approach is almost 0, when the data are not well distributed in the 2-dimensional

space, the big differences in the size of the subdatasets cause long total execution times. On the other hand,

for the first splitting approach, the sizes of the generated subdatasets are nearly the same. Thus, the overall

execution time performance is better, even if a negligible amount of time is needed initially for the splitting
process.

3.1.2. Applying FDBSCAN to each split subdataset concurrently

M-FDBSCAN assigns each subdataset to a core for clustering. After running the FDBSCAN algorithm by the

cores concurrently, temporary cluster regions are established. We must note that if the number of cores in the

multicore system is less than the optimum number of subdatasets, then the subdatasets must be apportioned

among the cores (i.e. each core processes several subdatasets serially). As we showed earlier, splitting improves

the overall execution time performance, even for a single-core system.

3.1.3. Merging subdataset pairs to get the final cluster regions

In the last part of the M-FDBSCAN algorithm, the processed subdataset pairs are merged in order to get the

final cluster regions. The proposed merge operation is mainly set on the concept of the ε neighborhood of the

splitting line. A fuzzy data object that is in the ε neighborhood of any point on the splitting line is called the

insider fdo and, conversely, a fuzzy data object that is not in the ε neighborhood of any point on the splitting

line is called the outsider fdo.

During the merge operation, first, the cluster regions of the insider fdos are handled. Cluster region

decisions for the outsider fdos are made according to the insider fdos that are density-reachable to the outsider

fdos. If a fuzzy data object fdo i is an outsider fdo, then there are 2 possible situations:

146

ERDEM and GÜNDEM/Turk J Elec Eng & Comp Sci

1. fdo i is a noisy fuzzy data object. This means that it could not be assigned to any temporary cluster. In

this case, if fdo i is density-reachable to any insider fdo that is in a cluster region Cx , then fdo i and all

of the other density-reachable outsider fdos are also put into the cluster region Cx .

2. fdo i is already in a temporary cluster region Cy . In this case, if fdo i is density-reachable to any insider

fdo that is assigned to a cluster region Cx , then the label of the cluster region Cy is changed to Cx . This

means that the cluster regions Cy and Cx are merged and the new cluster region label is set as Cx .

The merge operation is done between 2 adjacent subdatasets. Temporary cluster structures in other

subdatasets are not affected during the merge operation between 2 specific subdatasets. Thus, we can state

that one application of the merge operation is independent of another of its applications. Consequently, several

merge operation applications may be processed in parallel. A merge operation can be processed on any one of

the c cores that the FDBSCAN algorithm is run on for obtaining the neighboring clusters.

The complexity of parallel merging is O(log2 c). This is because, at each iteration, each core is assigned

to merge 2 subdatasets.

3.2. Algorithm for M-FDBSCAN

Input:

D: Dataset of 2-dimensional fuzzy data objects.

ε : Minimum distance between any pair of data objects in a cluster.

µ : Minimum number of fuzzy data objects in a cluster.

c: Number of cores.

D[i]: ith subdataset.

Output:

CS: Set of clusters of fuzzy data objects.

NS: Set of noisy fuzzy data objects.

M-FDBSCAN(D , , c)

BEGIN

1 Split_Dataset(c) ;

/* Beginning of the parallel section */

2 For i : 1 to c Do

3 FDBSCAN(D[i] , ,) ;

4 End For ;

/* End of the parallel section */

// k : index of core starting from 1

5 mergedDatasets ← D[1]

6 for j = 1 to log2c do

 /* Beginning of the parallel section */

7 for k = 1 to c do

8 if (k mod 2j) = 0, then

9 Merge_Datasets(D[k], D[k-2j-1],ε,μ)

10 end if

11 end for

/* End of the parallel section */

12 end for

13 mergedDatasets ← D[c]

END;

ε

ε

, μ

μ

147

ERDEM and GÜNDEM/Turk J Elec Eng & Comp Sci

Split_Dataset(c)

BEGIN

/* Split_Dataset is an implementation of a binary search like splitting algorithm */

1 Subdataset_Size : = Size(D)/c ; /* Approximate size of each dataset */

2 m[1]: = min_y ; /* min_y is the minimum y value in the original dataset D */

3 for i in 2..c loop

4 min_temp : = m[i-1] ;

 /* max_y is the maximum y value in the original dataset D */

5 max_temp : = max_y ;

6 Temp_Size : = 0 ;

7 While (Temp_Size < (Subdataset_Size – delta) or Temp_Size > (Subdataset_Size + delta))

and (min_temp ≤ max_temp) loop

 /* delta is an approximation parameter for decreasing the number of search steps */

8 mid : = min_temp + (max_temp – min_temp) / 2;

9 y1 : = m[i – 1] ;

10 y2 : = mid ;

11 Temp_Size : = Number of fuzzy data objects in the region that is between y1 and

y2 lines

12 if Temp_Size < Subdataset_Size, then

13 min_temp : = mid + 1 ;

14 else

15 max_temp : = mid - 1;

16 end if ;

17 end loop ;

18 D[i-1] ← #e region between y 1 and y2 lines

19 m[i]: = mid ;

20 end loop;

21 y1 : = mid ;

22 y2 : = max_y ;

23 D[c] ← #e region between y 1 and y2 lines

END;

In Figure 2, the original dataset D is split into 2 subdatasets, D1 and D2, by a splitting line.

0 50 100 150 200 250 300 350

D

D1

D2

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
** **

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Figure 2. Splitting line and the D1 and D2 subdatasets.

148

ERDEM and GÜNDEM/Turk J Elec Eng & Comp Sci

Merge_DataSets(D1, D2, ε, μ)

/* Merges 2 datasets by means of cluster regions and noisy fuzzy data objects. C(f1) is the label of the cluster

region of fuzzy data object f1 in D1, C(f2) is the label of the cluster region of fuzzy data object f2 in D2. If

C(fx) is a null value, then this means that fx is a noisy data object. */

BEGIN

1 Select fuzzy data objects into R1 from D1 where y ≥ max(y) –

2 Select fuzzy data objects into R2 from D2 where y ≤ min(y) +

3 For each nonvisited fuzzy data object f1 in R1 Do

4 For each nonvisited fuzzy data object f2 in R2 Do

5 If fuzzy_distance(f1,f2) ≤ then

6 If C(f1) is not null and C(f2) is not null then

7 Change the cluster label of all fuzzy data objects of which the

cluster label is C(f1) in D1 as C(f2)

8 Else if C(f1) is null and C(f2) is not null then

9 Set the cluster label of f1 as C(f2)

10 Set also the cluster label of all noisy fuzzy data objects that are

density-reachable from f1 as C(f2).

11 Else if C(f1) is not null and C(f2) is null then

12 Set the cluster label of f2 as C(f1)

13 Set also the cluster label of all noisy fuzzy data

 objects that are density-reachable from f2 as C(f1)

14 Else if C(f1) is null and C(f2) is null then

15 If (∑(density reachable data objects from f1) + 1 + ∑(density

reachable data objects from f2) + 1) ≥ µ then

16 Create a new cluster label Cnew and set the cluster

label of f1, f2, all fuzzy data objects that are reachable

from f1, and all fuzzy data objects that are reachable

from f2 as Cnew

17 End If;

18 End If;

19 End If;

20 End For;

21 End For;

END;

In Figure 3, all of the possible merging situations are shown. In Figure 3a, the fuzzy data objects between

the splitting line and the lines that are ε-far from the splitting line are assigned to a certain temporary cluster.

In Figures 3b and 3c, the fuzzy data objects on one side of the splitting line are assigned to a certain temporary

cluster, while on the other side, all of them are noisy. In Figure 3d, all of the fuzzy data objects between the

splitting line and the lines that are ε-far from the splitting line are noisy, which means that they cannot be

assigned to any cluster.

4. Experimental study

In our experiments, we use synthetic datasets of sizes 1000, 5000, 10,000, 25,000, and 50,000. These datasets

include 2-dimensional fuzzy data objects. Each fuzzy data object is represented by 7 sample data objects. The

sample data objects for each fuzzy data object are produced by choosing a core data object in 2-dimensional

space and selecting 7 data objects in 1 neighborhood of this core data object. Each data object is generated

in the range of 0 to 10,000. The tests are done on an Intel Xeon X5650 2.67 GHz 24 Core CPU and 72 GB

149

ERDEM and GÜNDEM/Turk J Elec Eng & Comp Sci

RAM server. The operating system of the computer is a 64-bit Linux Centos 5.5. The performances of the

FDBSCAN and M-FDBSCAN algorithms are tested with predefined ε and µ values of 120 and 7, respectively.

C (f1) D1

C (f2) D2

f1

f2

ε

ε
C (f2)

D1

D 2ε

ε

f1

f2

a) b)

C (f1) D1

D2ε

ε

f 2

f1

D1

D2

ε

ε

f2

f1

c) d)

Figure 3. a) f1 and f2 belong to the C(f1) and C(f2) clusters. b) f1 is noisy and f2 belongs to the C(f2) cluster. c) f1

belongs to the C(f1) cluster and f2 is noisy. d) f1 and f2 are noisy.

The results of the tests show that by splitting the original dataset and assigning each subdataset to a

certain core, the M-FDBSCAN algorithm completes the overall clustering processes, approximately, and the

splitting and core times are faster than that of the FDBSCAN algorithm. Even for a single core, by only

splitting the dataset, the execution time performance increases linearly. During our tests, we split the original

dataset into 2, 4, 8, 16, and 24 subdatasets.

In the Table, the detailed observation results are listed.

As seen in the Table, the total execution time decreases, while the splitting number increases. Determining

the optimum number of splitting and running M-FDBSCAN only once according to this optimum value is the

subject of our future research.

150

ERDEM and GÜNDEM/Turk J Elec Eng & Comp Sci

Table. Observation results.

Cores Splits
Dataset

M-FDBSCAN

FDBSCAN (s)
Merge (s)

With a split Without a split
size algorithm (s) algorithm (s)

1 2 1000 0.000125 0.70327 0.703717 1.380909
1 2 5000 0.002682 10.856971 10.859653 20.127721
1 2 10,000 0.01233 38.825364 38.831015 78.16387
1 2 25,000 0.071175 235.816623 235.828666 474.169815
1 2 50,000 0.258704 938.837119 938.87024 1884.31
1 4 1000 0.000699 0.370862 0.371315 1.380909
1 4 5000 0.008624 6.079342 6.081973 20.127721
1 4 10,000 0.036881 19.241537 19.245336 78.16387
1 4 25,000 0.21746 119.039382 119.055095 474.169815
1 4 50,000 0.774352 470.46193 470.495162 1884.31
1 8 1000 0.001681 0.184651 0.185121 1.380909
1 8 5000 0.020122 3.478109 3.480742 20.127721
1 8 10,000 0.07075 11.067125 11.072784 78.16387
1 8 25,000 0.459046 59.873915 59.889656 474.169815
1 8 50,000 1.869456 239.86957 239.902948 1884.31
1 16 1000 0.004037 0.098348 0.09879 1.380909
1 16 5000 0.063088 2.202966 2.205592 20.127721
1 16 10,000 0.167074 6.173402 6.17902 78.16387
1 16 25,000 1.007704 31.07222 31.082821 474.169815
1 16 50,000 4.032029 124.082786 124.115831 1884.31
1 24 1000 0.005828 0.069812 0.070264 1.380909
1 24 5000 0.1243 1.633174 1.635821 20.127721
1 24 10,000 0.254816 4.285194 4.290068 78.16387
1 24 25,000 1.583718 22.502006 22.517911 474.169815
1 24 50,000 6.228687 87.01267 87.046208 1884.31
2 2 1000 0.000133 0.376023 0.376483 1.380909
2 2 5000 0.0029 6.146009 6.148674 20.127721
2 2 10,000 0.013296 20.165065 20.170722 78.16387
2 2 25,000 0.066694 127.959727 127.970343 474.169815
2 2 50,000 0.098917 305.322412 305.342816 1884.31
4 4 1000 0.000304 0.095415 0.095877 1.380909
4 4 5000 0.004766 2.132391 2.135046 20.127721
4 4 10,000 0.014265 5.89921 5.904839 78.16387
4 4 25,000 0.084978 30.932535 30.946148 474.169815
4 4 50,000 0.263683 121.593786 121.62266 1884.31
8 8 1000 0.00039 0.024685 0.025138 1.380909
8 8 5000 0.005349 0.582897 0.585523 20.127721
8 8 10,000 0.016793 2.127637 2.133287 78.16387
8 8 25,000 0.077743 8.781387 8.797253 474.169815
8 8 50,000 0.299754 32.13779 32.162884 1884.31
16 16 1000 0.0007 0.014105 0.01457 1.380909
16 16 5000 0.01003 0.260199 0.262835 20.127721
16 16 10,000 0.03966 1.090425 1.096262 78.16387
16 16 25,000 0.149994 4.128454 4.144334 474.169815
16 16 50,000 0.577006 14.324988 14.358222 1884.31
24 24 1000 0.028725 0.065827 0.066277 1.380909

151

ERDEM and GÜNDEM/Turk J Elec Eng & Comp Sci

Table. Continued.

Cores Splits
Dataset

M-FDBSCAN

FDBSCAN (s)
Merge (s)

With a split Without a split
size algorithm (s) algorithm (s)

24 24 5000 0.025327 0.257525 0.260255 20.127721
24 24 10,000 0.074669 0.665056 0.670703 78.16387
24 24 25,000 0.17598 2.801175 2.816897 474.169815
24 24 50,000 0.715664 8.650306 8.675448 1884.31
24 24 1000 0.028725 0.065827 0.066277 1.380909
24 24 5000 0.025327 0.257525 0.260255 20.127721
24 24 10,000 0.074669 0.665056 0.670703 78.16387
24 24 25,000 0.17598 2.801175 2.816897 474.169815
24 24 50,000 0.715664 8.650306 8.675448 1884.31

FDBSCAN Score M- FDBSCAN2 Mcore M- FDBSCAN

cores

Time

1800.00

1600.00

1400.00

2000.00

1200.00

1000.00

800.00

600.00

400.00

200.00

0.00
2 4 8 16 32

Dataset size: 50,000a)

FDBSCAN Score M-FDBSCAN2

fdos

Time

1.8

1.6

1.4

2

1.2

1

0.8

0.6

0.4

0.2

0

1000

b)

5000 10,000 25,000 50,000

Merge time for 8 splits

Figure 4. a) For 50,000 fdo records, the execution times of FDBSCAN, M-FDBSCAN for single-core, and M-FDBSCAN

for multicore systems. b) For 8 splits, the merging times needed for M-FDBSCAN for single-core and M-FDBSCAN for

multicore systems.

152

ERDEM and GÜNDEM/Turk J Elec Eng & Comp Sci

We tested 2 splitting methods:

• Splitting with an algorithm.

• Splitting without an algorithm.

We recorded a negligible amount of performance improvement when the splitting was done with an

algorithm.

In Figure 4a, the single-core and multicore executions of M-FDBSCAN are compared with those of

FDBSCAN, which uses only a single core by the nature of the algorithm. In Figure 4b, the merging times of

the M-FDBSCAN algorithm run on single-core and multicore systems are given. In Figure 4a, the single-core

line represents the performance of sequential merging, while the multicore line represents the performance of

parallel merging.

Comments on the observation results:

1. During the M-FDBSCAN performance tests, we observed that performance improvements could be

achieved linearly by increasing the number of cores and splits.

2. In the case of single-core usage, by just splitting the dataset, we can say that M-FDBSCAN is splitting a

number of times faster than FDBSCAN. Our splitting approach converges the single-core performance to

a multicore performance.

3. While the number of splits increases, the merge operations become critical for the execution time. With

the help of our parallel merge algorithm, the execution time of the merge operations is considerably

reduced.

4. With over 10,000 fuzzy data objects, the total clustering time increases dramatically. We observe that

the performance gap between M-FDBSCAN and FDBSCAN increases quickly when the dataset size goes

over 10,000 fuzzy data objects. Thus, for huge amounts of data, the use of M-FDBSCAN becomes more

meaningful.

5. Future work

We have observed that, while the size of the dataset increases, splitting becomes critical. Thus, more intelligent

splitting algorithms are needed that learn the characteristics of the data distribution and suggest the best

splitting coordinates. Another critical point is determining the optimum splitting number. Learning the data

distribution characteristics of a dataset before the clustering process is also very important to determine the

optimum splitting number. Thus, for huge datasets, these 2 issues must be examined further in a future research.

6. Conclusion

Because of fuzziness, the sizes of the datasets that store uncertain data are very huge. Thus, such datasets

should be processed by multicore systems. In this work, we aimed to improve the performance of FDBSCAN,

which is an uncertain data clustering algorithm, by customizing it for multicore system architecture. We named

this new algorithm M-FDBSCAN. The main idea behind the M-FDBSCAN algorithm is to split the dataset

into a certain number of subdatasets and assign these subdatasets to the cores. At each core, the FDBSCAN

algorithm is run concurrently. After that, the subclusters provided by each core are merged by satisfying the

predefined constraints, such as the minimum number of fuzzy objects in a cluster and the maximum distance

153

ERDEM and GÜNDEM/Turk J Elec Eng & Comp Sci

between 2 fuzzy objects in a cluster. As a result, even though M-FDBSCAN is a multicore clustering algorithm,

it also proposes a dramatic performance improvement for single-core systems.

References

[1] K. Lin, L. Shih, Y. Cheng, S. Lee, “Fuzzy product line design model while considering preference uncertainty: a

case study of notebook computer industry in Taiwan”, Expert Systems with Applications, Vol. 38, pp. 1789–1797,

2011.

[2] V. Lakshmana, G. Nayagam, S. Muralikrishnan, G. Sivaraman, “Multi-criteria decision-making method based on

interval-valued intuitionistic fuzzy sets”, Expert Systems with Applications, Vol. 38, pp. 1464–1467, 2011.

[3] H.P. Kriegel, M. Pfeifle, “Density-based clustering of uncertain data”, Proceedings of the 11th ACM SIGKDD

International Conference on Knowledge Discovery in Data Mining, 2005.

[4] H.P. Kriegel, M. Pfeifle, “Hierarchical density based clustering of uncertain data”, Proceedings of the 5th IEEE

International Conference on Data Mining, 2005.

[5] S.N. Rao, E.V. Prasad, N.B. Venkateswarlu, “A critical performance study of memory mapping on multi core

processors: an experiment with k-means algorithm with large data mining data sets”, International Journal of

Computer Applications, Vol. 1, 2010.

[6] W. Ngai, B. Kao, C. Chui, R. Cheng, M. Chau, K.Y. Yip, “Efficient clustering of uncertain data”, Proceedings of

the 6th IEEE International Conference on Data Mining, 2006.

[7] S.P. Chatzis, “A fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes

employing a probabilistic dissimilarity functional”, Expert Systems with Applications, Vol. 38, pp. 8684–8689, 2011.

[8] H. Izakian, A. Abraham, “Fuzzy C-means and fuzzy swarm for fuzzy clustering problem”, Expert Systems with

Applications, Vol. 38, pp. 1835–1838, 2011.

[9] D. Li, H. Gu, L. Zhang, “A fuzzy c -means clustering algorithm based on nearest-neighbor intervals for incomplete

data”, Expert Systems with Applications, Vol. 37, pp. 6942–6947, 2010.

154

http://dx.doi.org/10.1016/j.eswa.2010.07.106
http://dx.doi.org/10.1016/j.eswa.2010.07.106
http://dx.doi.org/10.1016/j.eswa.2010.07.106
http://dx.doi.org/10.1016/j.eswa.2010.07.055
http://dx.doi.org/10.1016/j.eswa.2010.07.055
http://dx.doi.org/10.5120/211-358
http://dx.doi.org/10.5120/211-358
http://dx.doi.org/10.5120/211-358
http://dx.doi.org/10.1016/j.eswa.2011.01.074
http://dx.doi.org/10.1016/j.eswa.2011.01.074
http://dx.doi.org/10.1016/j.eswa.2010.07.112
http://dx.doi.org/10.1016/j.eswa.2010.07.112
http://dx.doi.org/10.1016/j.eswa.2010.03.028
http://dx.doi.org/10.1016/j.eswa.2010.03.028

	Introduction
	Related work
	Proposed algorithm
	M-FDBSCAN
	Splitting the dataset into subdatasets
	Applying FDBSCAN to each split subdataset concurrently
	Merging subdataset pairs to get the final cluster regions

	Algorithm for M-FDBSCAN

	Experimental study
	Future work
	Conclusion

