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Abstract:Traditional authentication and key establishment protocols utilize nonce parameters as a means for message

freshness, recent aliveness, and key derivation. Improving identity verification, increasing key space, or making secret

updates more complex through nonces are not goals. Generating random numbers as nonces and not making the most

out of them can be considered as a loss in resource stricken radio frequency identification (RFID) tags. By increasing

the shared secrets slightly, a new functionality for the nonces is introduced, which makes the authentication and key

establishment protocols of RFID systems more secure, in general. The proposed method contributes to the security of

communication channels by increasing the key space. Attaining better security, with just a slight increase in the shared

secrets and the already generated nonces, is beneficial compared to the existing costly, resource-demanding security

primitives.
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1. Introduction

One of today’s popular trends is using ubiquitous computing to put multiple, diverse computational devices

and systems into communication simultaneously. Radio frequency identification (RFID) is becoming one of the

core technologies of ubiquitous systems as they are getting integrated into everyday objects. In addition to the

identification property of traditional barcodes, RFID systems provide authentication. Basically, RFID systems

consist of a database server, a reader, and a tag. The tag is the weakest point as the least resourceful component

residing out in the field.

This attracts adversaries, who usually exploit the weakest point to penetrate the systems. The same

powerful attacks that target computers are launched at the tags, as well. Therefore, the tags have to be equally

provisioned to resist attacks, just like computers. To prevent attacks, many security protocols [1,2] have been

devised. The protocols attempt to create a secure communication channel through an insecure environment by

encrypting the messages. For encryption, a key known by the principals only is needed.

Key establishment (derivation of a common key by the principals) and authentication are the building

blocks of creating secure communication channels. Authentication is simply verifying that the opposite peer

(principal) is really the one that it claims to be [3,4]. RFID authentication is usually coupled with key

establishment and shared secret updating. The established key is used to encrypt the rest of the exchanges.

However, in recent years, intruders have stepped up their clandestine activities of capturing keys [5]. Meanwhile,

the providers are trying to improve security against known [3] and newly formulated attacks [6]. To prevent

attacks on keys, hence exposing the exchanged information, pseudorandom numbers called nonces are generated
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[3,4]. The generation of pseudorandom numbers is not free of cost; it requires energy and hardware and it

consumes die area. Therefore, not using them to further reinforce authentication security can be a loss.

The lifetime and strength of today’s security algorithms depend mostly on the key length. Another

technique for prolonging the protocol lifetime is the increase of the key space by running the algorithm multiple

times as in 3DES, or by devising a new algorithm with a longer key length, as in the advanced encryption

standard (AES). Our proposed scheme however, increases the key space and provides varying keys in every

run by increasing nonce functionality through an increase in shared secrets. This contribution has a better

cost-performance ratio than a new protocol with a longer key length or running an algorithm many times.

In the rest of this paper, the general form and components of mutual authentication and key establishment

in RFID is described in Section 2. In Section 3, our proposed method is described and demonstrated in 3 cases.

Section 4 has an overall performance evaluation and security analysis of the cases, after the application of our

proposed method. In Section 5, we conclude.

2. Authentication protocols using symmetric keys

The general form of a mutual authentication and key establishment process is shown in Figure 1. The initiator

‘A’ starts the exchange by sending its first set of parameters to challenge responder ‘B’ and negotiates the

algorithms that will be used (if not predecided). In the second step, B answers by sending its own parameters

and calculated authenticator. Hence, B tries to prove to A that it is alive, is really B, and agrees on the

algorithms that will be used. In the third step, A verifies its own identity and presence. At the end, A and

B are mutually authenticated. Usually, there is no fourth step, but some protocols have one to synchronize
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Figure 1. Authentication and key establishment in general.

156
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updating. As can be observed, after the initial exchanges, the principals perform calculations to verify that

the opposite has the preshared secrets and to reach a common key. If the same key is used by both sides, the

protocol is said to be symmetric, leading to the terms ‘symmetric key’ and ‘symmetric encryption’. Symmetric

key encryption is widely used in RFID technology.

The principals have one or many preshared secrets and a function for encrypting or hashing the authen-

ticators [4]. Preshared secrets can be fixed or variable size, lasered into the integrated circuit [7], which never

leave the execution core, or biometric values that specifically belong to a person [8]. All of these features are an

effort to ensure the confidentiality of the information passed. Unfortunately, apart from decryption, tampering,

and side channel attacks, analysis of electromagnetic radiation and power traces are also used for exposing the

encryption key. The adversaries try to exploit any weakness to capture the exchanged information [9].

Many weaknesses have been demonstrated in protocols like short key length, an inadequate number of

inputs, limited complexity, and flawed equations. Weaknesses appear because sometimes the protocols are not

fully analyzed prior to their release. Nowadays, efforts are focused on discovering hidden weaknesses. An

example was given in [10], which used the same key throughout the lifetime of the device with no strategy of

changing it. This property encourages brute force attacks [3]. Improvements are offered, but sometimes they

cost energy, memory space, and computations that overwhelm RFID tags [10]. Our effort, however, increases

keys at the cost of little extra memory.

3. Increasing the key space

Nonces are generated for proving message freshness, recent aliveness, and key derivation, and as the input to

the hash or encryption of information (Figure 1). In key derivation, the participation of both principals’ nonces

is advised [3,4]. Our proposed scheme, shown in Figure 2, obeys this recommendation. The least significant

bits (LSBs) of the nonces and the XORed nonces are used to obtain a pointer (p(Na), p(Nb), p(Na⊕ Nb))

to one of the preshared secrets. Randomly pointed secrets are used as inputs or keys to encryption/hashing
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Figure 2. Proposed authentication primitives.
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functions, making authentication unpredictable to outsiders. In summary, our proposal increases key space by

increasing shared secrets. Our proposal can be applied to most symmetric key RFID authentication protocols.

Three different protocols have been chosen to demonstrate the application of our proposal. First, a protocol

using a constant key is studied. The second is a 2-step protocol that uses no nonces but only encryption. The

third is a recently attacked protocol.

3.1. Case 1: a protocol using nonces and a hash function

The work in [11] is a recent RFID authentication protocol utilizing a hash function, given in Figure 3. The

protocol is intended for ultra-light, low-cost tags, but the work in [12] put it in the light category due to the

hash function and the nonce generator. The nonces are represented as N1 and N2 . The most important

property is the use of the same secret key k and its hash value in all of the tags, which is attacked by the

work in [13]. Tracking, impersonation, and denial of service (DoS) attacks are demonstrated, based on a h(k)

value compromised by tampering with any tag. However, we demonstrate another attack below, where h(k) is

compromised without the need for physical tampering. The protocol is then made resistant to the described

attacks using our proposal.

A: Reader

[k,h(k),xi,yi,yi
old]

Generates N1

Calculates:

xi =M1 ⊕  h(h(k) ⊕  N2), yi = fk(xi)

Verifies M2, calculates :

xi* = h(xi ⊕  yi ⊕  N1 ⊕  N2), yi* = fk(xi*)

M3 = yi* ⊕  h(xi* ⊕  yi), M4 = h(xi* ⊕  yi*)

yi
old yi , yi yi*

B : Tag

Generates N2 , calculates: M1 = xi ⊕  h(h(k) ⊕  N2)

M2 = h(yi ⊕  N1 ⊕  N2)

Calculates : xi* = h(xi ⊕  yi ⊕  N1 ⊕  N2),

yi* = M3 ⊕  h(xi* ⊕  yi)

Verifies M4, calculates: xi       xi*, yi             yi*

Step 1: N1

Step 2: N2,M1,M2

Step 3: M3,M4

[h(k),xi,yi]

Notation
N1 ,N2 : Nonce of reader, nonce of tag

xi,yi : Shared secret variables
k : Secret key
h(k) : Hash of secret key k

yi
old

: Old value of yi

Figure 3. Protocol with the same secret key k for all tags [11].

The attack is launched by sending nonce N1 to the tag, waiting for the tag’s response, and then blocking

the reader’s messages, M3 and M4 . This can be repeated unlimited times because the tag answers every

challenge. Many nonces and related Mx
1 , M

y
2 pairs are recorded, where x and y denote the repetition number.

XORing 2 repeated M1 messages gives Mx
1⊕ My

1 = h(h(k) ⊕ Nx
2)⊕ h(h(k) ⊕ Ny

2). Simply denoting h(k) as a

constant z, since it is so, we have numerous Q = h(z ⊕ Nx
2)⊕ h(z ⊕ Ny

2)-type equations. The Q, Nx
2 , and Ny

2

values are known and z is the only unknown. It is only a brute force attack to find a value for z that satisfies

the equations, which becomes trivial for Nx
2
∼= Ny

2 or Nx
2
∼= NOT(Ny

2) pairs, as Q tends to be zero or all ones

in these cases.

The same argument is true for message M2 , where y i can be similarly deduced. Having exposed h(k), x i

can be calculated from M1 . We will stop short of claiming the capture of secret k, assuming that the one-way

function in y i = fk (x i) is truly resistant to brute force attacks. Otherwise, a full disclosure attack is possible.
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3.1.1. The proposed changes

The application of our proposed method for the same protocol is shown in Figure 4. There are 2 new security

primitives. First is the manufacturer’s lasered, unique ID (or S/N) that resists tampering and never leaves the

execution core. Second is a systematic scheme of creating pointers from nonces and randomly selecting one of

the available secrets. The LSBs of both nonces N1 and N2 are used to form pointers (Eqs. (1), (2), and (3) of

Figure 2) that help to choose 3 secrets from the sets {p0 , p1 , ..., pn } , {R0 , R1 , ..., Rn } , and {Q0 , Q1 , ...,

Qn } , and a key from {k0 , k1 , ..., kn } . The number of LSBs used depends on n, e.g., for 8 secrets, 3 LSBs

are used. Both nonces are used to choose px , kN1 ⊕N2 , and RN1 ⊕ N2 to prevent an adversary from sending

the same nonce and forcing the use of the same keys or secrets. The unique ID of the tag is rotated left by an

amount of (px ⊕ N2) mod 16, since the word length (L) of an EPCglobal class-1 generation-2 standard tag is

16 bits. The obtained values PN1 , N2 , and kN1⊕N2 improve M1 and M2 . Similar techniques are used in the

update of the parameters x i , M3 , and M4 .

Genera tes N1

A: Reader B : Tag

N1

N2,M1,M2

Genera tes N2 , ca lcula tes :

M1 = xi ⊕  h(h(kN1 ⊕ N2) ⊕  P N1,N2),

M2 = h(yi ⊕  QN1 ⊕  QN2 ⊕  P N1,N2)

Calcu la tes : xi = M1 ⊕  h(h(k N1 ⊕  N2) ⊕  P N1,N2), yi = fk(xi)

Verifies M2, then ca lcula tes : xi* = h(xi ⊕  yi ⊕  RN1 ⊕  N2), yi* = fk(xi*)

M3 = yi*⊕  h(xi*⊕  yi ⊕  RN1 ⊕  N2), M4 = h(xi*⊕  yi*) ⊕  h(P N1,N2 ⊕  RN1 ⊕  N2),

yi
old

yi , yi yi*
M3,M4

Calcula tes : xi* = h(xi ⊕  yi ⊕  RN1 ⊕  N2),

yi* = M3 ⊕  h(xi*⊕  yi ⊕  RN1 ⊕  N2)

Verifies M4, ca lcula tes : xi xi*, yi yi*

N1 ⊕  N2

k0

..

kN1 ⊕  N2

..

k n

N1 ⊕  N2 N1 ⊕  N2 N1

N2
p0

..

px

..

pn

Q0

QN1

QN2

..

Qn

R0

..

RN1 ⊕ N2

..

R n

P N1,N2 = RotL(ID,px ⊕  N2)

Figure 4. Proposed protocol in case 1.

Deducing h(k), x i , or y i from M1 , M2 , M3 , and M4 is no longer possible. Neither the attacks described

in [13] nor our above attack succeeds because of the presence of the terms PN1 , N2 , QN1 , QN2 , RN1⊕N2 ,

and kN1⊕N2 .

3.2. Case 2: a protocol using no nonces, but only encryption

Feldhofer’s work in [14,15] has shown that AES is going to be feasible in RFID tags in the future. A protocol

using only AES-encrypted parameters was proposed in [10]. The protocol shown in Figure 5a uses 2 preshared

secrets k1 and k2 , a constant cryptographic secret key k, and a unique IDk . No nonces are used and a collision

detection protocol is assumed to singularize tag T out of many.
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Decrypt Ek(k1+k2+IDk) and obta in IDk.

If IDk == IDk, upda te k1, k2:

k1 k1 ⊕ Ek(k2 ⊕ k1)

k2 k2 ⊕ Ek(k2 ⊕ k1)

Verify Ek(k1, k2) == E*k(k1, k2), abort if not;

Encrypt Ek(k1+k2+IDk) and send to Reader

Ek(k1 ⊕ k2)

Ek(k1 ⊕ k2 ⊕ IDk)

Reader Tag

Update k1, k2:

k1 k1 ⊕ Ek(k2 ⊕ k1)

k2 k2 ⊕ Ek(k2 ⊕ k1)

 
(a)

  

Verify EQ(k1 ⊕ k2 ⊕ ID'),

k1 ES(k1 ⊕ N2 ⊕ IDk)

k2 ES(k2 ⊕ N1 ⊕ IDk)

ID' = ROTL(IDk,P ⊕ Q)

Verify ER(k1 ⊕ k2 ⊕ ID'),

k1 ES(k1 ⊕ N2 ⊕ IDk)

k2 ES(k2 ⊕ N1 ⊕ IDk)

P 0

..

P

..

P N

N1, EP(k1 ⊕ k2)

N2, EQ(k1 ⊕ k2 ⊕ ID')

ER(k1 ⊕ k2 ⊕ ID')

Reader Tag

N1 N2 N1 ⊕  N2 S 0

..

S

..

S N

R0

..

R

..

RN

Q0

..

Q

..

QN

N1 ⊕  N2 ⊕  R

(b)

Figure 5. a) Flawed protocol of the work in [10] in case 2, b) Our proposed alternative in case 2.

First, the update flaw in [10] is shown, where the shared secret k1 is updated as k1 = k1⊕ Ek (k2⊕
k1). Actually, Ek (k2⊕ k1) equals Ek (k1⊕ k2) of the first message. Naming it as X, (new)k1 = k1⊕ X and

(new)k2 = k2⊕ X. With the new k1 and k2 values in the next round, the first message Ek (k1⊕ k2) becomes

Ek (k1⊕ X ⊕ k2⊕ X). This updated message reduces to the same original value Ek (k1⊕ k2).

In addition, a ‘nonceless’ protocol is vulnerable to known attacks like DoS, man-in-the-middle, and

exhaustion attacks. The works in [16,17] attacked the work in [10] and offered alternative protocols with

improvements. The authors in [17] claimed that the work in [10] has traceability and that the work in [16]

points out the danger of using a constant key, at all times, as in [10]. Both corrective works consist of 4 steps

and use nonces with other security primitives. The work in [17] improved the protocol, but it also used a

constant key. If the boundaries and padding of the concatenated secrets are not properly designed as described

in [18], the protocol suffers a traceability flaw, because the encrypted Kpub (ID) of [17] is detectable. The work

in [16] offered better security with a scheme for changing the encryption key but lacked forward secrecy, as all

of the keys were sequentially dependent on the previous. Both protocols have the same weakness of using a

constant to XOR the first nonce sent to the tag. The work in [17] made 2 pseudorandom number generator

(PRNG), 7 AES, and 1 XOR operations. The work in [16] made 1 PRNG and 6 AES but 4 XOR operations.

Our method is applied to the work in [10] below and it is demonstrated that known weaknesses are removed

with little overhead.

3.2.1. The proposed changes

The insertion of multiple secrets with 2 nonces into the work in [10] is shown in Figure 5b. The principals have

4 sets of preshared secret keys. A pointer is generated using N1 , as in Figure 2, to choose a key P (Figure
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5b). A variable key, instead of the previous constant key k, is used in EP (k1⊕ k2). Even with a repeated N1 ,

EP (k1⊕ k2) produces a completely different result due to the strong avalanche effect of AES, on different k1

and k2 or p. With N1⊕ N2 , other keys Q, R, and S are chosen. In our proposal, the IDk of the tag is obscured

by ROTL(IDk ,P ⊕ Q), where IDk is rotated left by an amount of (P ⊕ Q) mod 16. Next, it is encrypted and

sent in EQ (k1 ⊕ k2⊕ ID’). After authenticating the tag, the reader updates k1 and k2 first. A third step is

necessary to inform the tag of the update and avoid desynchronization. Therefore, ER (k1 ⊕ k2⊕ ID’) is used.

The encryption key S is obtained using N1⊕ N2⊕ R. The updates go through AES operations ES (k1⊕ N2⊕
IDk) and ES (k2⊕ N1⊕ IDk), ensuring new values. Our protocol takes 3 steps, 1 PRNG, 5 AES operations,

1 rotation, and 10 XOR operations, i.e. less computation than in [16,17].

3.3. Case 3: a protocol attacked recently

The third example is a protocol that claims to offer strong security at a low cost [19], using a hash function as

the only cryptographic primitive. Both the protocol and the presented security analysis were formally analyzed

in [20], using just a hash function with standard techniques yet claiming that strong security is refuted with

detailed demonstrations of replay, traceability, and desynchronization attacks. The contribution of our proposed

method would be clearly proven if it removes the vulnerabilities of the protocol and makes it resistant to the

attacks described in [20].

The proposed modifications are shown in Figure 6, as 3 sets of secrets and pointers to the secrets.

Using the XOR of both nonces nr and nt, 3 secrets are pointed at. One of these secrets is used to add an

authenticator h(ID, Pnr⊕nt) in the second step. Pnr⊕nt is obtained by rotating secret pnr⊕nt by an amount

of (ID ⊕ nt) mod 16. The reader finds the tag in the database using h(ID). Using the nonces, the reader also

obtains Pnr⊕nt and verifies the authenticator h(ID, Pnr⊕nt). Next, the reader updates its secrets and passes

2 messages, h(Qnr⊕nt) and h(ID’, Snr⊕nt), to the tag. The tag verifies the reader through h(Qnr⊕nt) and is

now informed by h(ID’, Snr⊕nt) that the reader’s update has finished. Finally, the tag updates to ID = h(ID’,

Snr⊕nt) as well.

Verify h(Qnr ⊕  nt), Verify h(ID, Snr ⊕  nt),

ID = h(ID ,Snr ⊕  nt), update h(ID), set S = 0

Reader Tag

Obtain Pnr ⊕  nt,h(ID,Pnr ⊕  nt)

Find ID corresponding to h(ID)

Obtain Pnr ⊕  nt, Verify h(ID,Pnr ⊕  nt)

ID' = ID, ID = h(ID'

'

,Snr ⊕  nt), update h(ID)

Obtain h(Qnr ⊕  nt),h(ID', Snr ⊕  nt)

nr

nt,h(ID),h(ID,Pnr ⊕  nt)

h(Qnr ⊕  nt),h(ID',Snr ⊕  nt)

Pnr ⊕  nt = RotL(pnr ⊕  nt, ID⊕  nt)

ID, ID', h(ID) ID, S

p0

pnr ⊕  nt

pn

q0

qnr ⊕  nt

qn

nr ⊕  nt

Qnr ⊕  nt = RotL(qnr ⊕  nt,ID ⊕  nr ⊕  nt) Snr ⊕  nt = RotL(snt,ID ⊕  nr)

s0

snr ⊕  nt

sn

nr ⊕  nt nr ⊕  nt

Figure 6. Proposed modified protocol in case 3.

The first attack launched in [20] was possible because the challenge and response of [19] were not related.

Thus, an active attacker sends a nonce to the tag and gets a response that can be replayed later. In our improved
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version, however, the response depends on the challenge through the Pnr⊕nt term of the authenticator h(ID,

Pnr⊕nt), which depends on both nonces. Moreover, the reader can verify if the nonce nt has changed on the

way. Therefore, the modification of nt always results in a rejection of the tag’s response by the reader. Since

there is no S defined in the final step of our protocol, the learning and challenge phases of the traceability attack

described in [20] cannot be launched.

The desynchronization attack in [20], based on the modification of nr, cannot go by unnoticed in our

protocol. Any modification results in a mismatch with h(ID, Pnr ⊕ nt) at step 2. The S bit defined in [20] is

turned off at the end of the protocol, but still a mechanism is needed to test S in the next run. For preventing

desynchronization attacks, the steps and transitions of the exchanges must be monitored by both sides. To

achieve this goal, a tag with a rudimentary state machine is essential.

4. Performance evaluation and security analysis

The memory cost of our proposed method is shown in the Table, where the word length (L) is 16 bits. As an

example, assuming 4 sets of shared secrets and keys (shown as P, Q, R, and k previously), each with 4 members,

a total of 16 L or 32 bytes of memory is needed (line 2 of the Table). Two LSBs of the nonces are used. If each

secret is eligible to be used and rotated by L, a maximum of 44× 16 different keys are possible. If AES-128 is

going to be used, 8 keys must be merged. Using the table in [21], the average time required for an exhaustive

key search is 5.4 × 1018 years at 106 decryptions/µs for a key length of 128 bits. In general, the time required

after applying our proposal is (no. of keys) × 5.4 × 1018 years. Thus, our method is (44× 16 – 1) / 8 × 5.4

× 1018 years more resistant in case 2, which has a single key. On the other hand, the additional number of

operations for obtaining pointers from nonces is at most 6, e.g., XORing, ANDing, ORing, rotating, loading an

index pointer, and fetching a secret.

Table. Memory cost and performance.

No. of No. of set Total memory Memory cost in No. of No. of
LSBs (bits) members cost (L) (bytes) keys operations
1 2 8 16 16 × 24 6
2 4 16 32 16 × 44 6
3 8 32 64 16 × 84 6
4 16 64 128 16 × 164 6

Running the 3 original protocols studied through the authentication verification tool AVISPA [22] revealed

their weaknesses. However, the same tool shows no attacks for our modified protocols. The results can be reached

through the link in [23]. Those attacks that cannot be checked by the tools have been detailed below.

4.1. Prevention of replay and reflection attacks

The role of the nonces is to provide message freshness and recent aliveness to the challenges and responses of

an exchange [24], thus preventing replay and reflection attacks. Since nonces are added and not removed in our

proposal, the security in the 3 cases increases. Moreover, our scheme forces the principals to pick the correct

shared secret or key depending on the exchanged nonces; therefore, the security is further increased. Because

an authenticator is calculated with different terms in every run, an adversary cannot fool either principal by

simply replaying or reflecting a previously formed authenticator. This is a clear improvement in security.
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4.2. Prevention of DoS and desynchronization attacks

There is no way of preventing DoS attacks simply with nonces, since the tags are stateless. For example,

a tag will always reply to a challenge. Other complementary features like keeping counters or finite state

machines are needed for the tags. However, exhaustion attacks that force the principals to go into overwhelming

computations with repeated bogus challenges are resisted in our proposal, because a challenge is responded to

by an authenticator formed with correctly chosen preshared secrets. A false authenticator halts the exchange

and prevents exhaustive computations.

Desynchronization occurs when the tag and the reader are tricked into a state where they update their

preshared secrets into different values. The update occurs at the end of the protocol and has to be verified.

Omitting the verification of the update is the reason of the weakness. The reader should update first and inform

the tag by sending a message with the updated values, to guide the tag to also update. This will remove the

necessity of keeping old values on the tag. This is precisely the reason of the presence of a third step message

in our proposals, obtained from the updated values.

4.3. Prevention of man-in-the-middle attacks

This type of attack is very efficient if complemented by a tampering attack. An adversary who acquires all of

the shared secrets by physically tampering with the tag can intervene in the exchange and falsify a transaction

without cloning the tag. Therefore, we propose the use of a secret ID lasered into a tag, whose value is given to

the end user written on a paper by the manufacturer but never leaves the execution core. Rotating this unique

ID depending on the nonces makes it a variable in the authenticator. Thus, this type of attack is resisted.

4.4. Detection of integrity loss and key lifetime

Any authenticator–nonce mismatch is detected in our proposed method. Therefore, the integrity of the nonces

and the authenticators is guaranteed. Loss of exchange integrity is only possible if an attacker’s bogus nonces

perfectly match the chosen secrets, a far possibility.

The key’s life-time is an important property of the encryption and hashing functions of the authentication

process. Using the same key at all times in all devices is not desirable, as the compromise of the key means the

loss of all of the past communications. Therefore, short key lifetimes are desirable. This property is provided

in our proposal by the rotation and changing of the secrets and keys used in every run.

5. Conclusion

A new approach towards increasing the key space in RFID authentication and key establishment protocols

has been introduced. The approach reinforces protocols in general and does not cause vulnerabilities. The 3

examples have demonstrated that the new approach makes protocols more resistant to known attacks. Our

proposal is limited to deriving different keys and obtaining dynamic results. However, the idea can lead to other

security enhancements like changing the order of operations according to the nonces. Although our proposal

is straightforward and adds incremental security, it only costs a little extra memory space and 6 additional

operations. This can be considered a good price/performance tradeoff for resourceless tags. A slightly larger

memory and simple operations are less resourceful than the demanding security primitives of encryption and

hashing.
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