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Abstract: Memory accesses take a large part of the power consumption in the iterative decoding of double-binary

convolutional turbo code (DB-CTC). To deal with this, a low-memory intensive decoding architecture is proposed for

DB-CTC in this paper. The new scheme is based on an improved maximum a posteriori probability algorithm, where

instead of storing all of the state metrics, only a part of these state metrics is stored in the state metrics cache (SMC),

and the memory size of the SMC is thus reduced by 25%. Owing to a compare-select–recalculate processing (CSRP)

module in the proposed decoding architecture, the unstored state metrics are recalculated by simple operations, while

maintaining near optimal decoding performance.
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1. Introduction

In 1999, nonbinary convolutional turbo codes were introduced by Berrou and Jezequel [1], and they have been

demonstrated to give better performance than classical single-binary turbo codes [2]. Due to these advantages,

double-binary convolutional turbo code (DB-CTC) has been adopted by several radio standards as the channel

encoding scheme, such as the digital video broadcasting-return channel over satellite (DVB-RCS) [3], and

the worldwide interoperability for microwave access [4]. Recently, in order to improve the error correction

performance and the systematic throughput, DB-CTC was recommended by the IEEE 802.16m as the forward

error correction code [5,6].

The typical decoder, using an iterative decoding algorithm for turbo-like codes, consists of 2 soft-in and

soft-out (SISO) constituent decoders, where each one computes the extrinsic information using the outputs

of the other one. However, due to the memory-intensive decoding architecture, frequent memory accesses are

performed in the iteration procedures, and more than half of the entire power consumption is accounted for the

accessing operation [7]. To design a power-efficient decoder for turbo-like codes, researchers have worked out

different kinds of techniques to reduce the size of the state metrics cache (SMC). The authors in [8] reduced the

bit width of the state metrics based on the saturation of the state metrics, which led to a decoding scheme with

less storage for the SMC. Martina et al. compressed the decoder area by employing a nonuniform quantization

technique [9], and at the cost of a slight performance loss, this method achieves 20%–50% reduction of the
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state metrics memory area. As for the DB-CTC, Kim and Park studied the encoding of border metrics,

where the energy consumed by the constituent decoder was reduced by approximately 26% [10]. Lin et al.

introduced the traceback maximum a posteriori probability (MAP) decoding method to reduce the size of the

SMC [11]. Additionally, researchers have developed low complexity [12–15] decoding algorithms and memory-

reduced technologies [16,17] for DB-CTC. Although these schemes reduce power consumption effectively, the

adopted algorithms are suboptimal; hence, performance loss is unavoidable in their hardware implementation.

Inspired by the memory-reduced technique in [11] and [18], in this paper, we propose a low-memory

intensive decoding architecture to decrease the storage of the SMC. This research is based on our previous work

of an efficient decoding algorithm for DB-CTC [19]. In the proposed decoding scheme, 6 of the 8 forward (or

backward) state metrics are stored in the SMC at each time slot, while the 2 unstored state metrics can be

recalculated by a compare-select–recalculate processing (CSRP) module with simple operations. As a small-

sized SMC and less memory accesses are needed in the proposed decoding architecture, the overall power

consumption of the DB-CTC decoder can be decreased. Moreover, the simulation results show that the new

architecture gets near optimal performance compared to that of the classical MAP algorithm.

The remaining of this paper is organized as follows. Section 2 introduces an improved MAP algorithm,

where exponential operations are performed outside of the constituent decoder. Section 3 proposes a low-

memory intensive decoding scheme and shows how to recalculate the unstored state metrics by the CSRP

module, where the structures of the CSRP module and the constituent decoder are also described in detail.

Section 4 investigates the performance of the proposed architecture, such as the complexity of the recalculation,

SMC organization, decoder timing diagram, and bit error rate (BER). Finally, section 5 gives the conclusion.

2. Improved MAP algorithm

The optimal decoding algorithm suitable for DB-CTC is the classical MAP algorithm [20]. By assuming that

the code word is transmitted through an additive white Gaussian noise channel with noise variance σ2 , the

calculation of branch metrics γz
k (s

′, s) in the classical MAP algorithm is given by:
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where k is the time slot, (s′, s) ∈ S = {s0, · · · , s7} are the trellis states, z belongs to φ = {00, 01, 10, 11} , uk

is the information bits in pairs, La
z (uk) is the a priori log-likelihood ratio for uk = z , Lc = 2

/
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respectively.
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{
vλk =

(
xλ
k + 1

)/
2

r̄λk = exp
(
Lcr

λ
k

) λ ∈ {s1 , s2 , p1 , p2 } , (2b)

where vλk belongs to { 0 , 1 } , vk = vs1
k
vs2
k

belongs to φ , and L̄a
z
(vk) = P a (vk = z)/P a ( vk = 00 ) is the

a priori likelihood ratio for vk = z .

Based on the new approach that γ̄z
k (s

′, s) is computed, and assumes ᾱk (s), β̄k (s
′), L̄z (vk), and L̄e

z
(vk)

as the forward state metrics, the backward state metrics, the a posteriori likelihood ratio, and the extrinsic

information, respectively, we have derived the following improved algorithm for the DB-CTC (please refer to

[19] for details):

ᾱk (s) =
∑

s′∈S,z∈φ

γ̄z
k (s

′, s) ᾱk−1 (s
′), (3)
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In the above algorithm, if r̄λk are calculated in an exponential preprocessing module, and then stored in the

receive buffer, we find that only the multiply and addition operations exist in the iteration of the constituent

decoder. Therefore, we get a generic decoding structure for the DB-CTC, as illustrated in Figure 1 (note that

r̄p11k and r̄p22k are the interleaved parity parts).

( )e

z kL v

( )z kL v

( )a

z kL v

( )a

z kL v  
Constituent

Decoder 1 

Interleaver 

Deinterleaver
Hard 

Decision

Constituent

Decoder 2 

Interleaver

Deinterleaver
( )e

z kL v

Exponential 

pre-processing 

module 

11 22p p

k kr r

Receive buffer

1 2p p

k kr r  
1 2s s

k kr r  
Soft bits

204



ZHAN et al/Turk J Elec Eng & Comp Sci

Figure 1. Decoder for DB-CTC based on the improved MAP algorithm.

3. Low-memory intensive decoding architecture

3.1. Parallel decoding structure and butterfly scheme

To increase the decoding speed, the parallel window (PW) decoding structure is proposed for the hardware

implementation of the turbo-like decoder [21]. Figure 2 gives a generic decoding structure for DB-CTC using

the PW technique. The received soft bits of a constituent decoder are divided into N nonoverlapping windows,

and each of these windows works independently and simultaneously. Moreover, the values for the border

metrics of each window come from the previous iteration of the 2 neighbor windows (considering the tail-biting

characteristic of DB-CTC, the first and last windows are adjacent windows for each other). Additionally, it

should be noted that for the first iteration, all of these border metrics are initialized by the same value.

Window_1 Window_2 Window_N ……

( )1sα

( )1sβ ‘  

( ) 2
sα

( ) 2
sβ ‘

( )
N

sα

( )
N

sβ ‘

Interleaver / Deinterleaver 

Memory for extrinsic information 

Figure 2. PW decoding structure for DB-CTC, where ᾱ (s)1 , β̄ (s′)1 , · · · , ᾱ (s)N , β̄ (s′)N are the border metrics.

To further speed the iteration, butterfly scheduling [11,18] is adopted in this research. In the decoding

window, let W be the window length, and ᾱk (s) , β̄k (s
′) , k = [0, 1, · · · ,W ] are computed from the opposite

2 ends of the window simultaneously. ᾱ0 (s) and β̄W (s′) are the border metrics that come from the neighbor

windows, while ᾱW (s) and β̄0 (s
′) are the border metrics that should be output to the neighbor windows.

When 0 ≤ k ≤ W/2 − 1, ᾱk (s) and β̄W−k (s
′) are stored in the last-in and first-out (LIFO) SMC. When

W/2 ≤ k ≤ W − 1, ᾱk (s), β̄W−k (s
′), and the stored state metrics in the SMC are used to compute extrinsic

information L̄e
z
(vk+1) and L̄e

z
(vW−k) (or the a posteriori likelihood ratio L̄z (vk+1) and L̄z (vW−k)).

Based on the introduced MAP algorithm in Section 2, and by adopting the PW decoding structure and

the butterfly scheme, we propose a method to decrease the memory size of the SMC in the following sections.

3.2. Recalculation of the unstored forward state metrics

In Max-log-MAP and its derivatives, the Max operation is used to decrease the decoding complexity. Conse-

quently, forward computation of the backward state metrics is considerably complicated [22]. In the forward

recursion of the classical decoding architecture [15,23], 8 forward state metrics ᾱk (s) are calculated and then

stored in SMCα at every time slot k . By adopting the introduced MAP algorithm in Section 2, our research

shows that storing 6 of the 8 forward state metrics is enough, while at the time slot where the 2 unstored state
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metrics are needed, they can be recomputed by a CSRP module with simple operations. For convenience of

presentation, we write Eq. (3) in the form of a matrix as below:


ᾱk (s0)

ᾱk (s3)

ᾱk (s4)

ᾱk (s7)

 =


γ̄00
k (s0, s0) γ̄10

k (s1, s0) γ̄01
k (s6, s0) γ̄11

k (s7, s0)

γ̄11
k (s0, s3) γ̄01

k (s1, s3) γ̄10
k (s6, s3) γ̄00

k (s7, s3)

γ̄10
k (s0, s4) γ̄00

k (s1, s4) γ̄11
k (s6, s4) γ̄01

k (s7, s4)

γ̄01
k (s0, s7) γ̄11

k (s1, s7) γ̄00
k (s6, s7) γ̄10

k (s7, s7)




ᾱk−1 (s0)

ᾱk−1 (s1)

ᾱk−1 (s6)

ᾱk−1 (s7)

 , (7a)


ᾱk (s1)

ᾱk (s2)

ᾱk (s5)

ᾱk (s6)

 =


γ̄00
k (s2, s1) γ̄10

k (s3, s1) γ̄01
k (s4, s1) γ̄11

k (s5, s1)

γ̄11
k (s2, s2) γ̄01

k (s3, s2) γ̄10
k (s4, s2) γ̄00

k (s5, s2)

γ̄10
k (s2, s5) γ̄00

k (s3, s5) γ̄11
k (s4, s5) γ̄01

k (s5, s5)

γ̄01
k (s2, s6) γ̄11

k (s3, s6) γ̄00
k (s4, s6) γ̄10

k (s5, s6)




ᾱk−1 (s2)

ᾱk−1 (s3)

ᾱk−1 (s4)

ᾱk−1 (s5)

 . (7b)

In the forward direction, the forward state metrics, except for ᾱk (s4) , ᾱk (s6) , k ∈ { 0, 1, · · · ,W/2− 1 } ,
are stored in SMCα . Considering that butterfly scheduling is adopted in our proposed decoding architecture,

when the k th decoding slot comes, it is just the time slot to calculate the backward state metrics β̄k (s
′).

Therefore, γ̄z
k + 1 (s

′, s) is used not only for the recursion of the backward state metrics β̄k (s
′), but also for

recalculation of the 2 unstored forward state metrics.

To calculate ᾱk (s6) , k = [W/2− 1 , · · · , 0], we can derive 4 equations from Eq. (7a):



γ̄01
k+1 (s6, s0) ᾱk (s6) = ᾱk+1 (s0)− γ̄00

k+1 (s0, s0) ᾱk (s0)

−γ̄10
k+1 (s1, s0) ᾱk (s1)− γ̄11

k+1 (s7, s0) ᾱk (s7)

γ̄10
k+1 (s6, s3) ᾱk (s6) = ᾱk+1 (s3)− γ̄11

k+1 (s0, s3) ᾱk (s0)

−γ̄01
k+1 (s1, s3) ᾱk (s1)− γ̄00

k+1 (s7, s3) ᾱk (s7)

γ̄11
k+1 (s6, s4) ᾱk (s6) = ᾱk+1 (s4)− γ̄10

k+1 (s0, s4) ᾱk (s0)

−γ̄00
k+1 (s1, s4) ᾱk (s1)− γ̄01

k+1 (s7, s4) ᾱk (s7)

γ̄00
k+1 (s6, s7) ᾱk (s6) = ᾱk+1 (s7)− γ̄01

k+1 (s0, s7) ᾱk (s0)

−γ̄11
k+1 (s1, s7) ᾱk (s1)− γ̄10

k+1 (s7, s7) ᾱk (s7)

. (8)

Because of the recursive process, ᾱk + 1 (s) , s = [s0, s3, s4, s7] are obtained by the feedback, the branch

metrics γ̄z
k + 1 (s

′, s) are computed by the branch metrics unit (BMU), and ᾱk (s0), ᾱk (s1), and ᾱk (s7) are

obtained by accessing SMCα . Therefore, ᾱk (s6) is the only unknown metric in Eq. (8). In theory, each equation

in Eq. (9) is qualified to recalculate ᾱk (s6), but our numerical simulation shows that only the equation with the

maximum value of ᾱk (s6)’s coefficients is valid. Otherwise, a minor error of the recalculation would degrade

the accuracy in the next recursion. Consequently, a Max operation with 4 operands is employed to decide

which equation is the suitable one. For example, if we get a result by:

Max
[
γ̄01
k + 1 (s6, s0) , γ̄

10
k + 1 (s6, s3) , γ̄

11
k + 1 (s6, s4) , γ̄

00
k + 1 (s6, s7)

]
= γ̄01

k + 1 (s6, s0) , (9)

the first equation in Eq. (8) is selected to calculate ᾱk (s6). As the recalculation keeps running, ᾱk (s6) , k =

[W/2− 1 , · · · , 0] are computed in the backward direction.
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Meanwhile, we can recalculate ᾱk (s4) , k = [W/2− 1 , · · · , 0] by deriving 4 equations from Eq. (7b) as

follows: 

γ̄01
k+1 (s4, s1) ᾱk (s4) = ᾱk+1 (s1)− γ̄00

k+1 (s2, s1) ᾱk (s2)

−γ̄10
k+1 (s3, s1) ᾱk (s3)− γ̄11

k+1 (s5, s1) ᾱk (s5)

γ̄10
k+1 (s4, s2) ᾱk (s4) = ᾱk+1 (s2)− γ̄11

k+1 (s2, s2) ᾱk (s2)

−γ̄01
k+1 (s3, s2) ᾱk (s3)− γ̄00

k+1 (s5, s2) ᾱk (s5)

γ̄11
k+1 (s4, s5) ᾱk (s4) = ᾱk+1 (s5)− γ̄10

k+1 (s2, s5) ᾱk (s2)

−γ̄00
k+1 (s3, s5) ᾱk (s3)− γ̄01

k+1 (s5, s5) ᾱk (s5)

γ̄00
k+1 (s4, s6) ᾱk (s4) = ᾱk+1 (s7)− γ̄01

k+1 (s2, s7) ᾱk (s2)

−γ̄11
k+1 (s3, s6) ᾱk (s3)− γ̄10

k+1 (s5, s6) ᾱk (s5)

. (10)

Similarly, to select the suitable equation in Eq. (10) for the recalculation, we calculate the maximum value

among the coefficients of ᾱk (s4). For instance, if we get a result by:

Max
[
γ̄01
k + 1 (s4, s1) , γ̄

10
k + 1 (s4, s2) , γ̄

11
k + 1 (s4, s5) , γ̄

00
k + 1 (s4, s6)

]
= γ̄11

k + 1 (s4, s5) , (11)

the third equation in Eq. (11) is used to recalculate ᾱk (s4). As the recalculation keeps running, ᾱk (s4) , k =

[W/2− 1 , · · · , 0] are computed in the backward direction.

3.3. Recalculation of the unstored backward state metrics

In the process of backward recursion, the 8 backward state metrics β̄k (s
′) are calculated at every time slot k ,

and 6 of them are stored in SMCβ . Rewriting Eq. (4) in the form of a matrix, we get:


β̄k (s0)

β̄k (s1)

β̄k (s6)

β̄k (s7)

 =


γ̄00
k+1 (s0, s0) γ̄11

k+1 (s0, s3) γ̄10
k+1 (s0, s4) γ̄01

k+1 (s0, s7)

γ̄10
k+1 (s1, s0) γ̄01

k+1 (s1, s3) γ̄00
k+1 (s1, s4) γ̄11

k+1 (s1, s7)

γ̄01
k+1 (s6, s0) γ̄10

k+1 (s6, s3) γ̄11
k+1 (s6, s4) γ̄00

k+1 (s6, s7)

γ̄11
k+1 (s7, s0) γ̄00

k+1 (s7, s3) γ̄01
k+1 (s7, s4) γ̄10

k+1 (s7, s7)




β̄k+1 (s0)

β̄k+1 (s3)

β̄k+1 (s4)

β̄k+1 (s7)

 , (12a)


β̄k (s2)

β̄k (s3)

β̄k (s4)

β̄k (s5)

 =


γ̄00
k+1 (s2, s1) γ̄11

k+1 (s2, s2) γ̄10
k+1 (s2, s5) γ̄01

k+1 (s2, s6)

γ̄10
k+1 (s3, s1) γ̄01

k+1 (s3, s2) γ̄00
k+1 (s3, s5) γ̄11

k+1 (s3, s6)

γ̄01
k+1 (s4, s1) γ̄10

k+1 (s4, s2) γ̄11
k+1 (s4, s5) γ̄00

k+1 (s4, s6)

γ̄11
k+1 (s5, s1) γ̄00

k+1 (s5, s2) γ̄01
k+1 (s5, s5) γ̄10

k+1 (s5, s6)




β̄k+1 (s1)

β̄k+1 (s2)

β̄k+1 (s5)

β̄k+1 (s6)

 . (12b)

In the backward direction, the backward state metrics, except for β̄k (s4) , β̄k (s6) , k ∈ {W, · · · ,W/2 + 1 } ,
are stored in SMCβ . By the same method described in Section 3.2, the unstored backward state metrics can

also be recursively recalculated at their corresponding time slot.

3.4. Proposed decoding architecture with the CSRP module

Based on the aforementioned discussion, recalculation of the unstored state metrics includes 3 steps, which is

called the CSRP operation in this paper, as shown in Figure 3.
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It should be noted that state metrics 1 is αin or βin (they are the border metrics that are delivered

from the neighboring windows of the previous iteration), while state metrics 2 is ᾱW/2 (s) or β̄W/2 (s
′). Take

constituent decoder 1 as an example, where the overall decoding architecture with the CSRP module for DB-

CTC is presented in Figure 4, and the decoding procedure can be decomposed into 2 main steps:
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1) When 1 ≤ k ≤ W/2− 1:

1.1) Using the preprocessed soft bits r̄λk (or r̄λW + 1−k) and the a priori likelihood ratio L̄a
z
(vk) (or

L̄a
z
(vW + 1−k)), the branch metrics γ̄z

k (s
′, s) (or γ̄z

W + 1−k (s
′, s)) are computed by the BMUα (or BMUβ).

1.2) The values of ᾱ0 (s) (or β̄W (s′)) are initialized as αin (orβin). Subsequently, ᾱk (s) (or β̄W−k (s
′))

are computed by the recursive calculation module, and then ᾱ0 (s) , ᾱk (s) , s = [s0, s1, s2, s3, s5, s7] are stored

in SMCα (or β̄W (s′) , β̄W−k (s
′) , s′ = [s0, s1, s2, s3, s5, s7] are stored in SMCβ).

2) When W/2 ≤ k ≤ W :

2.1) By the same operations in Step 1.1, branch metrics γ̄z
k (s

′, s) (or γ̄z
W + 1−k (s

′, s)) are computed

recursively.

2.2) When k = W/2, ᾱW/2 (s) (or β̄W/2 (s
′)) are computed by the recursive calculation module,

instead of be stored in SMCα (or SMCβ), they are used by CSRPα (or CSRPβ) to initiate state metrics 2.

2.3) When W/2 ≤ k ≤ W − 1, ᾱk (s) are computed in the forward direction, and the corresponding

6 backward state metrics in SMCβ are read out to recalculate β̄k + 1 (s4) and β̄k + 1 (s6) by CSRPβ . Sub-

sequently, L̄e
z
(vk + 1) are computed with ᾱk (s), β̄k + 1 (s

′), and r̄λk + 1 by the extrinsic information module

(in the last iteration, the a posteriori likelihood ratio L̄z (vk + 1) is computed). Simultaneously, β̄W−k (s
′) are

computed in the backward direction, and the corresponding 6 forward state metrics in SMCα are read out to re-

calculate ᾱW−k−1 (s4) and ᾱW−k−1 (s6)by CSRPα . Subsequently, L̄
e
z
(vW−k) are computed with ᾱW−k−1 (s),

β̄W−k (s
′), and r̄λW−k by the extrinsic information module (in the last iteration, the a posteriori likelihood ratio

L̄z (vW−k) is computed).

2.4) When k = W , ᾱW (s) (or β̄0 (s
′)) are the forward (or backward) state metrics that are calculated

in Step 2.3, being initiated as the border metrics αout (or βout), they are delivered to the neighboring windows

and will be used in the next iteration.

4. Performance analysis and BER simulation

In this section, we analyze the proposed decoding architecture in terms of the recalculated complexity, decoder

timing diagram, and memory organization. In addition, to show the near optimal decoding performance of the

new scheme, the result of the BER simulation is also presented.

4.1. Complexity of the recalculation

Based on the aforementioned discussion, recalculation of the unstored state metrics is performed in the CSRP

module. To convenience the hardware implementation, 1 Max operation with 4 operands is decomposed into

3 Max operations with 2 operands as below [17]:

Max (a, b, c, d) = Max (Max (a, b) ,Max (c, d)) . (13)

Considering the structure of the equations in Eq. (8), once a suitable equation is decided, the unstored state

metrics can be recalculated by 4 multiply and 3 addition operations. As seen from the description in Section

3.4, when W/2 ≤ k ≤ W −1, there are 4 state metrics that should be recalculated by the CSRPα and CSRPβ

modules. As a result, we summarize the overall complexity of the recalculation in Table 1.
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Table 1. Complexity of the recalculation.

Operations
State metrics

Addition Multiply Max (2 operands)

Forward state metrics 4 × 3 × W/2 4 × 4 × W/2 4 × 3 × W/2
Backward state metrics 4 × 3 × W/2 4 × 4 × W/2 4 × 3 × W/2
Total 4 × 3 × W 4 × 4 × W 4 × 3 × W

4.2. Decoder timing diagram

In Figure 4, the forward state metrics ᾱk (s) are recursively computed from the beginning of the window to

the end of the window, while the backward state metrics β̄k (s
′) are recursively computed in the opposite

direction. Therefore, computation of the extrinsic information is separated into 2 parts, and then they are

parallel computed from the middle of the window to the beginning and the end of the window. Figure 5

describes the timing flow of the proposed decoding architecture, and shows that the proposed architecture is a

bidirectional high-speed decoding scheme.

Branch metrics

Forward state metrics

Backward state metrics

Store part of the 

forward state metrics

Store part of the 
backward state metrics 

Recalculate the unstored 

forward state metrics 

Recalculate the unstored

backward state metrics 

Extrinsic information 
(or the a posteriori likelihood 

ratio in the last iteration) 

Time0.5 × W W0 

Symbols 

Figure 5. Timing diagram of the proposed decoding architecture.

4.3. Memory organization

Since the proposed decoding architecture uses butterfly decoding scheduling, the branch metrics are computed

from the opposite 2 directions by BMUα and BMUβ simultaneously, and no memory is used for the branch

metrics. More importantly, by employing the CSRP module in this architecture, only 6 forward (or backward)

state metrics are needed to be stored at the corresponding time slot. Therefore, the memory storage of the SMC

is decreased by 25% compared with the classic decoding architecture in [15] and [23], and is also smaller than

the decoding architectures in [10], [11], and [17]. Given the quantization for each of the state metrics J = 10,

memory organizations of the 4 decoding architectures are summarized in Table 2.

5. Performance of the BER

To verify the effectiveness of our proposed decoding architecture, the enhanced Max-log-MAP (EML-MAP), the

classical MAP and the proposed decoding architecture with the CSRP module are selected for comparison. In

the simulation, the interleaver parameters of the code rate-1/3 DB-CTC are in accordance with the requirements

of 802.16m [5]. The number of the iterations performed by the decoder is 8, and the signal-to-noise ratio ranges

from 0.1 dB to 1.5 dB. The bit frame length and window size equals 800 and 20, respectively. The results in
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Figure 6 show the BER performance of the proposed decoding architecture is about 0.05 dB inferior to that of

the classical MAP algorithm, although our scheme performs low-memory intensive decoding.

Table 2. Summary of the memory organization.

Memory
Architecture SMCα SMCβ Sign bits Branch metrics Total

The classical

8 × J × W 0 0 8 × J × W 16 × J × Warchitecture
in [15] and [23]
Architecture in

7 × J × W 0 0 8 × J × W 15 × J × W
[10] and [17]
Architecture in [11] 6 × J × W/2 6 × J × W/2 4 × W 0 (6 × J + 4) × W
The proposed

6 × J × W/2 6 × J × W/2 0 0 6 × J × W
architecture
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Figure 6. BER of the proposed decoding architecture.

6. Conclusion

Based on an improved MAP algorithm for DB-CTC, we have proposed a low-memory intensive decoding

architecture for the design of a low-power consumed decoder. When compared with the conventional decoding

architecture, our scheme leads to a 25% reduction in the memory size for the LIFO SMC, and the unstored

state metrics are effectively recalculated by a CSRP module. At the price of the computational complexity

performed by the CSRP module, the number of memory accesses is also reduced by 25%. Since the PW

decoding technique and the butterfly decoding scheduling are adopted, the proposed decoding architecture also

achieves a high decoding speed. The simulation and comparison show that the new architecture has almost the

same BER performance as that of the classical MAP algorithm. Therefore, the proposed decoding architecture

can be applied in the very-large–scale integration implementation of a low-power and high speed DB-CTC

decoder.
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