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Abstract: This paper presents a comprehensive approach to the statistical characterization of impulse breakdown voltage

under the effect of a DC sweep voltage. Several goodness-of-fit tests are applied to up-and-down test results obtained

in the air-insulated rod-plane gap. Three distributions, normal, logistic, and Gumbel, are compared by means of the

Kolmogorov–Smirnov goodness-of-fit test, and logistic distribution is also compared to 3-parameter Weibull distributions

using the likelihood ratio test. Logistic distribution is found to be a possible alternative to normal and 3-parameter

Weibull distributions.

Key words: Sweep voltage, impulse breakdown voltage, swing-motion impulse generator, Kolmogorov–Smirnov test,
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1. Introduction

To estimate the impulse breakdown voltage of gas-insulated test gaps, the up-and-down test method by Dixon

and Mood [1] is often used, where the observed impulse breakdown voltage is assumed to follow normal

distribution (ND), which is accepted as the standard distribution in IEC 60-1 [2] or IEEE Std 4-1995 [3].

The information on the type of distribution function of the impulse breakdown voltage is of great importance

in designing the electrical insulation of high-voltage power equipment.

The sweep voltage resulting from the remanence magnetic flux in the core of power transformers, and

possible dielectric polarization existing over the insulating materials of the power equipment undergoing tests, are

not usually taken into account. The effect of this voltage on the type of impulse breakdown voltage distribution

has not been considered so far. Somerville and Tedford [4] demonstrated that when impulse voltages are applied

in the presence of sweep fields, the spatial and temporal variations of the negative ion density in the test gap

affect the time-lags in SF6 . They also verified that sweep voltages close to the electrode surface may reduce

the insulation strength of electronegative gases [5].

In the present article, we investigate the effect of sweep voltages on the impulse breakdown voltage data

obtained from up-and-down tests in the rod-plane gap in air. Different goodness-of-fit test procedures are applied

to the test data to decide on the type of distributions: 3 parameter distributions, normal, logistic, and Gumbel,

are compared by means of the Kolmogorov–Smirnov (K-S) goodness-of-fit test. The logistic distribution (LD)

seems to represent a probabilistic variation of the test data. For generalization, a further attempt is made to

determine the best suited type of existing 3-parameter distributions. From among the existing 3-parameter
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distributions, 3-parameter Weibull distribution (3PWD) is selected and compared to LD using the likelihood

ratio (LR) test, because of its distinct representative feature in gas-insulated systems [6–9].

2. Statistical characteristics of breakdown phenomena

2.1. Factors affecting impulse breakdown voltage

Two conditions must be simultaneously fulfilled in order for an impulse discharge to occur in gases: there should

be at least one suitably located free electron close to the stressed electrode and the electric field stress should

be sufficiently high within the critical volume of the stressed electrode. When these 2 conditions are satisfied,

the electron produces a sequence of avalanches and streamers that lead to a breakdown. In the absence of an

initiatory electron in the critical volume, no single avalanche can lead to a breakdown, even if the electric field

exceeds the breakdown field strength of the gas medium [10].

Free electrons are produced naturally in the air as a result of the detachment process caused by external

radiation due to cosmic rays or the penetration of ultraviolet radiation from the sun or the presence of local

radioactive materials. Once an electron is liberated, it is likely to be removed from the gas medium rapidly

[10]. Indeed, the rate of production and the concentration of free electrons are expectedly quite random in areas

close to the stressed electrode. When an overvoltage impulse is applied to a spark gap in the air, there is only

a small probability that this electron can fall into the critical volume.

Since the distributions of free electrons close to the stressed electrode are statistical in nature, these

distribution should be known before any laboratory and field tests are performed on high-voltage power

equipment. Since the concentration of free electrons and their probability of occurrence in the critical volume

are indeterminate, there is no definitive method that can be implemented for determining V50% breakdown

voltage under lightning and switching impulse stresses.

2.2. Effect of sweep voltage on impulse breakdown voltage

It is thought that the impulse breakdown probability and statistical time-lag in air and other electronegative

gases can be correlated directly with the density of the negative ions. There exists a correlation between the

statistical time-lag distribution and the initial spatial ion densities [4].

It is assumed that very small electric sweep fields across the test gap can have a drastic effect in reducing

the negative ion population [4]. These sweep fields may arise, for example, from induced voltages resulting

from charged capacitors of the impulse generator prior to triggering or from remanence magnetization within

the ferromagnetic materials of transformers and possible dielectric polarization existing in the power equipment

under test or from a difference in the contact potential across the test electrodes. It has been found in a rod-

plane gap that sweep fields may cause the ions in the region close to the tip of the rod electrode in the rod-plane

gap to sweep either towards or away from the rod, depending on the polarity [5], which causes a variation of

the impulse breakdown strength of the test gap.

2.3. Determining the distributions of the impulse breakdown voltage test data

In self-restoring insulation systems using air, vacuum, or SF6 , the type of impulse breakdown voltage distribu-

tion is generally assumed to follow either normal or Weibull distribution [6–9]. Vibholm and Thyregod assessed 4

different impulse breakdown distributions determined by the up-and-down test method: normal, logistic, 3PW,

and Gumbel distributions (GDs). The parameter estimates of these distributions obtained from the method of
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maximum likelihood for a number of up-and-down test data are compared with the estimates corresponding to

ND [11]. The cumulative distribution function (CDF) of the distributions under investigation is given by:

Normal distribution: The CDF of ND is:

P (v) =
1

σ
√
2π

v∫
−∞

exp

(
−(t− µ)2

2σ2

)
dt, (1)

where µ is the mean value and σ is the standard deviation.

Logistic distribution: The CDF of LD is defined by:

P (v) =
1

1 + exp[−(v − µ)/σ]
, (2)

where µ is the mean value like in ND and σ is the shape parameter.

Three-parameter Weibull distribution: The CDF of 3PWD is:

P (v) = 1− exp

[
−
(
v − γ

α

)β
]
, (3)

where α , β , and γ are the scale, shape, and location (threshold) parameters, respectively.

Gumbel distribution: The CDF of GD is given by:

P (v) = 1− exp

[
− exp

(
v − β

α

)]
, (4)

where α and β are the scale and location parameters, respectively.

After analyzing the works of the researchers in [6–9], in this article, 4 different types of probability

distributions are considered to decide on the best-fitted distribution to the present impulse breakdown voltage

data: normal, logistic, 3PW, and Gumbel distributions. For the selection of the distribution, parameter

estimates are performed by applying the method of maximum likelihood estimation (MLE). The MLE method

basically depends on the solution of the likelihood function, which is defined as the product of the probability

density functions of the selected distributions (see Appendix 1). The parameter estimates that maximize the

likelihood function are obtained by numerical methods [8]. Comparative parameter estimates of the distributions

are performed with both the Newton–Raphson (N-R) and Monte Carlo (MC) optimization methods to ensure

the correctness of the parameter estimates of the distributions.

2.4. Goodness-of-fit procedure

The most suitable types of statistical distributions that are applied for the evaluation of impulse breakdown

data under different experimental test conditions are found [6–9,11] to fit logistic, normal, Gumbel, and 3PW

distributions. Hence, in this work, for the statistical evaluation of a 50% impulse breakdown voltage, these 4

types of distributions are selected. Since logistic, normal, and Gumbel distributions are of the 2-parameter type,

they are compared by means of K-S and LR tests. The LR test is only applied to compare logistic and 3PW

distributions. The compatibility between the curves of the empirical and theoretical distributions is investigated

by the K-S test. The largest deviation between these curves is taken as a goodness-of-fit measure [12].
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3. Experimental setup

3.1. Two-stage swing-motion impulse generator

As shown in Figure 1a, the impulse generator used in the experiments is 2-stage and arranged to fire with a

specially designed swing-motion stage-gap system. The values of the charging capacitor and resistor are 0.26

µF and 600 kΩ, respectively, providing a time constant of RC = 156 ms. The impulse voltage is applied in

intervals of 1–2 min; hence, the rate of rise of the applied voltage increase is always lower than this value. The

generator stage voltage is 120 kV and it is equipped with 0.26 µF polystyrene capacitors, capable of delivering a

maximum of 1.872 kJ. The position of the spheres at each stage resembles a classical impulse generator circuit,

with a distinct feature, which is that the column of one group sphere makes a free swing-motion that allows the

generator to trigger for any impulse voltage requirement. The standard lightning impulse voltage (1.2/50 µs) is

applied to the test gap by means of this generator. The impulse wave shape is recorded by a digital oscilloscope,

and the impulse voltage and time-lag are measured with the aid of a computer feed from the digital oscilloscope.
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Figure 1. a) Swing-motion 2-stage impulse generator; b) experimental setup and sweep voltage-deterring sphere-sphere

gap.

3.2. Experimental setup of external DC sweep voltage

Sweep voltages that emerge from some cases, as explained in previous sections, cause voltage to appear at the

output terminal of the impulse generator prior to triggering [4]. These voltages are found [4,5] to affect the

impulse insulation strength of the air and hence lead to a variation of impulse breakdown voltage being applied

across the terminals of the power equipment undergoing tests. In order to investigate the influence of sweep

voltages on the impulse breakdown voltage, and on the type of distribution functions, a DC voltage source

is connected across a rod-plane test gap and a small sphere-to-sphere gap is inserted to isolate the impulse

generator, as shown in Figure 1b. The DC sweep voltage is applied via a 50-MΩ current limiting resistor that

is selected in order to prevent damage to the DC source. The impulse-generator leakage current isolator-spheres

are placed 1 m away from the test gap and both spheres are 2 cm in diameter.

During the tests, a rod-plane gap is used. The reason for selecting this gap is because of the distinct

boundaries of its critical volume around the tip of the rod electrode. The boundaries of critical volumes are not

explicitly defined in plane-plane and rod-rod gaps. The rod electrode is 3 cm in diameter and the Rogowski

profiled plane electrode is 30 cm in diameter. The gap length is fixed to 3 cm. The impulse breakdown voltage

data are obtained by the up-and-down test method and the voltages are recorded and measured with a digital
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storage oscilloscope (UNI-T) via a generator capacitive voltage divider (a = 1/3500), and the peak voltage

and time-lags are recorded with a PC interfaced with the oscilloscope. The laboratory tests are performed

without interruption to avoid undesirable environmental conditions on the test results and all of the results are

normalized to standard temperature and pressure conditions.

A DC sweep voltage is permanently connected to the test gap during the tests. Positive and negative

DC sweep voltages are applied for only the positive impulse tests. A negative impulse voltage is not used since

it provides extra electrons into the critical volume in addition to space-born electrons.

The values of the DC sweep voltages are selected similar to those used in [4]. For adjustment of the DC

sweep voltage, an electrostatic voltmeter (TREK 520 IT-9265099) is used and the voltage adjustments are done

by means of the calibration curve. However, it is found that there is not much difference between the applied

and measured DC sweep voltages.

4. Results and discussion

4.1. Up-and-down breakdown test data

The results of normalized up-and-down breakdown test data obtained for different ambient test conditions

under positive and negative sweep voltages are illustrated in Figures 2 and 3, where it is seen that 50% impulse

breakdown voltage estimates are determined by the LD, which is suggested to be the most likely distribution

as a result of this paper.
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Figure 2. Up-and-down test data for positive sweep voltages. The 50% impulse breakdown voltage estimate was

determined by LD, indicated on the vertical breakdown voltage axis. RAH: Relative air humidity.

4.2. Results of parameter estimates

The parameter estimates are determined by the MLE algorithm for 4 different distributions (see Section 2.3),

which are expected to fit the impulse breakdown voltage data. For optimizing the MLE equations, the MC

16
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Figure 3. Up-and-down test data for negative sweep voltages. The 50% impulse breakdown voltage estimate was

determined by LD, indicated on the vertical breakdown voltage axis. RAH: Relative air humidity.

Table 1. Maximum likelihood estimates for positive sweep voltage data.

Sweep voltage Dist. type MC opt N-R opt

0 V

ND θ̂1 = (49.1949, 4.3738) θ̂1 = (49.1959, 4.3685)

LD θ̂2 = (48.9953, 2.3993) θ̂2 = (48.9952, 2.3986)

3PWD θ̂3 = (14.0028, 3.0510, 36.7128) θ̂3 = (13.8305, 3.0086, 36.8138)

GD θ̂4 = (4.7628, 51.4372) θ̂4 = (4.7614, 51.4373)

75 V

ND θ̂1 = (51.3760, 3.7909) θ̂1 = (51.3757, 3.7891)

LD θ̂2 = (51.2159, 2.2155) θ̂2 = (51.2156, 2.2160)

3PWD θ̂3 = (7.8761, 1.9218, 44.4437) θ̂3 = (7.6477,1.8408, 44.6049)

GD θ̂4 = (3.9077, 53.2685) θ̂4 = (3.9055, 53.2834)

150 V

ND θ̂1 = (49.2607, 2.8397) θ̂1 = (49.2561, 2.8474)

LD θ̂2 = (49.2636, 1.5728) θ̂2 = (49.2674, 1.5727)

3PWD θ̂3 = (9.3833, 3.2282, 40.7559) θ̂3 = (9.5516, 3.2510, 40.6727)

GD θ̂4 = (3.1151, 50.6441) θ̂4 = (3.1115, 50.6539)

300 V

ND θ̂1 = (49.1023, 3.2930) θ̂1 = (49.1052, 3.2984)

LD θ̂2 = (49.0370, 1.8892) θ̂2 = (49.0322, 1.8910)

3PWD θ̂3 = (8.8184, 2.5912, 41.1790) θ̂3 = (8.7913, 2.5343, 41.3095)

GD θ̂4 = (3.5515, 50.7447) θ̂4 = (3.5545, 50.7460)

Normal distribution (ND), θ̂1 = (µ̂, σ̂) (in kV); logistic distribution (LD), θ̂2 = (µ̂, σ̂) (in kV); 3-parameter

Weibull (3PWD), θ̂3 =
(
α̂, β̂, γ̂

)
(in kV); and Gumbel distribution (GD), θ̂4 =

(
α̂, β̂

)
(in kV).
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and N-R methods are applied. The results of parameter estimates for positive and negative sweep voltages

are shown in Tables 1 and 2, respectively. The reason for illustrating the results of both methods is to ensure

that the optimum point during the iterations is reached and, hence, that the correct estimates are attained. It

can be seen that the parameter estimates of the 4 distributions obtained with both methods seem to be close

to each other. Notably, the effect of sweep voltages on parameter estimates appears to be negligible for the 4

distributions.

Table 2. Maximum likelihood estimates for negative sweep voltage data.

Sweep voltage Dist. type MC opt N-R opt

0 V

ND θ̂1 = (47.5616, 2.4315) θ̂1 = (47.5565, 2.4288)

LD θ̂2 = (47.6041, 1.3791) θ̂2 = (47.6108, 1.3792)

3PWD θ̂3 = (12.0656, 5.1940, 36.4312) θ̂3 = (12.3427, 5.3660, 36.1514)

GD θ̂4 = (2.2504, 48.6952) θ̂4 = (2.2489, 48.6958)

–75 V

ND θ̂1 = (47.2615, 2.3956) θ̂1 = (47.2639, 2.3989)

LD θ̂2 = (47.2016, 1.4149) θ̂2 = (47.1949, 1.4198)

3PWD θ̂3 = (7.2208, 2.9168, 40.8867) θ̂3 = (7.2310, 2.9448, 40.8223)

GD θ̂4 = (2.3343, 48.4341) θ̂4 = (2.3406, 48.4308)

–150 V

ND θ̂1 = (46.8637, 2.2760) θ̂1 = (46.8743, 2.2706)

LD θ̂2 = (46.8474, 1.3253) θ̂2 = (46.8435, 1.3273)

3PWD θ̂3 = (6.8974, 2.9175, 40.7225) θ̂3 = (6.7806, 2.9089, 40.8367)

GD θ̂4 = (2.2936, 47.9866) θ̂4 = (2.2979, 47.9829)

–300 V

ND θ̂1 = (47.8055, 3.7486) θ̂1 = (47.8077, 3.7555)

LD θ̂2 = (47.8476, 2.0669) θ̂2 = (47.8507, 2.0680)

3PWD θ̂3 = (17.3321, 4.6303, 31.8752) θ̂3 = (17.3131, 4.6931, 31.9167)

GD θ̂4 = (3.6964, 49.6185) θ̂4 = (3.7015, 49.6169)

ND: θ̂1 = (µ̂, σ̂) (in kV); LD: θ̂2 = (µ̂, σ̂) (in kV); 3PWD: θ̂3 =
(
α̂, β̂, γ̂

)
(in kV); and GD: θ̂4 =

(
α̂, β̂

)
(in kV).

Table 3. K-S test results for positive sweep voltage data.

Sweep voltage Dist. type MLE K-S

0 V

ND θ̂1 = (49.1959, 4.3685) 0.1896

LD θ̂2 = (48.9952, 2.3986) 0.1807

GD θ̂3 = (4.7614, 51.4373) 0.2079

75 V

ND θ̂1 = (51.3757, 3.7891) 0.1524

LD θ̂2 = (51.2156, 2.2160) 0.1329

GD θ̂3 = (3.9055, 53.2834) 0.2010

150 V

ND θ̂1 = (49.2561, 2.8474) 0.1279

LD θ̂2 = (49.2674, 1.5727) 0.1263

GD θ̂3 = (3.1115, 50.6539) 0.1617

300 V

ND θ̂1 = (49.1052, 3.2984) 0.1033

LD θ̂2 = (49.0322, 1.8910) 0.0999

GD θ̂3 = (3.5545, 50.7460) 0.1506

ND: θ̂1 = (µ̂, σ̂)(in kV); LD: θ̂2 = (µ̂, σ̂)(in kV); and

GD: θ̂3 =
(
α̂, β̂

)
(in kV).
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4.3. Kolmogorov–Smirnov test results

For selecting the appropriate distributions among normal, logistic, and Gumbel distributions, which are fitted

to the impulse breakdown voltage test data, the K-S goodness-of-fit test is applied. The results of the K-S test

between the fitted and the empirical distributions are shown in Tables 3 and 4. Because of its unacceptably

large K-S values, Gumbel is the most improper among these distributions under both positive and negative

sweep voltages.

LD seems to be more appropriate than the other 2 distributions under positive sweep voltages, as

illustrated in Table 3. However, under negative sweep voltage, LD performs better than the others for only the

negative sweep voltages of –75 V and –300 V, but for the sweep voltages of 0 V and –150 V, ND outperforms

the other distributions [13–15], as shown in Table 4.

Table 4. K-S test results for negative sweep voltage data.

Sweep voltage Dist. type MLE K-S

0 V

ND θ̂1 = (47.5565, 2.4288) 0.1199

LD θ̂2 = (47.6108, 1.3792) 0.1362

GD θ̂3 = (2.2489, 48.6958) 0.1580

–75 V

ND θ̂1 = (47.2639, 2.3989) 0.1182

LD θ̂2 = (47.1949, 1.4198) 0.1032

GD θ̂3 = (2.3406, 48.4308) 0.1696

–150 V

ND θ̂1 = (46.8743, 2.2706) 0.1223

LD θ̂2 = (46.8435, 1.3273) 0.1279

GD θ̂3 = (2.2979, 47.9829) 0.1397

–300 V

ND θ̂1 = (47.8077, 3.7555) 0.1299

LD θ̂2 = (47.8507, 2.0680) 0.1169

GD θ̂3 = (3.7015, 49.6169) 0.1833

ND: θ̂1 = (µ̂, σ̂)(in kV); LD: θ̂2 = (µ̂, σ̂)(in kV); and GD: θ̂3 =
(
α̂, β̂

)
(in kV).

4.4. Likelihood ratio test results

In Section 4.3, the results of the K-S test indicate that LD serves better than the normal and Gumbel

distributions for all of the values of the sweep voltages, except for 0 V and –150 V. Because of the successful

performance of the 3PWD in self-restoring gas-insulated systems [6–9], LD is also compared with the 3PWD

by applying the LR test at a 5% significance level for both sweep voltage data samples. The results for both

distributions are shown in Tables 5 and 6.

The χ2 limit, which is 3.841 at a 5% significance level, and the corresponding P-value (0.05) are critical

values to test whether the data come from the LD or the 3PWD (see Appendix 3) for our LR test statistic.

R values smaller than 3.841 indicate that the data are most likely to come from LD; otherwise, 3WP is the

candidate. Hence, for positive sweep voltages (Table 5) of 150 V and 300 V and for negative sweep voltages

(Table 6) of 0 V and –300 V, LD serves better than 3PWD. Moreover, P-values greater than 0.05 demonstrate

that the data fit the LD better than 3PWD. In Tables 5 and 6, the log-likelihood (LL) values leading to

computation of R values are also introduced.

A comparative study for the best-fitted distribution to the impulse breakdown voltage data under positive

and negative sweep voltages is also carried out with Q-Q plots. The results of the Q-Q plots confirm the LR

test results given in Tables 5 and 6, such that LD has outstanding features among the others.
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Table 5. Likelihood ratio test results for positive sweep voltage data.

Sweep voltage Dist. type MLE LL value R P-value

0 V
LD θ̂1 = (48.9952, 2.3986) –216.3519

4.0218 0.0449
3PWD θ̂2 = (13.8305, 3.0086, 36.8138) –218.3628

75 V
LD θ̂1 = (51.2156, 2.2160) –206.4928

10.1708 0.0014
3PWD θ̂2 = (7.6477, 1.8408, 44.6049) –201.4074

150 V
LD θ̂1 = (49.2674, 1.5727) –181.4788

3.7128 0.0540
3PWD θ̂2 = (9.5516, 3.2510, 40.6727) –183.3352

300 V
LD θ̂1 = (49.0322, 1.8910) –178.3459

2.4346 0.1187
3PWD θ̂2 = (8.7913, 2.5343, 41.3095) –177.1286

LD: θ̂1 = (µ̂, σ̂)(in kV) and 3PWD: θ̂2 =
(
α̂, β̂, γ̂

)
(in kV).

Table 6. Likelihood ratio test results for negative sweep voltage data.

Sweep voltage Dist. type MLE LL value R P-value

0 V
LD θ̂1 = (47.6108, 1.3792) –170.4623

0.0388 0.8438
3PWD θ̂2 = (12.3427, 5.3660, 36.1514) –170.4817

–75 V
LD θ̂1 = (47.1949, 1.4198) –172.5591

4.5044 0.0338
3PWD θ̂2 = (7.231036, 2.9448, 40.8223) –170.3069

–150 V
LD θ̂1 = (46.8435, 1.3273) –169.5264

3.9018 0.0482
3PWD θ̂2 = (6.7806, 2.9089, 40.8367) –167.5755

–300 V
LD θ̂1 = (47.8507, 2.0680) –191.6012

3.6278 0.0568
3PWD θ̂2 = (17.3131, 4.6931, 31.9167) –193.4151

LD: θ̂1 = (µ̂, σ̂)(in kV) and 3PWD: θ̂2 =
(
α̂, β̂, γ̂

)
(in kV).

It is observed that LD works best in some sweep voltage data sets according to the consequences of the

K-S test. LD is also compared with 3PWD by means of the LR test, according to which LD operates better

than 3PWD for 150 V, 300 V, 0 V, and –300 V sweep voltage data samples. Therefore, it is not guaranteed

that LD will always behave better than the normal, 3PW, or Gumbel distributions, but at least it can be said

under some circumstances that LD might work better than the other 3 distributions.

5. Conclusions

The impulse breakdown voltage data obtained from up-and-down tests to determine the V50% impulse break-

down voltage are generally observed to follow normal or 3PW probability distributions. However, in the present

study, it is shown that LD can sometimes perform better than the other 2 distributions under the influence of

externally applied DC sweep voltages. LD may be suggested to be an alternative distribution to normal and

3PW distributions.

Appendixes

Appendix 1. Maximum likelihood estimates

Normal distribution: The probability density function (PDF) of ND is given by:

p(v) =
1

σ
√
2π

e−
(v−µ)2

2σ2 . (5)
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The likelihood function L corresponding to n breakdowns occurring at each voltage level vi is given in Eq.

(6):

L(v1, v2, ..., vn|µ, σ) =
n∏

i=1

[
1

σ
√
2π

e−
(vi−µ)2

2σ2

]
. (6)

Since vi and n are known, L is a function of µ and σ only. For complete impulse breakdown voltage samples,

the natural logarithm of the likelihood function

lnL = −n

2
ln(2π)− n ln(σ)− 1

2

n∑
i=1

(
vi − µ

σ

)2

(7)

yields the LL functions:

∂ lnL

∂µ
=

1

σ2

n∑
i=1

(vi − µ) = 0, (8)

∂ lnL

∂σ
= −n

σ
+

1

σ3

n∑
i=1

(vi − µ)
2
= 0. (9)

Logistic distribution: The PDF of LD is given by:

p(v) =
e−(v−µ)/σ

σ(1 + e−(v−µ)/σ)2
. (10)

The likelihood function for LD is:

L(v1, v2, ..., vn|µ, σ) =
n∏

i=1

[
e−(vi−µ)/σ

σ(1 + e−(vi−µ)/σ)2

]
, (11)

where v1, v2, ..., vn are the impulse breakdown voltages. The logarithm of the likelihood function is defined by:

lnL = −
n∑

i=1

(
vi − µ

σ

)
−

n∑
i=1

ln(σ)− 2
n∑

i=1

ln
(
1 + e−(vi−µ)/σ

)
. (12)

To find the parameters that maximize the LL function, the following MLE equations need to be solved

simultaneously:

∂ lnL

∂µ
=

n

σ
− 2

n∑
i=1

(
1
σ e

−(vi−µ)/σ

1 + e−(vi−µ)/σ

)
= 0, (13)

∂ lnL

∂σ
= −n

σ
+

n∑
i=1

(vi − µ)

σ2
− 2

n∑
i=1

(
(vi−µ)

σ2 e−(vi−µ)/σ

1 + e−(vi−µ)/σ

)
= 0. (14)

Three-parameter Weibull distribution: The PDF of 3PWD is given by:

p(v) =
β

α

(
v − γ

α

)β−1

exp

[
−
(
v − γ

α

)β
]
. (15)
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The likelihood function is given by:

L(v1, v2, ..., vn|α, β, γ) =
n∏

i=1

[
β

α

(
vi − γ

α

)β−1

exp

[
−
(
vi − γ

α

)β
]]

. (16)

Here, v1, v2, ..., vn are the lightning impulse breakdown voltages. The logarithm of the likelihood function is

denoted by:

lnL = n ln

(
β

α

)
+ (β − 1)

n∑
i=1

ln (vi − γ)− 1

α

n∑
i=1

(vi − γ)
β
. (17)

LL equations are given by:

∂ lnL

∂α
= −n

α
+

1

α2

n∑
i=1

(vi − γ)
β
= 0, (18)

∂ lnL

∂β
=

n

β
+

n∑
i=1

ln (vi − γ)− 1

α

n∑
i=1

[
(vi − γ)

β
ln (vi − γ)

]
= 0, (19)

∂ lnL

∂γ
=

β

α

n∑
i=1

ln (vi − γ)
β−1 − (β − 1)

n∑
i=1

(vi − γ)
−1

= 0. (20)

Gumbel distribution: The PDF of the GD has the form:

p(v) =

(
1

α

)
exp

(
v − β

α

)
exp

[
− exp

(
v − β

α

)]
. (21)

The likelihood function is given by:

L(v1, v2, ..., vn|α, β) =
n∏

i=1

[(
1

α

)
exp

(
vi − β

α

)
exp

[
− exp

(
vi − β

α

)]]
, (22)

where v1, v2, ..., vn are the impulse breakdown voltages obtained from the up-and-down test. The logarithm of

likelihood function is denoted by:

lnL = n ln

(
1

α

)
+

n∑
i=1

(
vi − β

α

)
−

n∑
i=1

exp

(
vi − β

α

)
. (23)

The first derivatives of the LL function with respect to distribution parameters α and β yield the following 2

equations:

∂ lnL

∂α
= nα−

n∑
i=1

(
vi − β

α2

)
+

n∑
i=1

(
vi − β

α

)
exp

(
vi − β

α

)
= 0, (24)

∂ lnL

∂β
= −n

α
+

1

α

n∑
i=1

exp

(
vi − β

α

)
= 0. (25)
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Appendix 2. Monte Carlo optimization

Alternatively, we can use the MC optimization method to determine the parameters of the probability distribu-

tion functions. Maximizing the LL function in this method is realized by means of a random search. Numbers

are produced randomly in the specified interval for the parameters and inserted into the LL function. This

method repeatedly evaluates the LL function at randomly selected values of the parameters [16] and requires

no derivatives of the LL function. It needs no iterative initial values for finding parameters. Generated random

values that maximize the LL function are selected as the estimated parameters of the distribution.

Appendix 3. Likelihood ratio test

Distributions that are compared by means of the LR test should have a different number of parameters.

Logistic and 3PW distributions have a different number of parameters: LD has 2 parameters and 3PWD

has 3 parameters. For this reason, comparing logistic and 3PW using the LR test is appropriate. This test

method benefits from the LL values of the distributions.

H0 : Data come from a LD model,

H1 : Data come from a 3PWD model,

R = −2 ∗ ln
(

LL

L3PW

)
= −2 ∗ lnLL + 2 ∗ lnL3PW , (26)

where lnLL and lnL3PW are the LL function values of the logistic and 3PW distributions, respectively.

If R is greater than χ2
k,0.05 , then H0 is rejected and H1 is accepted. Otherwise, H1 is rejected and H0

is accepted. All of the data are considered at a 5% significance level for this work.

k = (parameter number of 3PWdistribution)− (parameter number of logistic distribution) (27)

p = 1− χ2 (R, k) (28)

Here, R is the value of the LR test and k is the degrees of freedom of the χ2 distribution.
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